国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

電化學(xué)合成氨研究進(jìn)展

2020-04-07 17:42劉暢劉先軍劉淑芝于忠軍崔寶臣
當(dāng)代化工 2020年3期
關(guān)鍵詞:陰極質(zhì)子電化學(xué)

劉暢 劉先軍 劉淑芝 于忠軍 崔寶臣

摘??????要:氨是生產(chǎn)化肥的原料,在人類的生產(chǎn)和生活中發(fā)揮著重要作用。工業(yè)合成氨在高溫高壓的苛刻條件下進(jìn)行,造成了嚴(yán)重的能耗和污染??紤]到人類社會(huì)的可持續(xù)發(fā)展,開發(fā)生態(tài)友好型和能源依賴性較低的方法作為合成氨替代工藝迫在眉睫。電化學(xué)合成氨打破傳統(tǒng)合成氨的熱力學(xué)限制,能夠?qū)崿F(xiàn)由水和氮?dú)庵苯映汉铣砂?,具有廣闊的發(fā)展前景。根據(jù)電化學(xué)合成氨的工作溫度范圍分類,從高中低溫電化學(xué)合成氨三方面綜述了電化學(xué)合成氨領(lǐng)域的研究進(jìn)展及現(xiàn)有技術(shù)存在的挑戰(zhàn),以期對電化學(xué)合成氨催化劑設(shè)計(jì)提供有益的參考。

關(guān)??鍵??詞:電化學(xué);合成氨;電催化劑;電解質(zhì)

中圖分類號(hào):O646.5 ???????文獻(xiàn)標(biāo)識(shí)碼: A ??????文章編號(hào): 1671-0460(2019)03-0655-05

Research Progress in Electrochemical Ammonia Synthesis

LIU?Chang1,?LIU?Xian-jun1,?LIU?Shu-zhi1,2YU?Zhong-jun1,?CUI?Bao-chen1,2

(1. College of Chemistry and Chemical Engineering, Northeast Petroleum University, Heilongjiang?Daqing 163318, China;

2. School of Chemistry Engineering, Guangdong University of Petrochemical Technology, Gangdong?Maoming 525000, China)

Abstract: ?Ammonia is essential to life on the planet since it is used as a chemical feedstock for the synthesis of reactive nitrogen compounds. Industrial synthetic ammonia process is always carried out under harsh conditions of high-temperature and high-pressure,?causing?high energy consumption and severe pollution.In consideration of the sustainable development of human society, it is highly desirable to develop eco-friendly and less energy-dependent processes?as substitutes in the production of ammonia. Electrochemical synthesis of ammonia is able to break the thermodynamical restriction. Direct synthesis of ammonia from water and nitrogen can be achieved via electrochemical method. Electrochemical synthesis of ammonia also has been regarded as the promising technology. In this paper, the latest?research?progress?and?remaining challenges in electrochemical synthesis of ammonia were?introduced. Moreover, this paper can?offer a helpful guidance for the reasonable design of electrocatalysts towards electrochemical synthesis of ammonia.

Key words:?electrochemistry;?synthesis of ammonia;?electrocatalysts;?electrolyte

在全球范圍內(nèi),氨(NH3)是重要的工業(yè)化學(xué)品,每年合成約2億t,是主要的最終產(chǎn)品,也是一種重要的中間體[1,2]。氨被廣泛用于各種工業(yè)部門,包括能源、制冷、運(yùn)輸、化肥生產(chǎn)(超過80%的生產(chǎn)氨)和制藥等[3,4]。液氨中的氫含量為17.6%(wt),且易于儲(chǔ)存和運(yùn)輸,因此使用氨和相關(guān)化學(xué)品以及作為間接儲(chǔ)氫材料受到了人們的廣泛關(guān)注[5,6]。

目前,Haber-Bosch工藝是合成氨的主要技術(shù)手段,該工藝采用Fe基催化劑,以H2作為反應(yīng)原料,與N2在高溫(400~600 ℃)和高壓(20~40 MPa)下發(fā)生反應(yīng)。但該工藝能耗極高,還受熱力學(xué)要求的限制,氫單程轉(zhuǎn)化率低[7,8],且氫一般都是從天然氣等化石燃料中獲取的,制氫過程會(huì)產(chǎn)生大量的溫室氣體CO2[9,10]。隨著化石燃料的減少以及全球變暖對環(huán)境的危害,開發(fā)更經(jīng)濟(jì)的可持續(xù)性Haber-Bosch合成氨替代工藝具有重要的理論價(jià)值和現(xiàn)實(shí)意義。

近年來,越來越多的專家學(xué)者開始致力于對常壓下電化學(xué)合成氨的研究,并取得了令人矚目的研究成果。本文從高溫電化學(xué)合成氨(>500 ℃),中溫電化學(xué)合成氨(100~500 ℃)以及低溫電化學(xué)合成氨(<100 ℃)三個(gè)方面對研究進(jìn)行了歸納總結(jié)。

