国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

果蔬冷凍新技術(shù)的研究進(jìn)展

2020-03-27 11:03狄飛達(dá)張馳松鄭亭
農(nóng)產(chǎn)品加工·上 2020年1期

狄飛達(dá) 張馳松 鄭亭

摘要:概述了幾種果蔬冷凍新技術(shù),即高壓冷凍、超聲波聯(lián)合冷凍、電磁場(chǎng)輔助冷凍(磁場(chǎng)輔助冷凍和脈沖電場(chǎng)冷凍處理),這些技術(shù)主要通過(guò)縮短冷凍時(shí)間(6%~24%)、形成較小的冰晶(直徑≤80 μm)以提升冷凍產(chǎn)品品質(zhì)。高壓冷凍形成冰晶具有瞬時(shí)性,能應(yīng)用于體積較大的水果,但不適合質(zhì)地過(guò)軟的果蔬;超聲波冷凍通過(guò)超聲波空穴效應(yīng),形成更小的冰晶并能一定程度滅酶,缺點(diǎn)是冷凍過(guò)程需要包裝以隔絕冷凍液;磁場(chǎng)輔助冷凍是最先應(yīng)用于生產(chǎn)中(日本CAS冷凍設(shè)備),能縮短果蔬冷凍相變時(shí)間;脈沖電場(chǎng)冷凍雖能顯著縮短冷凍時(shí)間,但易造成細(xì)胞膜穿孔,需要配合冷凍保護(hù)劑和組織改進(jìn)劑。因此,應(yīng)該根據(jù)果蔬體積、質(zhì)地等因素選擇合適的冷凍新技術(shù),以提高果蔬冷凍品質(zhì)。

關(guān)鍵詞:果蔬冷凍;高壓冷凍;超聲波冷凍;電磁場(chǎng)輔助冷凍;磁場(chǎng)輔助冷凍;脈沖電場(chǎng)冷凍

中圖分類(lèi)號(hào):TS255.36 ? ? 文獻(xiàn)標(biāo)志碼:A ? ?doi:10.16693/j.cnki.1671-9646(X).2020.01.020

Abstract:This article reviewed the novel freezing technologies on fruit and vegetable,including pressure-assisted freezing,ultrasound-assisted freezing,electrically-magnetically disturbed Freezing(magnetic field-assisted freezing and pulsed electric field-assisted Freezing). These novel technologies improve the quality of frozen foods by shortening the freezing time(6%~ 24%)and forming smaller ice crystals(diameter≤80 μm). The formation of ice crystals by high-pressure freezing was instantaneous,so it can be used in large volume fruits,but not suitable for fruit and vegetable with soft texture. Ultrasound-assisted Freezing technology can form smaller ice crystals and deactivate enzymes to a certain extent by the effect of ultrasonic cavitation,but the fruits and vegetables need packaging to isolate the freezing liquid. Magnetic field-assisted freezing technology was first used in industrial equipment(CAS refrigeration equipment in Japan),which can shorten the freezing phase transition time of fruit and vegetable. Pulsed electric field-assisted freezing can significantly shorten the freezing time,but it is easy to pierce cell membrane,so it requires cryoprotectants and tissue improvers. Therefore,it should choose suitable novel freezing technologies according to the volume and texture of fruit and vegetable,so that improve the quality of freezing fruits and vegetables.

Key words:fruits and vegetables freezing;pressure-assisted freezing;ultrasound-assisted freezing;electrically-magnetically disturbed freezing;magnetic field-assisted freezing;pulsed electric field-assisted freezing

冷凍技術(shù)是一種最普遍和最有效的食物保存方式之一,早在公元前100年我國(guó)就開(kāi)始使用冰窖來(lái)貯藏食物。冷凍保存的原理是將自身及所攜帶微生物中的自由水及酶活性降低至無(wú)限接近于零[1-2]。因此,相比干制保存技術(shù),冷凍技術(shù)能更好地保持果蔬感官及營(yíng)養(yǎng)品質(zhì)。

冷凍技術(shù)對(duì)食品品質(zhì)也存在不利影響,凍結(jié)過(guò)程形成的冰晶會(huì)破壞植物細(xì)胞結(jié)構(gòu)。對(duì)于含水量90%以上的新鮮果蔬,凍結(jié)過(guò)程中形成的≥80 μm的冰晶是導(dǎo)致細(xì)胞破損的最主要原因[3]。

