張飛飛 馮輝霞 陳娜麗 劉持歡 丁強 李文霞
摘 ?????要:三維石墨烯具有豐富的孔洞結(jié)構(gòu)、大的比表面積、高的導(dǎo)電率、快的充電速率和長的循環(huán)壽命等優(yōu)異性質(zhì),將其與聚苯胺復(fù)合制備三維石墨烯/聚苯胺復(fù)合材料可以充分發(fā)揮石墨烯和聚苯胺的優(yōu)勢性能,制得電化學(xué)性能優(yōu)異的復(fù)合材料。該復(fù)合材料在超級電容器電極材料領(lǐng)域得到了廣泛的關(guān)注。綜述了三維石墨烯/聚苯胺復(fù)合材料的制備方法及其電化學(xué)性能,并針對復(fù)合材料研究中存在的問題、未來的研究方向進行了展望。
關(guān) ?鍵 ?詞:復(fù)合材料;三維石墨烯;聚苯胺;電化學(xué)性能;超級電容器
中圖分類號:TQ050.4+3 ??????文獻標識碼:?A ??????文章編號: 1671-0460(2020)03-0623-04
Research Progress in Preparation of Three-dimensional
Graphene/Polyaniline Composites and Their Applications in Supercapacitors
ZHANG?Fei-fei, FENG Hui-xia, CHEN?Na-li, LIU?Chi-huan, DING?Qiang, LI?Wen-xia
(College of Petroleum and Chemical Engineering, Lanzhou University of Technology, Gansu Lanzhou 730050, China)
Abstract:?Three-dimensional graphene has many excellent properties, such as fast charge rate, long cycle life, abundant pore structure, large?specific surface area and high conductivity?and so on. The three-dimensional graphene/polyaniline composites prepared by compounding three-dimensional graphene with polyaniline can give full play to the advantages of graphene and polyaniline and show?excellent electrochemical properties, and the composites?material?have?attracted wide attention in the field of electrode materials for supercapacitors. In this paper, the preparation methods and electrochemical properties of?the?three-dimensional graphene/polyaniline composites were?reviewed. In view of the existing problems in the research of composite materials, the future research directions were?prospected.
Key words: composite materials; three-dimensional graphene; polyaniline; electrochemical properties; supercapacitors