1 ?高溫電化學(xué)合成氨

高溫電化學(xué)合成氨就是在高溫下,利用質(zhì)子導(dǎo)體作電解質(zhì)的電化學(xué)合成氨方法。在高溫含氫條件下,鈣鈦礦型陶瓷具有很高的質(zhì)子導(dǎo)電率[11],一經(jīng)發(fā)現(xiàn)便引起了人們的重視。1996年,Panagos和Stoukides等[12]提出可將高溫質(zhì)子導(dǎo)體用于電化學(xué)合成氨的理論模型。Marnellos等[13]在1998年首次報(bào)道了以固體氧化物質(zhì)子導(dǎo)體作電解質(zhì),以Pd作陰極催化劑實(shí)現(xiàn)了電化學(xué)合成氨,最高產(chǎn)氨速率為4.5×10-9?mol·s-1·cm-2,最高電流效率為78%,引領(lǐng)了電化學(xué)合成氨的發(fā)展。此后,質(zhì)子導(dǎo)體作為電解質(zhì)高溫電化學(xué)合成氨研究愈加活躍。2005年,Wang等[14]將螢石結(jié)構(gòu)型復(fù)合氧化物L(fēng)a1.95Ca0.05M2O7?δ(M=Ce、Zr)作電解質(zhì)電化學(xué)合成氨,在520 ℃下,La1.95Ca0.05Ce2O7?δ和La1.95Ca0.05Zr2O7?δ的最高產(chǎn)氨速率分別為1.3×10-9?mol·s-1·cm-2和2.0×10-9?mol·s-1·cm-2。同年,Li等[15]采用燒結(jié)的鈣鈦礦型復(fù)合物作為固體電解質(zhì),以Ag-Pd合金作為電極進(jìn)行電化學(xué)合成氨,最高產(chǎn)氨速率達(dá)2.16×10-9?mol·s-1·cm-2。Zhang等[16]以La0.9Sr0.1Ga0.8Mg0.2O3?α(LSGM)為電解液,在常壓下成功合成了氨。陰極室產(chǎn)氨速率為2.37×10-9?mol·s-1·cm-2,電流效率達(dá)70%以上。Xu等[17]以Ba0.98Ce0.8Y0.2O3-α+ 0.04ZnO為電解質(zhì),在500 ℃下,最高產(chǎn)氨速率為2.36 ×10-9 mol·s-1·cm-2。2015年,Vasileiou等[18]采用BaCe0.2 Zr0.7Y0.1O2.9(BCZY27)為電解質(zhì),以Ni-BZCY27為陰極,Rh膜為陽極。在550 ℃下電化學(xué)合成氨的最高產(chǎn)氨速率為2.9×10-9?mol·s-1·cm-2。

質(zhì)子導(dǎo)體作電解質(zhì)通常在高溫下才具有明顯的質(zhì)子導(dǎo)電能力,但氨在高溫下會(huì)分解,從熱力學(xué)角度上來說并不利于氨的合成。因此,高溫電化學(xué)合成氨的產(chǎn)氨速率多年以來一直都不高,很難有所突破。

2 ?中溫電化學(xué)合成氨

中溫電化學(xué)合成氨條件相對溫和,近年來熔鹽電解質(zhì)體系和復(fù)合電解質(zhì)體系在這一領(lǐng)域占據(jù)著重要位置。Murakami等[19]使用熔融LiCl-KCl-Li3N和LiCl-KCl-CsCl-Li3N為電解質(zhì),研究了由N2和各種氫源(H2、H2O、CH4、H2S)的電化學(xué)合成氨反應(yīng)[20-25]。但這種以熔融氯化物為基礎(chǔ)的電化學(xué)合成氨產(chǎn)氨速率很低。2015年,Kim等[26]研究了Ti、Fe、Co和Ni電極在LiCl-KCl-CsCl電解質(zhì)中電化學(xué)合成氨的電化學(xué)性能,活性順序從大到小依次為Co>Ni>Fe>Ti,認(rèn)為電阻率和潤濕性是決定熔融氯化物系統(tǒng)中N2還原催化活性的關(guān)鍵因素。2016年,在常壓和327 ℃下,該研究團(tuán)隊(duì)在LiCl-KCl-CsCl中加入納米Fe2O3進(jìn)行電化學(xué)合成氨,最高產(chǎn)氨速率為3.0×10-10?mol·s-1·cm-2,電流效率為0.14%;隨后在該體系中加入CoFe2O4懸浮催化劑,最高產(chǎn)氨速率為1.78×10-10?mol·s-1·cm-2,電流效率為0.17%[27]