典型的純水冷凍時(shí)間-溫度曲線見(jiàn)圖1。

純水從常溫A點(diǎn)開(kāi)始,溫度逐漸降低到0 ℃以下,此時(shí)并未形成冰晶而是進(jìn)入S點(diǎn)過(guò)冷液體狀態(tài),此后發(fā)生成核現(xiàn)象,當(dāng)冰核形成一定數(shù)量,冰晶逐漸形成并釋放潛熱,溫度上升至B點(diǎn)(溶液的冷凍點(diǎn)),固態(tài)冰和液態(tài)水此后處于平衡狀態(tài),直到完全成冰(C點(diǎn))前溫度保持不變,此后溫度繼續(xù)下降至目標(biāo)溫度D點(diǎn)(一般為-18 ℃),完成冷凍[4]。

決定形成冰晶大小的主要因素是冷凍速率,然而,冷凍食品工業(yè)現(xiàn)多采用冷風(fēng)冷凍、低溫冷凍、接觸式冷凍,由于食物熱導(dǎo)率(0.5~1.5 W/m2·K)較低,使得這些依靠提升外部冷凍效率設(shè)備的冷凍速率非常低,影響最終果蔬的品質(zhì)[5]。為了能有效提升冷凍果蔬的品質(zhì),國(guó)內(nèi)外對(duì)高壓冷凍、超聲波聯(lián)合冷凍、電磁場(chǎng)輔助冷凍(磁場(chǎng)輔助冷凍、脈沖電場(chǎng)冷凍處理)等技術(shù)進(jìn)行了深入研究,通過(guò)提高食品熱導(dǎo)率,提高冷凍速率,由此產(chǎn)生小而均勻的冰晶,保持果蔬品質(zhì)。

以冷凍新技術(shù)及其在果蔬冷凍上的應(yīng)用研究為切入點(diǎn),綜述了冷凍新技術(shù)在多種果蔬上的應(yīng)用狀況,并就在果蔬冷凍上遇到的問(wèn)題、解決方法和發(fā)展趨勢(shì)進(jìn)行了論述。

1 ? 高壓冷凍技術(shù)

高壓冷凍技術(shù)是指根據(jù)高壓下水分冰點(diǎn)下降和壓力瞬間傳遞原理,將高水分物料加壓至200 MPa以上的冷凍技術(shù)。高壓冷凍加工過(guò)程中冰晶的形成具有瞬時(shí)性、均勻性,并且形成的冰晶較小,還能一定程度抑制酶活性[6]。

理論上,食品在高壓冷凍過(guò)程中,形成的冰具有不同的結(jié)構(gòu),其密度比水更大。

高壓冷凍處理下水相變化[8]見(jiàn)圖2。

由圖2可知,水在不同的溫度、壓力下形成不同的冰相(I-VI)。常壓下,冷凍后的水結(jié)冰體積會(huì)增加(密度降低到約0.92 g/cm3),然而,在外界壓力0~209.9 MPa的冷凍條件下,水相將轉(zhuǎn)變?yōu)楸?? 相I,隨著壓力進(jìn)一步增大,冰相II可轉(zhuǎn)變?yōu)楸郪I(此時(shí)冰體密度可達(dá)到1.31 g/cm3,并且若壓力達(dá)到800 MPa,常溫下即可達(dá)到冷凍效果),此時(shí)轉(zhuǎn)變相后冰的體積并未增大,因此對(duì)于食物損傷很小[7]。

最新高壓冷凍技術(shù)主要包括高壓輔助冷凍(Pressure-assisted Freezing,PAF)、高壓瞬變冷凍(Pressure shift-assisted freezing,PSF)、高壓液態(tài)CO2冷浸冷凍(High pressure carbonic immersion,HPCI)、高壓誘導(dǎo)結(jié)晶冷凍(High pressure induced crystallization,HPIC),相關(guān)原理如表1所示,通過(guò)高壓冷凍處理的食品能保持色澤、風(fēng)味和營(yíng)養(yǎng)。