在當(dāng)今社會,隨著枯竭的化石燃料和日益嚴重的環(huán)境污染,迫切需要高效、清潔、可持續(xù)的新能源儲能裝置。超級電容器因功率密度高、循環(huán)壽命長、充電時間短和電容量高等優(yōu)點[1],已成為國內(nèi)外專家廣泛關(guān)注的儲能裝置。根據(jù)能量儲存機理的不同,超級電容器可分為雙電層電容器(EDLC)[2-4]和贗電容電容器[5-7]。電極材料的電化學(xué)性能是決定超級電容器性能的關(guān)鍵因素。石墨烯是典型的雙電層電容器電極材料,具有許多優(yōu)異的性質(zhì),例如:比表面積大、電導(dǎo)率高和循環(huán)壽命長等[8,9]。但是,由于石墨烯片層間存在強烈的π-π相互作用,極易發(fā)生堆疊[10],極大地限制了石墨烯在超級電容器電極材料領(lǐng)域的應(yīng)用。研究發(fā)現(xiàn),構(gòu)建三維結(jié)構(gòu)可以有效抑制石墨烯的堆疊,提高電解質(zhì)在其中的滲透率[11]。但是,三維石墨烯的比電容尚不高,將具有高電容量的贗電容電容器電極材料(如:導(dǎo)電聚合物[12]或金屬氫氧化物[13])與其復(fù)合是提高其比電容的有效途徑之一。其中,與導(dǎo)電聚合物復(fù)合研究的較為廣泛。
聚苯胺(PANI)是一種典型的導(dǎo)電聚合物,由于具有高的理論比電容、易合成以及快速的摻雜/去摻雜能力[14]等優(yōu)異性質(zhì),被廣泛用作贗電容電容器電極材料。但是,單純的PANI通常呈團聚結(jié)構(gòu),并且在重復(fù)摻雜/去摻雜化過程中會發(fā)生機械降解,使得PANI的實際比電容較低,循環(huán)穩(wěn)定性較差[15]。將石墨烯與PANI進行三維復(fù)合,可以有效地抑制石墨烯的堆疊,降低 PANI的團聚,提高材料的比電容,可以改善PANI的循環(huán)穩(wěn)定性,制得電化學(xué)性能優(yōu)異的三維石墨烯/PANI復(fù)合材料[16,17]。近年來,該復(fù)合材料在超級電容器電極材料領(lǐng)域得到了廣泛的研究。本文將簡單闡述復(fù)合材料構(gòu)建過程中三維石墨烯的制備方法,綜述三維石墨烯/PANI復(fù)合材料的制備方法及其電化學(xué)性能,并針對復(fù)合材料研究中所存在的問題及未來的研究方向進行展望。
1 ?三維石墨烯的制備方法
在三維石墨烯/PANI復(fù)合材料的構(gòu)建過程中常采用的三維石墨烯的制備方法為:自組裝法[18,19]和模板導(dǎo)向法[20]。自組裝法通常是利用氧化石墨烯(GO)還原形成的還原氧化石墨烯(RGO)的自組裝制備三維石墨烯的。該法是構(gòu)建三維石墨烯最有吸引力、最簡單和最有效方法之一。模板導(dǎo)向法是先將石墨烯與模板復(fù)合,隨后去除模板制備三維石墨烯。該法所制備三維石墨烯的結(jié)構(gòu)、孔徑和形貌通常可以通過改變模板的形貌來控制。但是,模板法制備三維石墨烯時模板去除不徹底,會影響其電化學(xué)性能。此外,制備三維石墨烯的方法還有化學(xué)氣相沉積(CVD)法[21,22]、交聯(lián)法[23,24]等。
2 ?三維石墨烯/PANI復(fù)合材料的制備方法及電化學(xué)性能
三維石墨烯/PANI復(fù)合材料通常具有豐富的孔洞結(jié)構(gòu),大的比表面積和高的電導(dǎo)率等特性。石墨烯與PANI三維結(jié)構(gòu)的構(gòu)建,可以抑制石墨烯的堆疊,增加PANI的分散性,增強PANI的機械性能,克服三維石墨烯比電容低和PANI循環(huán)穩(wěn)定性差的缺陷,從而擁有優(yōu)異的電化學(xué)性能[25,26]。該復(fù)合材料在超級電容器電極材料領(lǐng)域得到了廣泛研究。目前,制備三維石墨烯/PANI復(fù)合材料常用的方法有:自組裝法、原位聚合法、電化學(xué)聚合法和模板法等。
2.1 ?自組裝法
自組裝法是先將GO與PANI混合,隨后還原制備三維石墨烯/PANI復(fù)合材料。GO與PANI的混合液由于GO基面的范德華力與官能團的靜電斥力之間建立的平衡而具有良好的均一性,在適當(dāng)?shù)臈l件下對其進行還原會破壞此平衡,增強凝膠化,從而實現(xiàn)自組裝,形成三維石墨烯/PANI復(fù)合材料。根據(jù)還原條件的不同,自組裝法分為:化學(xué)還原誘導(dǎo)自組裝法和水熱還原誘導(dǎo)自組裝法。
2.1.1??化學(xué)還原誘導(dǎo)自組裝法