除了熔融氯化物體系外,Licht等[28,29]提出了由空氣和水蒸氣在納米Fe2O3的熔融氫氧化物懸浮液中的電化學(xué)合成氨途徑。在200 ℃下,在摩爾比為0.5 NaOH/0.5 KOH的電解液中,陰陽極分別為蒙乃爾篩網(wǎng)和鎳片,在電流密度為2 mA·cm?2,電壓為1.2 V的條件下,產(chǎn)氨速率達(dá)2.4×10-9 mol·s-1·cm-2,電化學(xué)合成氨電流效率為35%。在該體系下運(yùn)行6 h后,產(chǎn)氨速率在前4 h下降到平均值的85%,納米Fe2O3在電解液中的簡單分散,在電解過程中會(huì)發(fā)生團(tuán)聚,不利于電池的長期穩(wěn)定性。我們課題組在活性炭(AC)上負(fù)載Fe2O3制備出Fe2O3/AC催化劑,活性炭載體的密度與熔鹽的密度相近,進(jìn)行電解反應(yīng)時(shí)催化劑不會(huì)發(fā)生團(tuán)聚和沉淀的現(xiàn)象,比單一納米Fe2O3催化劑穩(wěn)定性更好。更重要的是采用Fe2O3/AC催化劑會(huì)顯著抑制水電解產(chǎn)氫的副反應(yīng)。在250 ℃下,最高產(chǎn)氨速率為8.27×10-9mol·s-1·cm-2,電流效率為13.7%[30,31]。

采用熔鹽-離子導(dǎo)體陶瓷膜為復(fù)合電解質(zhì)進(jìn)行電化學(xué)合成氨的另一重要研究領(lǐng)域。Amar等[32]采用Ce0.8Gd0.2O2?δ陶瓷膜-(Li, Na, K)2CO3作為復(fù)合物電解質(zhì),鈣鈦礦氧化物Pr0.6Ba0.4Fe0.8Cu0.2O3?δ作為催化劑,在400 ℃下,電壓為1.4 V時(shí),電化學(xué)合成氨的最高產(chǎn)氨速率為1.07×10-10mol·s-1·cm-2。該課題組在該領(lǐng)域進(jìn)行了一系列電化學(xué)合成氨研究[33-39]。雖然在加入碳酸鹽混合電解質(zhì)之后離子電導(dǎo)率有了明顯提高,最高產(chǎn)氨速率為4.0×10-10 mol·s-1·cm-2,但電化學(xué)合成氨溫度在400 ℃左右,仍然避免不了氨的熱分解。

3 ?低溫電化學(xué)合成氨

早在自上個(gè)世紀(jì)90年代,利用液體電解質(zhì)進(jìn)行低溫電化學(xué)合成氨,就有了相關(guān)的報(bào)道,但過低的電流效率使其發(fā)展停滯不前。最近,因Au納米粒子體系的優(yōu)異性能[40],利用液體電解質(zhì)進(jìn)行電化學(xué)合成氨重新開始活躍起來。在水溶液電解質(zhì)中,以納米多孔石墨碳為載體的Au納米顆粒作為催化劑,電化學(xué)合成氨產(chǎn)氨速率為4.6×10-9mol·s-1·cm-2[41]。Wang等[42]采用Au1催化劑,在室溫下進(jìn)行電催化還原N2產(chǎn)氨,電流效率為4.02%。Qin等[43]采用碳負(fù)載單位點(diǎn)Au為電催化劑,產(chǎn)氨速率為3.79×10-11mol·s-1·cm-2,電流效率達(dá)12.3%。Shi等[44]在TiO2上嵌入Au亞納米(≈0.5nm)團(tuán)簇進(jìn)行電催化N2還原反應(yīng),產(chǎn)氨速率為21.4μg·h-1·mg cat.-1,電流效率為8.11%。Li等[45]以A-Au/CeOx-RGO為陰極催化劑,進(jìn)行電化學(xué)N2還原反應(yīng)產(chǎn)氨,產(chǎn)氨速率為8.3μg·h-1·?mg cat.-1,電流效率為10.10%。Nazemi等[46]以中空Au納米粒子作為電催化劑,在0.5M LiClO4水溶液中研究電化學(xué)N2還原反應(yīng)的電催化活性,從20 ℃升溫至50 ℃時(shí),由于傳質(zhì)速率較快,產(chǎn)氨速率和電流效率都有明顯的提高,產(chǎn)氨速率從2.3到達(dá)2.82 ?g·cm-2·h-1,電流效率從30.2%升至40.55%。相對較高的電流效率是因?yàn)榕c其他貴金屬相比,Au的H2分解反應(yīng)活性較低[47]。