主要的高壓冷凍技術(shù)原理見(jiàn)表1。

Xu Z等人[11]利用HPCI高壓冷凍處理厚度5 mm的胡蘿卜薄片,在-18 ℃、6 MPa條件下,凍結(jié) ? ? 5 min完成,該凍結(jié)完成時(shí)間遠(yuǎn)低于其他文獻(xiàn)中的高壓處理,與-80 ℃液氮冷浸處理相比,樣品汁液流失降低約33.4%,保留的β -胡蘿卜素含量提高約40%。

高壓輔助冷凍能使果蔬冷凍后形成的冰晶更小、分布更為均勻,但是在商業(yè)推廣中仍缺乏足夠的驗(yàn)證。高壓輔助冷凍設(shè)備及配套的預(yù)冷設(shè)備費(fèi)用較高,國(guó)內(nèi)對(duì)于該技術(shù)的生產(chǎn)應(yīng)用尚處于空白階段,目前僅中國(guó)農(nóng)業(yè)大學(xué)、華南理工大學(xué)、江南大學(xué)等食品國(guó)家重點(diǎn)實(shí)驗(yàn)室擁有此類(lèi)研究型設(shè)備。因此,該方面的研究有待進(jìn)一步深入和完善。

關(guān)于高壓輔助冷凍技術(shù)在果蔬中應(yīng)用的重要研究見(jiàn)表2。

2 ? 超聲聯(lián)合冷凍技術(shù)

冷凍技術(shù)中應(yīng)用的超聲具有低頻(18~20 kHz到100 kHz)、高強(qiáng)度(通常高于1 W/cm2)等特點(diǎn)。理論上,超聲在冷凍處理過(guò)程中會(huì)產(chǎn)生空穴作用、熱效應(yīng),空穴氣泡破裂會(huì)產(chǎn)生瞬時(shí)高溫(5 000 K)、高壓(100 MPa),該處理還能使邊界層減薄,接觸面積增大,傳熱阻滯減弱,有利于提高傳熱速率,由此促進(jìn)冰晶形成,破碎正在形成中的較大冰晶,并且可以抑制一些酶活性,省去一些果蔬產(chǎn)品燙漂處理,順應(yīng)了果蔬產(chǎn)業(yè)綠色環(huán)保的發(fā)展方向[18-19]。

Cheng X F等人[20]發(fā)現(xiàn)草莓經(jīng)UAF冷凍技術(shù)(超聲強(qiáng)度0.51 W/cm2)處理,17 min左右冷凍完畢,相比對(duì)照組降低過(guò)冷溫度約0.5 ℃并縮短冷凍時(shí)間約24%。

Xin Y等人[21-22]研究發(fā)現(xiàn),西蘭花(直徑2~5 cm)在氯化鈣冷浸液中,經(jīng)超聲處理(0.250~0.412 W/cm2),設(shè)備參數(shù)設(shè)定為150 W,30 kHz 或175 W,20 kHz時(shí),產(chǎn)品11 min左右冷凍完畢(樣品中心溫度-18 ℃),節(jié)省約14%的冷凍時(shí)間,相對(duì)于普通冷浸處理,提細(xì)胞壁上的保留的鈣離子提高約50%,維C提高約55%。Islam M N等人[23]利用超聲冷凍技術(shù)處理蘑菇(香菇、雙孢蘑菇,杏鮑菇)發(fā)現(xiàn)超聲冷凍能降低過(guò)氧化物酶(POD)、多酚氧化酶(PPO)活性,縮短冷凍成核時(shí)間最高達(dá)54%(杏鮑菇),超聲波處理的樣本冰晶直徑分布在0~80 μm,而未使用超聲波處理的樣本冰晶直徑分布在50~180 μm。

目前,超聲輔助冷凍的研究必須配合冷浸處理并且規(guī)模較小。冷卻劑常采用氯化鈣、乙二醇,但對(duì)于二者是否協(xié)同加強(qiáng)果蔬的冷凍品質(zhì)定論不一。如今市場(chǎng)上仍缺乏超聲輔助冷凍生產(chǎn)型設(shè)備,當(dāng)前應(yīng)用于果蔬所提升附加值不足,這是超聲輔助冷凍技術(shù)持續(xù)進(jìn)行但沒(méi)有推廣的主要原因。

