陳旺 鄧榆 殷俊 官州 金凱 石博妹 黃廷華 姚敏
摘要:【目的】明確豬miR-124與其靶基因IQGAP2間的表達(dá)調(diào)控關(guān)系,以及miR-124表達(dá)水平與豬巨噬細(xì)胞內(nèi)沙門氏菌數(shù)量的關(guān)聯(lián),為揭示沙門氏菌在感染細(xì)胞內(nèi)存活與增殖的機(jī)制提供理論依據(jù)。【方法】通過熒光素酶報(bào)告基因系統(tǒng)驗(yàn)證miR-124與IQGAP2基因的作用位點(diǎn);再以GM-CSF誘導(dǎo)的豬巨噬細(xì)胞和鼠傷寒沙門氏菌(ATCC 14028)為試驗(yàn)材料,通過實(shí)時(shí)熒光定量PCR和流式細(xì)胞術(shù)測定沙門氏菌感染豬巨噬細(xì)胞中miR-124和IQGAP2基因的表達(dá)及巨噬細(xì)胞內(nèi)沙門氏菌的增殖情況。【結(jié)果】miR-124結(jié)合位點(diǎn)野生型載體轉(zhuǎn)染的熒光報(bào)告信號(hào)顯著低于miR-124結(jié)合位點(diǎn)突變載體(P<0.05,下同),但共轉(zhuǎn)染anti-miR-124序列后能顯著增強(qiáng)miR-124結(jié)合位點(diǎn)野生型載體的熒光報(bào)告信號(hào)。經(jīng)沙門氏菌感染后,豬巨噬細(xì)胞中的miR-124表達(dá)被激活,感染12、24和48 h后的相對(duì)表達(dá)量均顯著高于沙門氏菌感染前(0 h),而IQGAP2基因表達(dá)水平呈顯著下調(diào)趨勢;在沙門氏菌感染豬巨噬細(xì)胞內(nèi),miR-124表達(dá)水平與IQGAP2基因表達(dá)水平呈明顯負(fù)相關(guān)(r=-0.92)。miR-124高表達(dá)組細(xì)胞內(nèi)的沙門氏菌數(shù)量顯著高于正常巨噬細(xì)胞,但miR-124敲低表達(dá)組細(xì)胞內(nèi)的沙門氏菌數(shù)量顯著低于正常巨噬細(xì)胞;IQGAP2基因敲低表達(dá)組細(xì)胞內(nèi)的沙門氏菌數(shù)量顯著高于正常巨噬細(xì)胞;此外,miR-124高表達(dá)+IQGAP2基因敲低表達(dá)組細(xì)胞內(nèi)的沙門氏菌數(shù)量與IQGAP2基因敲低表達(dá)處理組相比無顯著差異(P>0.05),但顯著高于miR-124高表達(dá)組細(xì)胞。【結(jié)論】沙門氏菌感染豬巨噬細(xì)胞中的miR-124表達(dá)水平與IQGAP2基因表達(dá)水平及胞內(nèi)沙門氏菌數(shù)量呈負(fù)相關(guān),即沙門氏菌可通過上調(diào)miR-124表達(dá)靶向抑制IQGAP2基因表達(dá),從而調(diào)節(jié)其在豬巨噬細(xì)胞內(nèi)的增殖。
關(guān)鍵詞: 豬沙門氏菌;miR-124;IQGAP2基因;胞內(nèi)增殖;流式細(xì)胞術(shù);熒光素酶報(bào)告基因系統(tǒng)
中圖分類號(hào): S852.61? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 文獻(xiàn)標(biāo)志碼: A 文章編號(hào):2095-1191(2020)12-3066-07
Abstract:【Objective】To explore the regulation relationship between miR-124 and its target gene IQGAP2, study the relationship between the expression level of miR-124 and the number of Salmonella in pig macrophages,so as to provide a theoretical basis for revealing the mechanism of survival and proliferation of Salmonella in infected cells. 