貴金屬受限于稀有性和價(jià)格,采用廉價(jià)金屬催化劑作為替代是學(xué)術(shù)界關(guān)注的重點(diǎn)。Chen等[48]以KHCO3水溶液為電解質(zhì),使用負(fù)載在碳納米管(CNT)上的Fe納米顆粒作為催化劑,在室溫常壓下進(jìn)行電化學(xué)合成氨,產(chǎn)氨速率為3.59×10-12?mol·s-1·cm-2。Kim等[49]以多孔鎳電極為陰極,Pt板為陽極。以有機(jī)溶劑異丙醇/去離子水為電解質(zhì),加入H2SO4為支持電解質(zhì),在常溫常壓下進(jìn)行電化學(xué)合成氨,產(chǎn)氨速率為1.54×10-11mol·s-1·cm-2,電流效率為0.89%。與水相比,異丙醇能溶解更多的N2,是很有前途的電化學(xué)合成氨電解質(zhì),但異丙醇在陰極上電解時(shí)易還原,乙二胺(EDA)陰極穩(wěn)定性相對較高,所以該課題組[50]又開發(fā)了一種基于EDA作為陰極溶劑的新型電解槽用于電化學(xué)合成氨,產(chǎn)氨速率為3.58×10-11?mol·s-1·cm-2,電流效率為17.2%。Wu等采用MoS2 / rGO為電催化劑,在0.1 M LiClO4溶液體系中產(chǎn)氨速率為24.82 μg·h-1·mg cat.-1,電流效率為4.58%[51]。Yang等[52]利用氮化釩(VN0.7O0.45)納米粒子在溫和條件下進(jìn)行電化學(xué)產(chǎn)氨,產(chǎn)氨速率為3.3×1010

mol·s1·cm2,電流效率為6.0%。Han等[53]采用Mo單原子催化劑,在室溫KOH水溶液電解液中產(chǎn)氨速率為34.0 μg·h-1·mg cat.-1,電流效率為14.6%。無論采用貴金屬催化劑還是非貴金屬催化劑,水溶液電解質(zhì)體系電化學(xué)合成氨面對的主要問題是室溫下催化劑活性不如高溫體系,同時(shí)因析氫(HER)過電位低,與氮?dú)膺€原發(fā)生競爭,導(dǎo)致電流效率亦遜于高溫體系,發(fā)展能克服HER競爭的高活性催化劑是其未來發(fā)展方向之一。

低溫電化學(xué)合成氨還可以用質(zhì)子交換膜作為電解質(zhì),實(shí)現(xiàn)在低溫甚至在室溫下電化學(xué)合成氨。聚合物質(zhì)子交換膜(PEM)是低溫條件下對質(zhì)子導(dǎo)通并對電子絕緣的功能高分子膜。在PEM中,Nafion膜化學(xué)穩(wěn)定性高質(zhì)子導(dǎo)電性強(qiáng),是良好的質(zhì)子交換膜材料[54]。新疆大學(xué)劉瑞泉課題組在這一方面進(jìn)行了系列研究,王進(jìn)等[55]制備了Ce0.8Sm0.2O2-δ(SDC)和 Sm0.5Sr0.5CoO3-δ(SSC)超細(xì)粉體,分別以Ni-SDC和SSC為陰極,磺化聚砜質(zhì)子交換膜為電解質(zhì),Ni-SDC 金屬陶瓷為陽極,Ag-Pt網(wǎng)做集流體組成單電池,在80 ℃時(shí)產(chǎn)氨速率達(dá)到6.5×10-9mol·s-1·cm-2。Zhang等[56]將陰極換作SmBaCuMO5+δ(M = Fe,Co,Ni)(SBCM)粉末燒成的陶瓷顆粒,Nafion質(zhì)子交換膜為電解質(zhì),Ni-SDC作為陽極,在低溫常壓下進(jìn)行電化學(xué)合成氨。80 ℃時(shí),最高產(chǎn)氨速率可達(dá)8.7×10-9mol·s-1·cm-2。隨后,韓慧等[57]采用SmCo0.8 Fe0.1Ni0.1O3為陰極,在80 ℃和常壓條件下,產(chǎn)氨速率為9.69×10-9mol·s-1·cm-2。Xu等[58]通過改變SFCN中Fe、Ni的含量來影響陰極的催化性能,獲得電化學(xué)合成氨領(lǐng)域目前的最高產(chǎn)氨速率,高達(dá)1.13×10-8mol·s-1·cm-2,電流效率為90.4%。但因?yàn)榘笔侨鯄A,會(huì)與質(zhì)子交換膜發(fā)生反應(yīng),影響其使用壽命。

4 ?結(jié)語與展望

高溫質(zhì)子電解質(zhì)電化學(xué)合成氨克服了高壓的條件,產(chǎn)氨速率雖多年來都沒有明顯的提高,但高溫條件會(huì)獲得相對較高的電流效率,引領(lǐng)了電化學(xué)合成氨的發(fā)展。中溫電化學(xué)合成氨條件相對溫和,中溫區(qū)的溫度氨依然會(huì)發(fā)生熱分解,但其中的熔鹽電解質(zhì)體系電導(dǎo)率很高,是電化學(xué)合成氨的重要部分。質(zhì)子交換膜材料雖穩(wěn)定性和質(zhì)子導(dǎo)電能力比較差,酸性膜還會(huì)與氨發(fā)生反應(yīng),但采用質(zhì)子交換膜作電解質(zhì)實(shí)現(xiàn)了低溫常壓下電化學(xué)合成氨,并獲得了此領(lǐng)域目前的最高產(chǎn)氨速率和電流效率;液體電解質(zhì)在室溫下催化劑活性和電流效率雖稍遜于高溫體系,但水溶液電解質(zhì)來源廣泛,在電化學(xué)合成氨領(lǐng)域大有可為。