化學(xué)還原誘導(dǎo)自組裝法通常是向 GO與PANI的混合液中加入還原劑(如:抗壞血酸鈉、NaHSO3、HI、HQ和Na2S等)對其進行還原來制備三維石墨烯/PANI復(fù)合材料。Wu等[27]先將GO分散液與PANI納米顆粒充分混合,得到GO與PANI的混合溶液;隨后,以抗壞血酸為還原劑,90 ℃下對GO與PANI的混合液進行還原制備三維石墨烯/PANI復(fù)合材料。該復(fù)合材料呈多孔網(wǎng)絡(luò)結(jié)構(gòu),可為電解質(zhì)的擴散提供便捷的路徑,在53.33 A/g的大電流密度下,表現(xiàn)出較高的比電容(808 F/g)。化學(xué)還原誘導(dǎo)自組裝法在制備三維石墨烯/PANI復(fù)合材料時,通常需要大量的還原劑,并且產(chǎn)生的廢液量較多,不利于環(huán)保。
2.1.2 ?水熱還原誘導(dǎo)自組裝法
水熱還原誘導(dǎo)自組裝法是將GO與PANI的混合液置于高溫高壓條件下進行還原來制備三維石墨烯/PANI復(fù)合材料。Yang等[28]將PANI納米線與GO的混合液置于180 ℃下水熱還原20 h制得三維石墨烯/PANI復(fù)合材料。該復(fù)合材料中PANI納米線作為間隔物均勻地穿插在石墨烯片層之間,形成類似于三明治的三維立體結(jié)構(gòu),有效地抑制了石墨烯的堆疊,提高了PANI納米線的分散性,賦予其良好的電化學(xué)性能。在電流密度為0.25 A/g時,復(fù)合材料的比電容為520.3 F/g;電流密度增加為2A/g時,復(fù)合材料的比電容保持率為64%;經(jīng)過500次充放電后,復(fù)合材料的比電容保持率為100%。Xu等[29]先將尿素、PANI納米棒和GO的分散液超聲3 h;其次,將所得混合液于160℃水熱還原5h制備具有多孔網(wǎng)絡(luò)結(jié)構(gòu)的三維氮摻雜石墨烯/PANI復(fù)合材料。該復(fù)合材料在電流密度為3 mA/cm2時,比電容為589.3 F/g;經(jīng)過500次充放電后,比電容保持率為80.5%。水熱還原誘導(dǎo)自組裝法制備三維石墨烯/PANI復(fù)合材料操作簡單,產(chǎn)生的廢液量少,對環(huán)境污染小。
2.2 ?原位聚合法
根據(jù)制備流程的不同,原位聚合法可以分為兩類:(1)先原位聚合后構(gòu)建三維結(jié)構(gòu)法;(2)先構(gòu)建三維結(jié)構(gòu)后原位聚合法。
2.2.1 ?先原位聚合后構(gòu)建三維結(jié)構(gòu)法
先原位聚合后構(gòu)建三維結(jié)構(gòu)法是苯胺單體(An)先在GO或功能化GO片層上原位聚合制得GO/PANI復(fù)合材料,再在分散液中對其進行還原制備三維石墨烯/PANI復(fù)合材料。Li等[30]先將An溶于甲苯溶液,記為溶液A;將過硫酸銨(APS)、濃鹽酸依次加入到GO分散液中,記為溶液B;將溶液A加入到溶液B中引發(fā)An原位聚合制備GO/PANI復(fù)合材料,之后再加入一定量GO分散液,置于95 ℃下水熱還原1.5 h制得三維石墨烯/PANI復(fù)合材料。該復(fù)合材料在電流密度為1A/g時,比電容高達777 F/g;電流密度增加為20A/g時,比電容保持率為86%;經(jīng)過60 000次深度充放電后,比電容保持率仍為85%。Van等[31]先對GO進行氨基化處理制備氨基化的氧化石墨烯(GO-NH2);接著,在GO-NH2分散液中加入An,以APS為引發(fā)劑,原位聚合制得GO-g-PANI復(fù)合材料;最后,將GO-g-PANI分散液于180 ℃下水熱還原6h制得三維RGO-g-PANI復(fù)合材料。該復(fù)合材料在12A/g的大電流密度下,比電容達到1 600 F/g;電流密度增加為19.5 A/g時,比電容保持率為83.5%;經(jīng)過3 000次充放電后,比電容保持率為91.3%。三維RGO-g-PANI復(fù)合材料不僅表現(xiàn)出高的比電容,而且具有優(yōu)異倍率性能及循環(huán)穩(wěn)定性。
2.2.2 ?先構(gòu)建三維結(jié)構(gòu)后原位聚合法