【Method】The binding sitebetween miR-124 and IQGAP2 was verified by luciferase reporter gene system assay. Then, the GM-CSF induced macrophages and Salmonella typhimurium(ATCC 14028) were used as research materials. The expression of miR-124 and IQGAP2 gene and the proliferation of Salmonella in macrophages were determined by real-time quantitative PCR and flow cytometry. 【Result】The fluorescence signal of wild-type vector transfected by miR-124 binding site was significantly lower than that of miR-124 binding site mutant vector(P<0.05, the same below), and the co-transfection of anti-miR-124 sequence could significantly enhance the fluorescence signal of wild-type vector. In the process of Salmonella infection, the expression of miR-124 was activated,the relative expression levels at 12, 24 and 48 h after infection were significantly higher than those before infection (0 h). The expression of IQGAP2 was significantly down-regulated. In Salmonella infected macrophages, the expression levels of miR-124 were negatively correlated with IQGAP2 (r=-0.92). The Salmonella counts in miR-124 high expression group were significantly higher than the control. The Salmonella counts in miR-124 knock down group were significantly lower than the control macrophages. The Salmonella counts in miR-124 knock-down group were significantly higher than the control macrophagesgroup. The numberof Salmonella counts in miR-124 high expression+IQGAP2 gene knockdown expression group were not significantly different compared to the IQGAP2 knockdown group(P>0.05), but significantly higher than the miR-124 high expression group cells. 【Conclusion】The expression levels of miR-124 and IQGAP2 in Salmonella infected porcine macrophages are negatively correlated with intercellular Salmonella counts. Salmonella inhibits IQGAP2 gene expression by up-regulating miR-124 expression targeting, thereby regulating its proliferation in porcine macrophages.