關(guān)于超聲聯(lián)合冷凍技術(shù)在果蔬中應(yīng)用的重要研究見(jiàn)表3。

3 ? 電-磁場(chǎng)輔助冷凍

3.1 ? 磁場(chǎng)輔助冷凍

果蔬含有大量作為反磁性物質(zhì)的水分,在磁場(chǎng)下水會(huì)被磁化,從而影響果蔬生物特性發(fā)現(xiàn)磁場(chǎng)可影響冰晶大小及冰核生成率,增大過(guò)冷度,形成小而均勻的冰晶[29-30]。

2000年,日本ABI有限公司的細(xì)胞存活系統(tǒng)(Cell Alive System),就開(kāi)始利用靜磁場(chǎng)(SMF)和振蕩磁場(chǎng)(OMF)在速凍機(jī)內(nèi)以磁場(chǎng)抑制冰晶形成,保持冷凍食品和食品材料品質(zhì)[31]。

Liu B等人[32]利用胡蘿卜作為材料(0.5×0.5× ?1 cm3),在不同磁場(chǎng)強(qiáng)度(0,0.46,0.90,1.80, ?3.60,7.2 mT)的AC(交流)和DC(直流) 磁場(chǎng)(50 Hz)進(jìn)行冷凍處理后發(fā)現(xiàn):與對(duì)照試驗(yàn)相比, 3.6 mT直流磁場(chǎng)強(qiáng)度處理下,胡蘿卜冷凍相變時(shí)間縮短了40%。宋健飛等人[33]以洋蔥第三層果肉(切塊0.5 cm×0.5 cm)為原材料,采用分段降溫:0 ℃之前為10 ℃/min,0 ℃之后為3 ℃/min;終溫為-25 ℃,并將直流磁場(chǎng)強(qiáng)度設(shè)定為 0,4.6,18,36,72 Gs,結(jié)果發(fā)現(xiàn)磁場(chǎng)輔助冷凍能避免形成過(guò)大的冰晶,保持營(yíng)養(yǎng)成分和水分,洋蔥細(xì)胞的相變時(shí)間縮短。

磁場(chǎng)輔助冷凍的研究主要集中在蔬菜,對(duì)水果上應(yīng)用研究相對(duì)缺乏。雖然家用型設(shè)備已經(jīng)由ABI在日本推出,但是在果蔬試驗(yàn)研究較少,理論驗(yàn)證的結(jié)果差異較大。要使得磁場(chǎng)輔助冷凍設(shè)備能在真正意義上的投入使用,還需要大量的果蔬試驗(yàn)研究,并做出科學(xué)的驗(yàn)證。

3.2 ? 脈沖電場(chǎng)輔助冷凍

脈沖電場(chǎng)作為一種非熱能食品加工技術(shù)已經(jīng)應(yīng)用了50余年,多應(yīng)用于貴重的化合物提取的前處理、加速干燥及滅活微生物[34]。PEF的2個(gè)導(dǎo)電電極能產(chǎn)生瞬時(shí)高壓、高強(qiáng)度脈沖,使得置于兩極之間的食物的細(xì)胞膜滲透性增強(qiáng),從而增強(qiáng)物質(zhì)轉(zhuǎn)移[35]。

Artur Wiktor等人[36-37]在對(duì)蘋(píng)果圓柱體(厚度10 mm,直徑15 mm)冷凍過(guò)程中施加脈沖電場(chǎng),發(fā)現(xiàn)脈沖處理可縮減3.5%~17.2%的凍結(jié)時(shí)間,其中縮短約33%的相變時(shí)間;此外,當(dāng)蘋(píng)果樣品在風(fēng)冷之前經(jīng)10 kV/cm,50個(gè)脈沖處理,可縮短24%的冷凍時(shí)間。

雖然PEF能縮短冷凍的時(shí)間,并且提高冷凍的過(guò)冷溫度,但是也會(huì)引起一些不好的影響,比如較大的失重率、結(jié)構(gòu)破壞、顏色改變等,原因是PEF處理會(huì)導(dǎo)致細(xì)胞膜和液泡膜穿孔。