先構(gòu)建三維結(jié)構(gòu)后原位聚合法是以預(yù)先構(gòu)建的三維石墨烯為載體,采用原位聚合法在其三維結(jié)構(gòu)上原位聚合An制備三維石墨烯/PANI復(fù)合材料。Xu等[32]以石墨烯水凝膠為載體,通過原位聚合法在石墨烯水凝膠上生長PANI制備三維石墨烯/PANI復(fù)合材料。該復(fù)合材料在電流密度為0.1 A/g時,比電容為546 F/g;經(jīng)過5 000次充放電后,比電容保持率為85%。李等[33]以三維石墨烯為載體,十八胺(ODA)為功能化試劑,利用原位聚合法在氨基化的三維石墨烯上生長PANI制備了十八胺功能化的三維石墨烯/聚苯胺(3D-GODA/PANI)復(fù)合材料。3D-GODA/PANI復(fù)合材料可以直接作為工作電極,不需要添加任何黏結(jié)劑,這樣保留了復(fù)合材料初始的比電容;并且該復(fù)合材料具有豐富的孔洞結(jié)構(gòu),縮短了電解質(zhì)在其中的擴散路徑,提高了復(fù)合材料的電導(dǎo)率。該復(fù)合材料在1 A/g的電流密度下,比電容達1 080 F/g;經(jīng)過10 000次充放電后,比電容保持率為90.8%。先構(gòu)建三維結(jié)構(gòu)后原位聚合法制備三維石墨烯/PANI復(fù)合材料,不需要考慮GO片層復(fù)雜的功能化和分散性,有助于克服任何過程的不相容性,并且得到的復(fù)合材料通常表現(xiàn)出優(yōu)異的電化學(xué)性能[12,34]。
2.3 ?電化學(xué)聚合法
電化學(xué)聚合法是近年來制備三維石墨烯/PANI復(fù)合材料比較熱的方法之一[35],通常以預(yù)先制備的三維石墨烯為工作電極,采用電化學(xué)聚合法在其上沉積PANI制備三維石墨烯/PANI復(fù)合材料。Yang等[36]首先采用水熱還原法制備了石墨烯氣凝膠;隨后以壓有其片的不銹鋼網(wǎng)為工作電極,An的H2SO4溶液為電解液,采用恒電流法使An在石墨烯氣凝膠上發(fā)生聚合反應(yīng)制備三維石墨烯/PANI復(fù)合材料。該復(fù)合材料在電流密度為1A/g時,比電容為432 F/g;經(jīng)過10 000次充放電后,比電容保持率為85%。Yu等[37]先通CVD法制備了三維多孔結(jié)構(gòu)的石墨烯,并將其制成工作電極,以An的HClO4的溶液為電解液,采用恒電流法制備了三維多孔石墨烯/PANI復(fù)合材料。該復(fù)合材料的孔洞結(jié)構(gòu)豐富,并且孔徑大小可以控制,在1 A/g的電流密度下,比電容為751.3 F/g;電流密度增加為10 A/g時,比電容保持率為88.5%,表現(xiàn)出優(yōu)異的倍率性能;經(jīng)過1 000次充放電后,比電容保持率為93.2%。電化學(xué)聚合法不需要借助氧化劑來完成聚合反應(yīng),綠色環(huán)保,而且PANI與石墨烯間的結(jié)合力強[38]。
2.4 ?模板法
模板法通常先將石墨烯和PANI復(fù)合于模板材料上(如:PMMA顆粒[39]、PS顆粒[40]等材料),隨后去除模板材料制備三維石墨烯/PANI復(fù)合材料。Trung等[39]先以聚甲基丙烯酸甲酯(PMMA)膠體顆粒為模板材料制備PMMA/GO復(fù)合材料;其次,以PMMA/GO復(fù)合材料為載體,通過原位聚合法制備PMMA/GO/PANI復(fù)合材料;最后,去除PMMA模板,并以水合肼為還原劑還原三維GO/PANI復(fù)合材料制備三維石墨烯/PANI復(fù)合材料。該復(fù)合材料在1 A/g的電流密度下,比電容為331 F/g,經(jīng)過500次充放電后,比電容保持率為86%。Luo等[41]先以磺化聚苯乙烯(PS)顆粒為模板,通過靜電吸附作用將PANI吸附于PS顆粒上制得PANI@PS復(fù)合材料;隨后,將RGO以相同方式吸附于PANI@PS復(fù)合材料上制備RGO-PANI@PS復(fù)合材料,這樣經(jīng)過多次層層組裝制得 (RGO-PANI)n@PS復(fù)合材料;最后,去除PS模板制得三維空心結(jié)構(gòu)的RGO-PANI復(fù)合材料。該復(fù)合材料在4 A/g的電流密度下,比電容為381 F/g;經(jīng)過1 000次充放電后,比電容保持率為83%。模板法制備三維石墨烯/PANI復(fù)合材料的孔徑、形貌可控制,是一種方便、有效的方法。但是,模板法制備三維復(fù)合材料時模板材料去除不徹底會影響其電化學(xué)性能。