Key words: porcine Salmonella; miR-124; IQGAP2 gene; intracellular proliferation; flow cytometry; luciferase reporter gene system
Foundation item: National Natural Science Foundation of China(31902231,31402055); Innovation and Entrepreneurship Program of Yangtze University (2018057)
0 引言
【研究意義】沙門氏菌(Salmonella)感染豬群后通常形成急性一過性反應(yīng)和長期攜帶2種狀態(tài)(Alban and St?rk,2005;Bonardi,2017),即攜帶沙門氏菌生豬是沙門氏菌傳播感染的重要媒介(Guan and Holley,2003;李帆等,2018)。沙門氏菌是一種常見的人畜共患病原菌(施開創(chuàng)等,2018),在我國的動(dòng)物源性食物中毒事件中有70%~80%是由沙門氏菌污染豬肉產(chǎn)品而引起(楊懷珍等,2016);沙門氏菌在感染細(xì)胞(主要為吞噬細(xì)胞)內(nèi)存活并實(shí)現(xiàn)胞內(nèi)增殖是其形成長期攜帶及傳播致病的重要原因(Lathrop et al.,2015)。因此,研究沙門氏菌在感染細(xì)胞內(nèi)的存活和增殖發(fā)生機(jī)理及揭示相關(guān)基因在該過程中的調(diào)控作用,可為豬沙門氏菌感染的抗病育種提供分子標(biāo)記,對(duì)防控生豬養(yǎng)殖生產(chǎn)中的沙門氏菌感染具有重要意義?!厩叭搜芯窟M(jìn)展】本課題組前期通過高通量測序分析發(fā)現(xiàn),在沙門氏菌感染仔豬外周血中miR-124、miR-16、miR-155和miR-143等29個(gè)miRNA呈顯著差異表達(dá),其中miR-124在沙門氏菌感染仔豬外周血中呈顯著上調(diào)表達(dá)(5.86倍)(Huang et al.,2019),暗示miR-124是沙門氏菌感染過程中的重要調(diào)節(jié)因子。miR-124在免疫器官和免疫細(xì)胞,如外周血單核細(xì)胞、骨髓、淋巴結(jié)和胸腺組織中高表達(dá),故推測其廣泛參與機(jī)體的免疫調(diào)節(jié)過程(Smerkova et al.,2015)。miR-124可被脂多糖(LPS)和牛分枝桿菌卡介苗誘導(dǎo),其轉(zhuǎn)錄水平受TLR信號(hào)適配分子MyD88調(diào)控(Mehta and Baltimore,2016;Sun et al.,2016)。激活后的miR-124通過阻礙TLR6、MyD88、TNF-α、USP2、USP14、P65、TRAF6及STAT3而反作用于(抑制)TLR信號(hào)通路(Sun et al.,2013;Ma et al.,2014;Qiu et al.,2015),其在基因組中存在多個(gè)拷貝,分別為miR-124-1、miR-124-2和miR-124-3,雖然三者的前體序列有所不同,但其成熟序列在人類、小鼠和豬中完全一致,說明miR-124在不同物種體內(nèi)發(fā)揮著相同的生物學(xué)功能。沙門氏菌感染仔豬外周血miRNA/mRNA表達(dá)譜數(shù)據(jù)聯(lián)合分析發(fā)現(xiàn),在miR-124作用的110個(gè)候選靶基因中,沙門氏菌感染信號(hào)通路相關(guān)基因IQGAP2下調(diào)5倍,但同家族的IQGAP1和IQGAP3基因均未見顯著差異表達(dá)(Huang et al.,2019)。IQGAP2基因通過與CDC42-GTP相結(jié)合并調(diào)節(jié)CDC42的活化狀態(tài)(Brill et al.,1996),活化的CDC42進(jìn)一步激活MAPK信號(hào)通路(Chen et al.,1996;Hobbie et al.,1997;Patel and Galán,2006),進(jìn)而調(diào)節(jié)宿主的免疫功能(Garrett et al.,2000;Rodriguez-Escudero et al.,2011;Lathrop et al.,2015)?!