因此,PEF得到學(xué)者進(jìn)一步研究以解決其組織破壞的問(wèn)題。Shayanfar S等人[38]以厚度為5 mm,直徑30 mm的胡蘿卜片為研究對(duì)象,先以氯化鈣、甘油、海藻糖等冷凍保護(hù)劑進(jìn)行浸漬處理,然后在脈沖電場(chǎng)處理(1 kV/cm,100個(gè)脈沖,4 Hz)處理后進(jìn)行冷凍處理,能更好地保持材料結(jié)構(gòu)硬度和顏色。Phoon P等人[39]利用真空PEF技術(shù)和冷浸液(海藻糖)處理菠菜葉后再冷凍,能提高產(chǎn)品的低溫保藏品質(zhì)。

如今,脈沖電場(chǎng)輔助冷凍被認(rèn)為是一個(gè)新興的冷凍技術(shù),其冷凍原理已經(jīng)在果蔬模擬系統(tǒng)中[40]得到驗(yàn)證,但是該技術(shù)的應(yīng)用仍然停留在實(shí)驗(yàn)室層面。

4 ? 討論

三大冷凍方法在實(shí)驗(yàn)室層面已經(jīng)證明其實(shí)用性,但是目前在該方面商業(yè)應(yīng)用的推廣緩慢。同時(shí),國(guó)外已經(jīng)出現(xiàn)了速凍歐李及速凍榴蓮等多種速凍產(chǎn)品,因此我國(guó)的冷凍果蔬技術(shù)也應(yīng)該追趕國(guó)外先例,逐步形成成熟的技術(shù),并應(yīng)用于商業(yè)化生產(chǎn)。

冷凍新技術(shù)的研究對(duì)于一些食物果蔬的冰晶體積形成至關(guān)重要,較小的冰晶能提高冷凍的加工原料品質(zhì),延長(zhǎng)保質(zhì)期,并為植物細(xì)胞冷凍及解凍基礎(chǔ)研究提供新的思路。

高昂的設(shè)備成本是制約新型冷凍技術(shù)商業(yè)化的主要原因之一,但最重要的是技術(shù)的成熟性。目前,隨著家用型磁場(chǎng)輔助的CAS冷凍技術(shù)的擴(kuò)大應(yīng)用,設(shè)備費(fèi)已經(jīng)開(kāi)始降低。新型冷凍技術(shù)具有各自的優(yōu)缺點(diǎn)(見(jiàn)表4),如何通過(guò)改良前處理、改造設(shè)備、引入新理論來(lái)增加各技術(shù)的優(yōu)勢(shì),彌補(bǔ)或者更正缺點(diǎn)是后續(xù)研究的關(guān)鍵問(wèn)題,由此引發(fā)的技術(shù)變更可能改變傳統(tǒng)的果蔬冷凍及生鮮產(chǎn)業(yè)。

果蔬冷凍新技術(shù)的原理和優(yōu)缺點(diǎn)見(jiàn)表4。

5 ? 結(jié)論

討論幾種新興的冷凍加工方法,并對(duì)其在果蔬中的研究進(jìn)行綜述。這些冷凍方法(高壓冷凍、磁場(chǎng)輔助冷凍、脈沖電場(chǎng)輔助冷凍、超聲輔助冷凍)基于現(xiàn)有的冷凍設(shè)備配套新型設(shè)備,旨在通過(guò)改變或干擾果蔬冰晶的形成以提高冷凍產(chǎn)品的品質(zhì)。許多冷凍加工技術(shù)都處在發(fā)展階段,制約其商業(yè)化的主要原因是高昂的設(shè)備費(fèi)用,而冷凍新技術(shù)則通過(guò)減少冷凍時(shí)間達(dá)到降低能耗,或者通過(guò)提升冷凍產(chǎn)品的品質(zhì)來(lái)提升產(chǎn)品附加值,從而提高應(yīng)用價(jià)值。并且,最終需要買(mǎi)單的消費(fèi)者才是應(yīng)該重點(diǎn)研究的,其對(duì)于冷凍品質(zhì)和價(jià)格的選擇才是最終決定新技術(shù)商業(yè)化的關(guān)鍵。

參考文獻(xiàn):

Cheng X,Zhang M,Xu B,et al. The principles of ultrasound and its application in freezing related processes of food materials:A review[J]. Ultrasonics Sonochemistry,2015(27):576-585.