3 ?結(jié)語
近年來,得益于合成方法的快速發(fā)展,各種結(jié)構(gòu)、形貌及電化學(xué)性能優(yōu)異的三維石墨烯/PANI復(fù)合材料已被廣泛制備,并被用作超級電容器電極材料。三維石墨烯/PANI復(fù)合材料已成為新一代強大的超級電容器電極材料。但是,三維石墨烯/PANI復(fù)合材料的研究尚處于初級階段,有很多問題需要解決。首先,需要進一步研究石墨烯與PANI三維組裝的基本機理,以便開發(fā)出更優(yōu)的制備策略。其次,三維結(jié)構(gòu)中石墨烯與PANI的界面結(jié)合機理需要進一步研究,這樣可深入了解結(jié)構(gòu)與電化學(xué)性能的關(guān)系,以便通過結(jié)構(gòu)的設(shè)計來有效地調(diào)控復(fù)合材料的電化學(xué)性能。最后,需要從經(jīng)濟、環(huán)保和規(guī)?;a(chǎn)上考慮,努力實現(xiàn)三維石墨烯/PANI復(fù)合材料的市場化。
參考文獻:
[1]Snook G A, Kao P, Best A S. Conducting-polymer-based supercapacitor devices and electrodes[J]. Journal of Power Sources, 2011, 196(1):1-12.
[2]Wang Y, Shi Z, Huang Y, et al. Supercapacitor devices based on graphene materials[J]. Journal of Physical Chemistry?C, 2009, 113(30):13103-13107.
[3]Xu B, Wu F, Su Y, et al. Competitive effect of KOH activation on the electrochemical performances of carbon nanotubes for EDLC: balance between porosity and conductivity[J].?Electrochimica Acta, 2008, 53(26):7730-7735.
[4]Sharma P, Bhatti T S. A review on electrochemicaldouble-layer capacitors[J]. Energy Conversion and Management, 2010, 51(12):2901-2912.
[5]Ren X, Fan H, Ma J, et al. Hierarchical Co3O4/PANI hollow nanocages: synthesis and application for electrode materials of supercapacitors [J]. Applied Surface Science, 2018, 441(1):194-203.
[6]Li L, Lou Z, Han W, et al. Highly stretchable micro-supercapacitor arrays with hybrid MWCNT/PANI electrodes [J]. Advanced Materials Technologies, 2017, 2(3):1-8.
[7]Wang Y, Yang C, Liu P. Acid blue AS doped polypyrrole (PPy/AS) nanomaterials with different morphologies as electrode materials for supercapacitors[J]. Chemical Engineering Journal, 2011, 172(3):1137-1144.