颈狙芯壳腥朦c(diǎn)】miR-124是沙門氏菌感染過程中的重要調(diào)節(jié)因子,是沙門氏菌在宿主體內(nèi)存活、建立攜帶狀態(tài)及感染致病的關(guān)鍵因素,但至今有關(guān)miR-124對(duì)下游靶基因IQGAP2的調(diào)節(jié)作用及其對(duì)細(xì)胞內(nèi)沙門氏菌增殖情況的影響機(jī)制尚未明確。【擬解決的關(guān)鍵問題】采用實(shí)時(shí)熒光定量PCR、流式細(xì)胞術(shù)及熒光素酶報(bào)告檢測系統(tǒng)對(duì)沙門氏菌感染豬巨噬細(xì)胞中miR-124和IQGAP2基因的表達(dá)及巨噬細(xì)胞內(nèi)沙門氏菌的增殖情況進(jìn)行探討,為揭示沙門氏菌在感染細(xì)胞內(nèi)的存活與增殖機(jī)制提供理論依據(jù)。
1 材料與方法
1. 1 試驗(yàn)材料
胎牛血清(10100154)和細(xì)胞培養(yǎng)液RPMI 1640(22400105)購自美國Gibco公司;哺乳動(dòng)物外周血單核細(xì)胞分離液Percoll(P1644)購自Sigma-Aldrich公司;重組豬GM-CSF(ab233683)購自英國Abcam公司;總RNA提取試劑盒(R1200)購自北京索萊寶科技有限公司;miR-124定量檢測試劑盒(480901_mir)購自美國ABI公司;兔抗人IQGAP2多克隆抗體(PA5-95484)和PE標(biāo)記的羊抗兔IgG(31864)購自ThermoFisher公司;FITC標(biāo)記的羊抗人CD14抗體(ABIN2478467)購自北京四正柏生物科技有限公司;動(dòng)物細(xì)胞轉(zhuǎn)染試劑TransFastTM(E2431)購自美國Promega公司;IQGAP2基因siRNA序列、miR-124序列、anti-miR-124序列及實(shí)時(shí)熒光定量PCR擴(kuò)增引物(表1)均委托生工生物工程(上海)股份有限公司合成;psiCHECKTM-1、pGL3-Control、鼠傷寒沙門氏菌(ATCC 14028)和Raw264.7細(xì)胞由長江大學(xué)動(dòng)物科學(xué)學(xué)院分子生物學(xué)實(shí)驗(yàn)室保存提供。
1. 2 miR-124高表達(dá)或敲低表達(dá)巨噬細(xì)胞的建立
以無菌生理鹽水對(duì)仔豬外周抗凝血進(jìn)行1∶1稀釋,再使用哺乳動(dòng)物外周血單核細(xì)胞分離液Percoll分離外周血單核細(xì)胞,并轉(zhuǎn)移至細(xì)胞6孔培養(yǎng)板中,經(jīng)貼壁、洗滌后,以GM-CSF(20 ng/mL)和IL-4(10 ng/mL)刺激培養(yǎng)6 d,以獲得充分分化的巨噬細(xì)胞。將IQGAP2 siRNA(10 nmol/L)、miR-124 mimics(10 nmol/L)和anti-miR-124(10 nmol/L)以TransFastTM轉(zhuǎn)染試劑包裹后分別轉(zhuǎn)染分化的巨噬細(xì)胞,傳染24 h后使用實(shí)時(shí)熒光定量PCR檢測細(xì)胞中IQGAP2基因和miR-124的轉(zhuǎn)錄水平,以證實(shí)各組細(xì)胞建模是否成功。將對(duì)數(shù)生長期的沙門氏菌與構(gòu)建的各組模型細(xì)胞按1∶1比例互作侵染,分別于感染0、12、24和48 h時(shí)收集細(xì)胞樣品用于提取總RNA,設(shè)3次重復(fù)。采用TRIzol法提取總RNA,利用Stem-Loop TaqMan檢測總RNA中的miR-124表達(dá)情況,以SYBR-Green PCR Master Mix試劑盒檢測總RNA中的IQGAP2基因表達(dá)水平。用4%甲醛重懸細(xì)胞并在室溫(20~25 ℃)下固定15 min,1×PBS離心洗滌。向預(yù)冷的細(xì)胞中緩慢加入預(yù)冷的100%甲醇,至甲醇終濃度為90%,溫和渦旋以通透細(xì)胞。