總之,雖然各國在電化學(xué)合成氨領(lǐng)域取得了一定的進(jìn)展,但是想要取代Haber-Bosch法并應(yīng)用到工業(yè)生產(chǎn)中,還要有很長的路要走。尋找更加適合的催化劑或者提高現(xiàn)有催化劑的活性、選擇性以及穩(wěn)定性都是面對的主要挑戰(zhàn),研究出產(chǎn)氨速率更高,反應(yīng)條件更加經(jīng)濟(jì)溫和的電化學(xué)合成氨方法具有重要的現(xiàn)實(shí)意義,也是電化學(xué)合成氨領(lǐng)域奮斗的目標(biāo)。

參考文獻(xiàn):

[1]Shipman M A, Symes M D. Recent progress towards the electrosynthesis of ammonia from sustainable resources[J]. Catalysis Today, 2017, 286: 57-68.

[2] 談薇. 甲烷氮?dú)獬汉铣砂贝呋瘎┑闹苽浼靶阅苎芯縖D].西北大學(xué), 2016.

[3] Zamfirescu C, Dincer I. Using ammonia as a sustainable fuel[J]. Journal of Power Sources, 2008, 185(1): 459-465.

[4] Vancini C A, Bourgars D J. Synthesis of ammonia, by Carlo Antonio Van Cini. Translated by Lydia Pirt, Edited by Douglas J. Borgars[M]. Macmillan, 1971.

[5] Lan R, Tao S. Direct ammonia alkaline anion-exchange membrane fuel cells[J]. Electrochemical and Solid-State Letters, 2010, 13(8): B83-B86.

[6] Klerke A, Christensen C H, N?rskov J K, et al. Ammonia for hydrogen storage: challenges and opportunities[J]. Journal of Materials Chemistry, 2008, 18(20): 2304-2310.

[7] Marnellos G, Zisekas S, Stoukides M. Synthesis of ammonia at atmospheric pressure with the use of solid state proton conductors[J]. Journal of Catalysis, 2000, 193(1): 80-87.

[8] Kyriakou V, Garagounis I, Vasileiou E, et al. Progress in the electrochemical synthesis of ammonia[J]. Catalysis Today, 2017, 286: 2-13.

[9] Shipman M A, Symes M D. Recent progress towards the electrosynthesis of ammonia from sustainable resources[J]. Catalysis Today, 2017, 286: 57-68.

[10]蘇江, 王陽峰. 制氫裝置建模分析與優(yōu)化研究[J]. 當(dāng)代化工, 2018, 47(07): 1519-1522.

[11]wahara H, Esaka T, Uchida H, et al. Proton conduction in sintered oxides and its application to steam electrolysis for hydrogen production[J]. Solid State Ionics, 1981, 3: 359-363.

[12]Panagos E, Voudouris I, Stoukides M. Modelling of equilibrium limited hydrogenation reactions carried out in H+?conducting solid oxide membrane reactors[J]. Chemical engineering science, 1996, 51 (11): 3175-3180.

[13]Marnellos G, Stoukides M. Ammonia synthesis at atmospheric pressure[J]. Science, 1998, 282(5386): 98-100.

[14]Wang J D, Xie Y H, Zhang Z F, et al. Protonic conduction in Ca2+-doped La2M2O7(M= Ce, Zr) with its application to ammonia synthesis electrochemically[J]. Materials research bulletin, 2005, 40(8): 1294-1302.

[15]Li Z J, Liu R Q, Xie Y H, et al. A novel method for preparation of doped Ba3(Ca1.18Nb1.82)O9?δ: Application to ammonia synthesis at atmospheric pressure[J]. Solid State Ionics, 2005, 176(11-12): 1063-1066.

[16]Zhang F, Yang Q, Pan B, et al. Proton conduction in La0.9Sr0.1Ga0.8Mg0.2O3?αceramic prepared via microemulsion method and its application in ammonia synthesis at atmospheric pressure[J]. Materials Letters, 2007, 61(19-20): 4144-4148.

[17]Zhang M, Xu J, Ma G. Proton conduction in BaxCe0.8Y0.2O3?α + 0.04 ZnO at intermediate temperatures and its application in ammonia synthesis at atmospheric pressure[J]. Journal of materials science, 2011, 46(13): 4690-4694.

[18]Vasileiou E, Kyriakou V, Garagounis I, et al. Ammonia synthesis at atmospheric pressure in a BaCe0.2Zr0.7Y0.1O2.9?solid electrolyte cell[J]. Solid State Ionics, 2015, 275: 110-116.

[19]Murakami T, Nishikiori T, Nohira T, et al. Electrolytic synthesis of ammonia in molten salts under atmospheric pressure[J]. Journal of the American Chemical Society, 2003, 125(2): 334-335.