Chaves A,Zaritzky N:Cooling and freezing of fruits and fruit products[M]. Fruit Preservation:Springer,2018:127-180.

Xiaofei W,Zhang M,Adhikari B,et al. Recent developments in novel freezing and thawing technologies applied to foods[J]. Critical Reviews in Food Science & Nutrition,2016,57(17):3 620-3 631.

Sun D W. Handbook of frozen food processing and packaging,second edition[J]. Crc Press,2006(13):204-210.

Singh R P,Heldman D R. Introduction to food engineering[J]. Introduction to Food Engineering,2013(3):301-304.

Marszalek K,Wozniak L,Kruszewski B,et al. The effect of high pressure techniques on the stability of anthocyanins in fruit and vegetables[J]. International Journal of Molecular Sciences,2017,18(2):277-281.

Cheng L,Sun D W,Zhu Z,et al. Emerging techniques for assisting and accelerating food freezing processes:A review of recent research progresses[J]. C R C Critical Reviews in Food Technology,2017,57(4):769-781.

Lebail A,Chevalier D,Mussa D M,et al. High pressure freezing and thawing of foods:A review[J]. International Journal of Refrigeration,2002,25(5):504-513.

Fernández P P,Martino M N,Zaritzky N E,et al. Effects of locust bean,xanthan and guar gums on the ice crystals of a sucrose solution frozen at high pressure[J]. Food Hydrocolloids,2007,21(4):507-515.

James C,Purnell G,James S J. A Review of novel and innovative food freezing technologies[J]. Food & Bioprocess Technology,2015(8):1 616-1 634.

Xu Z,Guo Y,Ding S,et al. Freezing by immersion in liquid CO2 at variable pressure[J]. Innovative Food Science & Emerging Technologies,2013,22(4):167-174.

Van B,Grauwet T,Avan L,et al. Effect of high-pressure induced ice I/ice III-transition on the texture and microstructure of fresh and pretreated carrots and strawberries[J]. Food Research International,2007,40(10):1 276-1 285.

Van B,Grauwet T,Van L A,et al. Structure/processing relation of vacuum infused strawberry tissue frozen under different conditions[J]. European Food Research & Technology,2008(3):437-448.

Préstamo G,Palomares L,Sanz P. Broccoli(Brasica oleracea)treated under pressure-shift freezing process[J]. European Food Research & Technology,2004(6):598-604.

George J M,Selvan T S,Rastogi N K. High-pressure-assisted infusion of bioactive compounds in apple slices[J]. Innovative food science & emerging technologies,2016(33):100-107.

Albertos I,Martin-Diana A,Sanz M,et al. Effect of high pressure processing or freezing technologies as pretreatment in vacuum fried carrot snacks[J]. Innovative food science & emerging technologies,2016(33):115-122.

Pedropablo F,Guadalupe P,Laura O,et al. Assessment of cell damage in high-pressure-shift frozen broccoli: Comparison with market samples[J]. European Food Research & Technology,2006(1):101-107.

Kiani H,Zhang Z,Delgado A,et al. Ultrasound assisted nucleation of some liquid and solid model foods during freezing[J]. Food Research International,2011,44(9):2 915-2 921.

Zhang P,Zhu Z,Sun D W. Using power ultrasound to accelerate food freezing processes:Effects on freezing efficiency and food microstructure[J]. Critical Reviews in Food Science and Nutrition,2018,58(16):2 842-2 853.

Cheng X F,Zhang M,Adhikari B,et al. Effect of ultrasound irradiation on some freezing parameters of ultrasound-assisted immersion freezing of strawberries[J]. International Journal of Refrigeration,2014,44(7):49-55.

Xin Y,Zhang M,Adhikari B. Ultrasound assisted immersion freezing of broccoli(Brassica oleracea L. var. botrytis L.)[J]. Ultrason Sonochem.,2014,21(5):1 728-1 735.

Xin Y,Zhang M,Adhikari B. The effects of ultrasound-assisted freezing on the freezing time and quality of broccoli (Brassica oleracea L. var. botrytis L.)during immersion freezing[J]. International Journal of Refrigeration,2014,41(5): 82-91.