BD-PharmingenTM染色緩沖液以抗CD14-FITC抗體進(jìn)行表面表型染色30 min,然后將通透處理的細(xì)胞重懸于BD PharmingenTM染色緩沖液中,加入anti-IQGAP2抗體,室溫下孵育20 min。以100 ?L稀釋的羊抗兔IgG偶聯(lián)PE二抗再次重懸細(xì)胞,并室溫孵育30 min,最后通過BD-LSRFortessaTM流式細(xì)胞分析儀進(jìn)行分析。每組細(xì)胞處理均設(shè)3次重復(fù),流式細(xì)胞術(shù)數(shù)據(jù)提交至流庫數(shù)據(jù)庫(Spidlen et al.,2012),編號(hào)FR-FCM-Z2FQ。
1. 3 胞內(nèi)沙門氏菌增殖模型
參考Huang等(2018,2019)的方法以沙門氏菌侵染巨噬細(xì)胞。正常巨噬細(xì)胞、miR-124高表達(dá)及敲低表達(dá)巨噬細(xì)胞、IQGAP2基因敲低表達(dá)巨噬細(xì)胞、miR-124高表達(dá)+IQGAP2基因敲低表達(dá)巨噬細(xì)胞及miR-124敲低表達(dá)+IQGAP2基因敲低表達(dá)巨噬細(xì)胞經(jīng)PBS洗滌和重懸后,分別按1×106/孔的密度接種至細(xì)胞6孔培養(yǎng)板中,同時(shí)按1∶1比例將對(duì)數(shù)生長期的沙門氏菌接種至各組巨噬細(xì)胞中,細(xì)胞培養(yǎng)板500 r/min離心10 min,使細(xì)胞和細(xì)菌聚集于培養(yǎng)底面,在37 ℃、5% CO2培養(yǎng)箱中孵育2 h,PBS漂洗3次,加入Gentamicin培養(yǎng)基(100 ?g/mL)繼續(xù)培養(yǎng)2 h,再使用無抗生素培養(yǎng)基繼續(xù)培養(yǎng)一定時(shí)間后收集細(xì)胞樣品。自沙門氏菌與巨噬細(xì)胞互作時(shí)開始計(jì)時(shí),分別收集4、8和12 h時(shí)的細(xì)胞樣品,各3份。采用1% Tritone裂解破碎巨噬細(xì)胞,抽提DNA,使用實(shí)時(shí)熒光定量PCR檢測沙門氏菌數(shù)量(Vinayaka et al.,2019)。
1. 4 雙螢光素酶報(bào)告分析
將含有miR-124結(jié)合位點(diǎn)(5189~5195 nt,XM_021084462)的IQGAP2基因3'-UTR序列(XM_0210 84462,4761~5860 nt)野生型或突變(5192C/G)片段克隆至psiCHECKTM-1載體質(zhì)粒海腎螢光素酶ORF下游,分別命名為psiCHECKTM-1-IQGAP2 3'-UTR(Wild-type)和psiCHECKTM-1-IQGAP2 3'-UTR(Mutant)。將RAW264.7細(xì)胞以每孔0.5×106個(gè)細(xì)胞接種至細(xì)胞6孔培養(yǎng)板中,當(dāng)有60%細(xì)胞融合時(shí)采用TransFastTM轉(zhuǎn)染試劑包裹miR-124(或anti-miR-124)、psiCHECKTM-1-IQGAP2 3'-UTR(Wild-type)[或psiCHECKTM-1-IQGAP2 3'-UTR(Mutant)],轉(zhuǎn)染Raw264.7細(xì)胞。試驗(yàn)共設(shè)4組:(1)Mutant;(2)Mutant+miR-124;(3)Wilde type;(4)Wilde type+anti-miR-124。所有細(xì)胞均與轉(zhuǎn)染效率對(duì)照質(zhì)粒pGL3-Control共轉(zhuǎn)染。每轉(zhuǎn)染4 h,即采用雙螢光素酶報(bào)告分析系統(tǒng)測量螢光素酶活性1次(Huang et al.,2018)。每組重復(fù)3次。
1. 5 統(tǒng)計(jì)分析
試驗(yàn)數(shù)據(jù)采用SPSS 18.0進(jìn)行統(tǒng)計(jì)分析,其中,兩組間比較采用 t 檢驗(yàn),多組間比較采用單因素方差分析(One-way ANOVA)。
2 結(jié)果與分析
2. 1 雙螢光素酶報(bào)告解析miR-124對(duì)IQGAP2基因的調(diào)控作用