[20]Murakami T, Nohira T, Ogata Y H, et al. Electrochemical window of a LiCl-KCl-CsCl melt[J]. Electro-chemical and solid-state letters, 2005, 8(1): E1-E3.

[21]Murakami T, Nohira T, Goto T, et al. Electrolytic ammonia synthesis from water and nitrogen gas in molten salt under atmospheric pressure[J]. Electrochimica acta, 2005, 50(27): 5423-5426.

[22]Murakami T, Nohira T, Araki Y, et al. Electrolytic synthesis of ammonia from water and nitrogen under atmospheric pressure using a boron-doped diamond electrode as a nonconsumable anode[J]. Electrochemical and solid-state letters, 2007, 10(4): E4-E6.

[23]Murakami T, Nohira T, Ogata Y H, et al. Electrolytic ammonia synthesis in molten salts under atmospheric pressure using methane as a hydrogen source[J]. Electrochemical and Solid-State Letters, 2005, 8(4): D12-D14.

[24]Murakami T, Nohira T, Ogata Y H, et al. Electrochemical synthesis of ammonia and coproduction of metal sulfides from hydrogen sulfide and nitrogen under atmospheric pressure[J]. Journal of The Electrochemical Society, 2005, 152(6): D109-D112.

[25]Murakami T, Nishikiori T, Nohira T, et al. Electrolytic ammonia synthesis from hydrogen chloride and nitrogen gases with simultaneous recovery of chlorine under atmospheric pressure[J]. Electrochemical and Solid-State Letters, 2005, 8(8): D19-D21.

[26]Kim K, Kim J N, Yoon H C, et al. Effect of electrode material on the electrochemical reduction of nitrogen in a molten LiCl–KCl–CsCl system[J]. International Journal of Hydrogen Energy, 2015, 40 (16): 5578-5582.

[27]Kim K, Yoo C Y, Kim J N, et al. Electrochemical synthesis of ammonia from water and nitrogen catalyzed by nano-Fe2O3?and CoFe2O4?suspended in a molten LiCl-KCl-CsCl electrolyte[J]. Korean Journal of Chemical Engineering, 2016, 33(6): 1777-1780.

[28]Licht S, Cui B, Wang B, et al. Ammonia synthesis by N2?and steam electrolysis in molten hydroxide sus-pensions of nanoscale Fe2O3[J]. Science, 2014, 345(6197): 637-640.

[29]Li F F, Licht S. Advances in understanding the mechanism and improved stability of the synthesis of ammonia from air and water in hydroxide suspensions of nanoscale Fe2O3[J]. Inorganic chemistry, 2014, 53(19): 10042-10044.

[30]Cui B, Zhang J, Liu S, et al. Electrochemical synthesis of ammonia directly from N2?and water over iron-based catalysts supported on activated carbon[J]. Green Chemistry, 2017, 19(1): 298-304.

[31]張建華. 由水和氮?dú)庵苯映弘娀瘜W(xué)合成氨研究[D].東北石油大學(xué),2018.

[32]Lan R, Alkhazmi K A, Amar I A, et al. Synthesis of ammonia directly from wet air at intermediate temper-ature[J]. Applied Catalysis B: Environmental, 2014, 152: 212-217.

[33]Amar I A, Lan R, Petit C T G, et al. Electrochemical synthesis of ammonia using Fe3Mo3N catalyst and carbonate-oxide composite electrolyte[J]. International Journal of Electrochemical Science, 2015, 10(5): 3757-5766.

[34]Amar I A, Lan R, Petit C T G, et al. Electrochemical synthesis of ammonia based on Co3Mo3N catalyst and LiAlO2–(Li, Na, K)2CO3?composite electrolyte[J]. Electrocatalysis, 2015, 6(3): 286-294.

[35]Lan R, Alkhazmi K A, Amar I A, et al. Synthesis of ammonia directly from wet air using new perovskite oxide La0.8Cs0.2Fe0.8Ni0.2O3-δ?as catalyst[J]. Electrochimica Acta, 2014, 123: 582-587.

[36]Amar I A, Petit C T G, Mann G, et al. Electrochemical synthesis of ammonia from N2?and H2O based on (Li, Na, K)2CO3–Ce0. 8Gd0. 18Ca0.02O2?δcomposite electrolyte and CoFe2O4?cathode[J]. International Journal of Hydrogen Energy, 2014, 39(9): 4322-4330.

[37]Amar I A, Lan R, Tao S. Electrochemical synthesis of ammonia directly from wet N2?using La0.6Sr0.4Fe0.8Cu0.2O3-δ-Ce0.8Gd0.18Ca0.02O2-δ?composite catalyst[J]. Journal of The Electrochemical Society, 2014, 161(6): H350-H354.

[38]Amar I A, Petit C T G, Lan R, et al. Electrochemical synthesis of ammonia from wet nitrogen using La0.6Sr0.4?FeO3?δCe0.8Gd0.18Ca0.02O2?δ?composite cathode[J]. RSC Advances, 2014, 4(36): 18749-18754.