Islam M N,Zhang M,Adhikari B,et al. The effect of ultrasound-assisted immersion freezing on selected physicochemical properties of mushrooms[J]. International Journal of Refrigeration,2014,42(3):121-133.

Xu B,Min Z,Bhandari B,et al. Effect of ultrasound immersion freezing on the quality attributes and water distributions of wrapped red radish[J]. Food & Bioprocess Technology,2015(6):1 366-1 376.

Islam M N,Min Z,F(xiàn)ang Z,et al. Direct contact ultrasound assisted freezing of mushroom(Agaricus bisporus):Growth and size distribution of ice crystals[J]. International Journal of Refrigeration,2015(5):46-53.

余德洋,劉寶林,呂??? 超聲波輔助馬鈴薯凍結(jié)的實(shí)驗(yàn)研究[J]. 聲學(xué)技術(shù),2014,33(1):21-24.

Ziying R. Ultrasound pretreatment of apple slice prior to vacuum freeze drying[C]// Proceeding of the 2nd International Conference on Material Science,Energy and Environmental Engineering(MSEEE 2018),Wuhan:Zhicheng Times Cultural Development Co.,Ltd.,2018:112-117.

Vallespir F,Cárcel J A,Marra F,et al. Improvement of mass transfer by freezing pre-treatment and ultrasound application on the convective drying of beetroot(Beta vulgaris L.)[J]. Food and Bioprocess Technology,2018,11(1):72-83.

Wowk B. Electric and magnetic fields in cryopreservation[J]. Cryobiology,2012,64(3):301-303.

Wang S,Xiang W,F(xiàn)an H,et al. Study on the mobility of water and its correlation with the spoilage process of salmon (Salmo solar)stored at 0 and 4 ℃ by low-field nuclear magnetic resonance (LF NMR 1H)[J]. Journal of Food Science and Technology,2018,55(1):173-182.

王靜,張衛(wèi)衛(wèi),石勇,等. 真空冷凍干燥技術(shù)對(duì)食品品質(zhì)的影響[J]. 農(nóng)產(chǎn)品加工,2018(1):36-38,42.

Liu B,Song J,Yang Z,et al. Effects of magnetic field on the phase change cells and the formation of ice crystals in bio-materials:Carrot case[J]. Journal of Thermal Science & Engineering Applications,2018(3):31-50.

宋健飛,劉斌,關(guān)文強(qiáng),等. 直流磁場(chǎng)對(duì)洋蔥細(xì)胞凍結(jié)過(guò)程的影響[J]. 制冷學(xué)報(bào),2016,37(2):107-112.

Góral M,Pankiewicz U,Sujka M,et al. Bioaccumulation of zinc ions in Lactobacillus rhamnosus B 442 cells under treatment of the culture with pulsed electric field[J]. European Food Research and Technology,2019(1):1-8.

El Kantar S,Boussetta N,Lebovka N,et al. Pulsed electric field treatment of citrus fruits:Improvement of juice and polyphenols extraction[J]. Innovative Food Science & Emerging Technologies,2018(5):153-161.

Wiktor A,Witrowa-Rajchert D,Schulz M,et al. The effect of pulsed electric field treatment on immersion freezing,thawing and selected properties of apple tissue[J]. Journal of Food Engineering,2015(2):8-16.

Wiktor A D,Chudoba T,Witrowa-Rajchert D. Influence of pulsed electric field on air freezing of apple tissue[C]. International Conference of Agricultural Engineering CIGR-AgEng2012 Monographe,2012(4):1-6.

Shayanfar S,Chauhan O P,Toepfl S,et al. Pulsed electric field treatment prior to freezing carrot discs significantly maintains their initial quality parameters after thawing[J]. International Journal of Food Science & Technology,2014,49(4):1 224-1 230.

Puiyeu P,F(xiàn)edericogómez G,António V,et al. Pulsed electric field in combination with vacuum impregnation with trehalose improves the freezing tolerance of spinach leaves[J]. Journal of Food Engineering,2008(1):144-148.

Grimi N,Mamouni F,Lebovka N,et al. Impact of apple processing modes on extracted juice quality:Pressing assisted by pulsed electric fields[J]. Journal of Food Engineering,2011(1): 52-61. ◇