[8]Chen N, Ren Y, Kong P, et al. In situ one-pot preparation of reduced graphene oxide/polyaniline composite for high-performance electrochemical capacitors[J]. Applied Surface Science, 2016, 392:71-79.
[9]Dikin D A, Stankovich S, Zimney E J, et al. Preparation and characterization of graphene oxide paper[J]. Nature, 2016, 448(7152):457-460.
[10]An J, Li J P, Chen W X, et al. Electrochemical study and application on shikonin at poly(diallyldimethylammonium chloride) functionalized graphene sheets modified glass carbon electrode[J]. 2013, 29(4):798-805.
[11]Mao S, Lu G, Chen J. Three-dimensional graphene-based composites for energy applications[J]. Nanoscale, 2015, 7(16):6924-6943.
[12]Wang M, Duan X, Xu Y, et al. Functional three-dimensional graphene/polymer composites[J]. Acs Nano, 2016, 10(8):7231-7247.
[13]Dong S, Dao A Q, Zheng B, et al. One-step electrochemical synthesis of three-dimensional graphene foam loaded nickel-cobalt hydroxides nanoflakes and its electrochemical properties[J]. Electrochimica Acta, 2015, 152(9):?195-201.
[14]Wang K, Huang J, Wei Z. Conducting polyaniline nanowire arrays for high performance supercapacitors[J]. J.phys.chem.c, 2010, 114(17):?8062-8067.
[15]Han X, Qiu H, Qiu F, et al. Facile route to covalently-jointed graphene/polyaniline composite and its enhanced electrochemical performances for supercapacitors[J]. Applied Surface Science, 2016, 376:261-268.
[16]Fan Z, Cheng Z, Feng J, et al. Ultrahigh volumetric performance of a free-standing compact N-doped holey graphene/PANI slice for supercapacitors[J]. Journal of Materials Chemistry?A, 2017, 5(32):16689-16701
[17]Liu X, Shang P, Zhang Y, et al. Three-dimensional and stable polyaniline-grafted graphene hybrid materials for supercapacitor electrodes[J]. Journal of Materials Chemistry?A, 2014, 2(37):15273-15278.
[18]Nguyen S T, Nguyen H T, Rinaldi A, et al. Morphology control and thermal stability of binderless-graphene aerogels from graphite for energy storage applications[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2012, 414(46):?352-358.
[19]Hu H, Zhao Z, Wan W, et al. Ultralight and highly compressible graphene aerogels[J]. Advanced Materials, 2013, 25(15):?2219-2223.
[20]Kuang J, Liu L, Gao Y, et al. A hierarchically structured graphene foam and its potential as a large-scale strain-gauge sensor [J]. Nanoscale, 2013, 5(24):12171-12177.
[21]Xiehong Cao, Yumeng Shi, Wenhui Shi, et al. Preparation of novel 3D graphene networks for supercapacitor applications[J]. Small, 2011, 7(22):3163-3168.
[22]Yong Y C, Dong X C, Chanpark M B, et al. Macroporous and monolithic anode based on polyaniline hybridized three-dimensional graphene for high-performance microbial fuel cells[J]. Acs Nano, 2012, 6(3):2394-2400.
[23]Han C, Zhen T, Dou H, et al. Vertical crosslinking MoS2/three-dimensional graphene composite towards high performance supercapacitor[J]. Chinese Chemical Letters, 2018, 29(4):66-71.
[24]Yang J, Gong D, Li G, et al. Self-Assembly of thiourea-crosslinked graphene oxide framework membranes toward separation of small molecules[J]. Advanced Materials, 2018, 30(16):1-8.
[25]Fan Z, Cheng Z, Feng J, et al. Ultrahigh volumetric performance of a free-standing compact N-doped holey graphene/PANI slice for supercapacitors[J]. Journal of Materials Chemistry?A, 2017, 5(32):16689-16701.