[39]Amar I A, Lan R, Tao S. Synthesis of ammonia directly from wet nitrogen using a redox stable La0.75Sr0.25Cr0.5Fe0.5O3?δCe0.8Gd0.18Ca0.02O2?δ?composite cathode[J]. RSC Advances, 2015, 5(49): 38977-38983.

[40]Bao D, Zhang Q, Meng F L, et al. Electrochemical reduction of N2?under ambient conditions for artificial N2?fixation and renewable energy storage using N2/NH3?cycle[J]. Advanced Materials, 2017, 29(3): 1604799.

[41]Wang H, Wang L, Wang Q, et al. Ambient electrosynthesis of ammonia: electrode porosity and composition engineering[J]. Angewandte?Chemie International Edition, 2018, 57(38): 12360-12364.

[42]Wang X, Wang W, Qiao M, et al. Atomically dispersed Au1 catalyst towards efficient electrochemical synthesis of ammonia[J]. Science bulletin, 2018, 63(19): 1246-1253.

[43]Qin Q, Heil T, Antonietti M, et al. Single‐site gold catalysts on hierarchical N‐doped porous noble carbon for enhanced electrochemical reduction of nitrogen[J]. Small Methods, 2018, 2(12): 1800202.

[44]Shi M M, Bao D, Wulan B R, et al. Au sub‐nanoclusters on TiO2?toward highly efficient and selective elec-trocatalyst for N2?conversion to NH3?at ambient conditions[J]. Advanced Materials, 2017, 29(17): 1606550.

[45]Li S J, Bao D, Shi M M, et al. Amorphizing of Au nanoparticles by CeOx–RGO hybrid support towards highly efficient electrocatalyst for N2?reduction under ambient conditions[J]. Advanced Materials, 2017, 29(33): 1700001.

[46]Nazemi M, Panikkanvalappil S R, El-Sayed M A. Enhancing the rate of electrochemical nitrogen reduction reaction for ammonia synthesis under ambient conditions using hollow gold nanocages[J]. Nano Energy, 2018, 49: 316-323.

[47]Wang J, Yu L, Hu L, et al. Ambient ammonia synthesis via palladium-catalyzed electrohydrogenation of dinitrogen at low overpotential[J]. Nature communications, 2018, 9(1): 1795.

[48]Chen S, Perathoner S, Ampelli C, et al. Electrocatalytic synthesis of ammonia at room temperature and at-mospheric pressure from water and nitrogen on a carbon‐nanotube‐based electrocatalyst[J]. AngewandteChemie International Edition, 2017, 56(10): 2699- 2703.

[49]Kim K, Lee N, Yoo C Y, et al. Communication-Electrochemical reduction of nitrogen to ammonia in 2-propanol under ambient temperature and pressure[J]. Journal of The Electrochemical Society, 2016, 163(7): F610-F612.

[50]Kim K, Yoo C Y, Kim J N, et al. Electrochemical synthesis of ammonia from water and nitrogen in ethylenediamine under ambient temperature and pressure[J]. Journal of The Electrochemical Society, 2016, 163(14): F1523-F1526.

[51]Li X, Ren X, Liu X, et al. A MoS2?nanosheet–reduced graphene oxide hybrid: an efficient electrocatalyst for electrocatalytic N2?reduction to NH3?under ambient conditions[J]. Journal of Materials Chemistry?A, 2019, 7(6): 2524-2528.

[52]Yang X, Nash J, Anibal J, et al. Mechanistic insights into electrochemical nitrogen reduction reaction on vanadium nitride nanoparticles[J]. Journal of the American Chemical Society, 2018, 140(41): 13387-13391.

[53]Han L, Liu X, Chen J, et al. Atomically dispersed molybdenum catalysts for efficient ambient nitrogen fixation[J]. Angewandte Chemie International Edition, 2019, 58(8): 2321-2325.

[54]劉淑芝,韓偉,劉先軍,崔寶臣.電化學(xué)合成氨研究進(jìn)展[J].化工學(xué)報(bào),2017,68(07):2621-2630.

[55]王進(jìn),劉瑞泉.SDC和SSC在低溫常壓電化學(xué)合成氨中的性能研究[J].化學(xué)學(xué)報(bào),2008(07):717-721.

[56]Zhang Z, Zhong Z,Liu R Q. Cathode catalysis performance of SmBaCuMO5+ δ (M= Fe, Co, Ni) in ammonia synthesis[J]. Journal of Rare Earths, 2010, 28(4): 556-559.

[57]韓慧,劉瑞泉.SmCo0.8Fe0.2-xNixO3x=0,0.1,0.2)粉體在低溫常壓電化學(xué)合成氨中的陰極催化性能[J].化學(xué)通報(bào),2009,72(11):998-1002.

[58]Xu G C, Liu R Q, Wang J. Electrochemical synthesis of ammonia using a cell with a Nafion membrane and SmFe0.7Cu0.3?xNxO3?(x= 0?0.3) cathode at atmospheric pressure and lower temperature[J]. Science in China Series B: Chemistry, 2009, 52(8): 1171-1175.