將IQGAP2基因3'-UTR區(qū)插入熒光素酶基因3'-UTR區(qū),構(gòu)建靶基因3'-UTR區(qū)的熒光素酶報(bào)告基因載體,以構(gòu)建好的熒光素酶報(bào)告基因載體轉(zhuǎn)染Raw264.7細(xì)胞,通過檢測熒光素酶的表達(dá)情況分析IQGAP2基因3'-UTR區(qū)是否含有miR-124靶位點(diǎn);同時(shí)構(gòu)建miR-124結(jié)合位點(diǎn)人工點(diǎn)突變的報(bào)告基因載體。通過比較野生型和突變型報(bào)告基因的熒光素酶活性(圖1)發(fā)現(xiàn),轉(zhuǎn)染36~48 h后miR-124結(jié)合位點(diǎn)野生型載體轉(zhuǎn)染的熒光報(bào)告信號(hào)顯著低于miR-124結(jié)合位點(diǎn)突變載體(P<0.05,下同),但共轉(zhuǎn)染anti-miR-124序列后能顯著增強(qiáng)miR-124結(jié)合位點(diǎn)野生型載體的熒光報(bào)告信號(hào);miR-124結(jié)合位點(diǎn)突變載體轉(zhuǎn)染及anti-miR-124序列與miR-124結(jié)合位點(diǎn)突變載體共轉(zhuǎn)染均顯著增強(qiáng)報(bào)告基因表達(dá),說明miR-124能作用于IQGAP2基因3'-UTR區(qū)而抑制報(bào)告基因表達(dá)。
2. 2 沙門氏菌感染豬巨噬細(xì)胞中miR-124和IQGAP2基因的轉(zhuǎn)錄水平
經(jīng)沙門氏菌感染后,豬巨噬細(xì)胞中的miR-124表達(dá)水平明顯升高(圖2-A),感染12、24和48 h后的相對(duì)表達(dá)量均顯著高于沙門氏菌感染前(0 h);IQGAP2基因表達(dá)水平則明顯下調(diào)(圖2-B),感染12、24和48 h的相對(duì)表達(dá)量顯著低于沙門氏菌感染前(0 h)。在沙門氏菌感染豬巨噬細(xì)胞內(nèi),miR-124表達(dá)水平與IQGAP2基因表達(dá)水平呈明顯負(fù)相關(guān)(r=-0.92)。
2. 3 沙門氏菌感染豬巨噬細(xì)胞中IQGAP2蛋白的流式細(xì)胞術(shù)檢測結(jié)果
經(jīng)沙門氏菌感染后,豬巨噬細(xì)胞中的IQGAP2蛋白表達(dá)水平呈明顯下調(diào)趨勢。在沙門氏菌感染前(0 h)約有61.1%的IQGAP2陽性細(xì)胞,沙門氏菌感染12 h后約有43.6%的IQGAP2陽性細(xì)胞,感染24 h后約有38.2%的IQGAP2陽性細(xì)胞,感染48 h后僅有23.0%的IQGAP2陽性細(xì)胞。即沙門氏菌感染12和24 h后的IQGAP2陽性細(xì)胞約是沙門氏菌感染前(0 h)的2/3,感染48 h后的IQGAP2陽性細(xì)胞約為沙門氏菌感染前(0 h)的1/3。流式細(xì)胞術(shù)檢測結(jié)果見圖3。
2. 4 沙門氏菌感染豬巨噬細(xì)胞內(nèi)沙門氏菌數(shù)量的增殖規(guī)律
在沙門氏菌感染4 h后, miR-124高表達(dá)組細(xì)胞內(nèi)的沙門氏菌數(shù)量明顯高于正常巨噬細(xì)胞(約1.5倍),IQGAP2基因敲低表達(dá)組細(xì)胞內(nèi)的沙門氏菌數(shù)量則是正常巨噬細(xì)胞的3.5倍。至沙門氏菌感染8 h后,miR-124高表達(dá)組和IQGAP2基因敲低表達(dá)組細(xì)胞內(nèi)的沙門氏菌數(shù)量持續(xù)上升,miR-124高表達(dá)組細(xì)胞內(nèi)的沙門氏菌數(shù)量明顯高于正常巨噬細(xì)胞(約1.8倍),IQGAP2基因敲低表達(dá)組細(xì)胞內(nèi)的沙門氏菌數(shù)量是正常巨噬細(xì)胞的4.0倍。在沙門氏菌感染12 h后,各處理組的胞內(nèi)沙門氏菌數(shù)量均較感染8 h時(shí)有所上升,miR-124高表達(dá)組細(xì)胞內(nèi)的沙門氏菌數(shù)量明顯高于正常巨噬細(xì)胞(約2.0倍),IQGAP2基因敲低表達(dá)組細(xì)胞內(nèi)的沙門氏菌數(shù)量是正常巨噬細(xì)胞的4.5倍。