[26]Liu H, Yi W, Gou X, et al. Three-dimensional graphene/polyaniline composite material for high-performance supercapacitor applications [J]. Materials Science & Engineering?B, 2013, 178(5):293-298.
[27]Wu J, Qin,e Zhang, Wang J, et al. A self-assembly route to porous polyaniline/reduced graphene oxide composite materials with molecular-level uniformity for high-performance supercapacitors[J]. Energy & Environmental Science, 2018, 11(5):?1280-1286.
[28]Yang F, Xu M, Bao S J, et al. Self-assembled hierarchical graphene/polyaniline hybrid aerogels for electrochemical capacitive energy storage[J]. Electrochimica Acta, 2014, 137:381-387.
[29]Xu H, Liu J, Chen Y, et al. Synthesis of three-dimensional nitrogen-doped graphene/polyaniline hydrogels for high performance supercapacitor applications[J]. Journal of Materials Science: Materials in Electronics, 2017, 28(14):10674-10683.
[30]Ke Li, Jingjing Liu, Yanshan Huang, et al. Integration of ultrathin graphene/polyaniline composite nanosheets with a robust 3D graphene framework for highly flexible all-solid-state supercapacitors with superior energy density and exceptional cycling stability[J]. Journal of Materials Chemistry?A, 2017, 5(11):?5466-5474
[31]Van Hoa N, Quyen T T H, Van Hieu N, et al. Three-dimensional reduced graphene oxide-grafted polyaniline aerogel as an active material for high performance supercapacitors[J]. Synthetic Metals, 2016, 223:192-198
[32]Xu Y, Tao Y, Zheng X, et al. Supercapacitors: A Metal-Free Supercapacitor Electrode Material with a Record High Volumetric Capacitance over 800 F cm-3[J]. Advanced Materials, 2016, 27(48):7898-7898.
[33]李學(xué)航, 俞慧濤, 王偉仁, 等. 自支撐三維功能化石墨烯/聚苯胺電極材料的制備及超級電容性能 [J]. 高等學(xué)?;瘜W(xué)學(xué)報, 2017(12):182-188.
[34]Yu P, Zhao X, Huang Z, et al. Free-standing three-dimensional graphene and polyaniline nanowire arrays hybrid foams for high-performance flexible and lightweight supercapacitors[J]. Journal of Materials Chemistry?A, 2014, 2(35):14413-14420.
[35]Zhou Q, Li Y, Huang L, et al. Three-dimensional porous graphene/?polyaniline composites for high-rate electrochemical capacitors[J]. Journal of Materials Chemistry?A, 2014, 2(41):17489-17494.
[36]Yang Y, Xi Y, Li J, et al. Flexible supercapacitors based on polyaniline arrays coated graphene aerogel electrodes[J]. Nanoscale Research Letters, 2017, 12(1):394-499.
[37]Yu M, Ma Y, Liu J, et al. Polyaniline nanocone arrays synthesized on three-dimensional graphene network by electrodeposition for supercapacitor electrodes[J]. Carbon, 2015, 87:98-105.
[38]傅深娜, 馬利, 陳紅沖, 等. 三維(3D)石墨烯-聚苯胺復(fù)合材料在超級電容器中的研究進展[J]. 化工新型材料, 2017(01):13-15.
[39]Trung N B, Tam T V, Kim H R, et al. Three-dimensional hollow balls of graphene-polyaniline hybrids for supercapacitor applications[J]. Chemical ?Engineering ?Journal, 2014, 255:89-96.
[40]Fan W, Zhang C, Tjiu W W, et al. Graphene-wrapped polyaniline hollow spheres as novel hybrid electrode materials for supercapacitor applications[J]. Applied Materials & Interfaces, 2013, 5?(8):?3382-3391.
[41]Luo J, Ma Q, Gu H.H, et al. Liu ?Three-dimensional graphene-?polyaniline hybrid hollow spheres by layer-by-layer assembly for application in supercapacitor[J]. Electrochimica Acta, 2015, 173?(1):?184-192.