(上接第611頁)

參考文獻(xiàn):

[1]?Wang Z-Q, Bu Z-W, Cao T-T, et al. A novel and recyclable catalytic system for propylene carbonate synthesis from propylene oxide and CO2[J]. Polyhedron, 2012,32:86–89.

[2]卜站偉,王志強(qiáng),楊立榮,等. 反式-二氯四吡啶合釕的制備及催化性能研究[J]. 河南大學(xué)學(xué)報(bào):自然科學(xué)版, 2010,40(4):366-370.

[3]?Sakakura T, Choi J C, Yasuda H. Transformation of Carbon Dioxide [J]. Chem Rev, 2007, 107 (6): 2365-2387.

[4]?Jutz F, Grunwaldt J-D. Alfons Baiker. In situ XAS study of the Mn(III)(Salen)Br catalyzed synthesis of cyclic organic carbonates from epoxides and CO2?[J]. J Mol Catal A: Chem, 2009,297: 63–72.

[5]?Sibaouih A, Ryan P, Axenov K V, Sundberg M R., Leskel M, Repo T. Efcient coupling of CO2?and epoxides with bis(phenoxyiminato) cobalt (III)/Lewis base catalysts [J]. J Mol Catal A: Chem, 2009, 312: 87-91.

[6]?Dai W-L, Luo S-L, Yin S-F, et al. The direct transformation of carbon dioxide to organic carbonates over heterogeneous catalysts [J]. Appl Catal A: Gen, 2009, 366: 2-12.

[7]高志文, 肖林飛, 陳靜,等. 二氧化碳與環(huán)氧化合物合成環(huán)狀碳酸酯的研究進(jìn)展 [J]. 催化學(xué)報(bào), 2008, 29 (9): 831-838.

[8]?Kossev K, Koseva N, Troev K. Calcium chloride as co-catalyst of onium halides in the cycloaddition of carbon dioxide to oxiranes[J]. Journal of Molecular Catalysis A: Chemical, 2003, 194: 29-37.

[9]?Du Y, Cai F, Kong DL,et?al. Organic solvent -free process for the synthesis of Propylene carbonate from supercritical carbon dioxide and propylene oxide catalyzed by insoluble ion exchange resins[J]. Green chemistry, 2005, 7:518-523.

[10]?Xie HB, Li SH, Zhang SB. Highly active, hexabutylguanidi?-nium salt/zinc bromide binary catalyst for the coupling reaction of carbon dioxide and epoxides[J]. Journal of Molecular Catalysis A: Chemical, 2006, 250:30-34.

[11]?Lu XB, Liang B, Zhang YJ, et al. Asymmetric catalysis with CO2: direct synthesis of optically active propylene carbonate from racemic[J]. Journal American Chemical Society, 2004, 126, 3732-3733.

[12]?Jing H, Edulji SK, Gibbs JM, et al. (Salen)tin complexes: syntheses, characterization, crystal structures, and catalytic activity in the formation of propylene carbonate from CO2?and propylene oxide[J]. Inorganic chemistry, 2004, 43:4315-4327.

[13]?Paddick RL, Nguyen ST. Chiral (salen) Co catalyst for the synthesis of Cyclic Carbonate[J]. Chemical Communications, 2004, 14:1622 -1623.

[14]孫瀟磊,張志,張建,等. 二氧化碳和環(huán)氧丙烷合成碳酸丙烯酯熱力學(xué)計(jì)算[J]. 當(dāng)代化工, 2016,45(7):1523-1526.

[15]?Wang Z-Q, Bu Z-W, Ren T-G, et al. Mechanistic aspects of the cycloaddition of CO2?with propylene oxide using the trans- Ru(py)4Cl2?catalyst [J]. Reac Kinet Mech Cat, 2011,103:133–140.

[16]?齊紅衛(wèi),王志強(qiáng),曹婷婷,等. 反式-二氯四吡啶合釕催化CO2制備碳酸丙烯酯機(jī)理探討[J]. 河南大學(xué)學(xué)報(bào):自然科學(xué)版, 2012,42(1):42-45.

猜你喜歡
陰極質(zhì)子電化學(xué)
電除塵器陰極線防脫落結(jié)構(gòu)改進(jìn)
對部分子碎裂為質(zhì)子的碎裂函數(shù)的研究
2018年高考中的電化學(xué)試題大掃描
幾種鹽溶液中質(zhì)子守恒的推導(dǎo)及其應(yīng)用
電化學(xué)發(fā)光分析法測定糖尿病相關(guān)二肽
關(guān)于碳納米管陰極強(qiáng)流脈沖發(fā)射性能分析
參考答案與解析
物質(zhì)構(gòu)成中的“一定”與“不一定”
FED顯示技術(shù)及其制作工藝探究
談電解質(zhì)溶液中的質(zhì)子守恒