各感染時(shí)間點(diǎn),miR-124敲低表達(dá)組胞內(nèi)沙門氏菌數(shù)量均顯著低于正常巨噬細(xì)胞;miR-124高表達(dá)+IQGAP2基因敲低表達(dá)組細(xì)胞內(nèi)的沙門氏菌數(shù)量與IQGAP2基因敲低表達(dá)處理組相比無顯著差異(P>0.05,下同),但顯著高于miR-124高表達(dá)組細(xì)胞;miR-124敲低表達(dá)+IQGAP2基因敲低表達(dá)組細(xì)胞內(nèi)的沙門氏菌數(shù)量與IQGAP2基因敲低表達(dá)處理組相比也無顯著差異,但顯著高于miR-124敲低表達(dá)組細(xì)胞、低于miR-124高表達(dá)+IQGAP2基因敲低表達(dá)組細(xì)胞。
3 討論
沙門氏菌通過糞口途徑進(jìn)入動(dòng)物體內(nèi),部分酸耐受菌體從胃進(jìn)入小腸,穿過小腸黏膜層而作用于黏膜下層的M細(xì)胞(Prouty et al.,2004),再轉(zhuǎn)運(yùn)至腸系膜淋巴結(jié)(Chen et al.,2015)。沙門氏菌進(jìn)入動(dòng)物體內(nèi)后,主要通過以下3條途徑與機(jī)體免疫系統(tǒng)相互作用:(1)來源于沙門氏菌的LPS在MD2和CD14輔助下能被TLR4受體識(shí)別,TLR4識(shí)別沙門氏菌后可激活巨噬細(xì)胞并作用于TLR4適配分子MyD88,從而激活下游TLR4信號(hào)通路和NFκB信號(hào)通路(Mastroeni et al.,2009;Deng et al.,2016);(2)沙門氏菌通過III型分泌系統(tǒng)將菌體蛋白分泌到動(dòng)物細(xì)胞內(nèi),直接(SopE和SopE2)或間接(SopB)作用于CDC42,并進(jìn)一步激活MAPK信號(hào)通路(Chen et al.,1996;Hobbie et al.,1997;Patel and Galán,2006);(3)沙門氏菌基因組DNA可被動(dòng)物細(xì)胞的外源DNA識(shí)別蛋白(DAI、AIM2和RIG-I)所識(shí)別,進(jìn)而激活細(xì)胞質(zhì)DNA感知信號(hào)通路(Qiu et al.,2015;Mehta and Baltimore,2016)。已有的研究雖然從不同角度闡明沙門氏菌對(duì)動(dòng)物機(jī)體免疫系統(tǒng)的激活機(jī)制,但仍然無法合理解釋沙門氏菌免疫逃避甚至攜帶排菌的現(xiàn)象。
miR-124在動(dòng)物免疫器官和免疫細(xì)胞,如外周血單核細(xì)胞、骨髓、淋巴結(jié)和胸腺中高表達(dá),并廣泛參與機(jī)體免疫調(diào)節(jié)過程(Smerkova et al.,2015)。本研究結(jié)果表明,CSF誘導(dǎo)豬巨噬細(xì)胞經(jīng)沙門氏菌感染后,miR-124呈上調(diào)表達(dá),其上調(diào)表達(dá)機(jī)制可能與前人的相關(guān)研究結(jié)論(Mehta and Baltimore,2016;Sun et al.,2016)一致,即受沙門氏菌LPS-TLR信號(hào)的激活。IQGAP2基因的表達(dá)受甲基化和轉(zhuǎn)錄后水平等多種因素影響(Jin et al.,2008;Deng et al.,2016;Pelossof et al.,2016)。本研究的熒光素酶報(bào)告分析系統(tǒng)檢測結(jié)果顯示,IQGAP2基因3'-UTR區(qū)存在miR-124作用靶位點(diǎn),一定程度上揭示了沙門氏菌感染仔豬巨噬細(xì)胞中miR-124與IQGAP2基因表達(dá)的負(fù)調(diào)控關(guān)系。miR-124高表達(dá)及IQGAP2基因敲低表達(dá)組豬巨噬細(xì)胞內(nèi)沙門氏菌數(shù)量顯著高于miR-124敲低表達(dá)組細(xì)胞,暗示miR-124可影響豬巨噬細(xì)胞內(nèi)的沙門氏菌數(shù)量,其機(jī)制可能是通過作用于IQGAP2信號(hào)而影響宿主細(xì)胞對(duì)抗原的吞噬和加工能力,從而更有利于胞內(nèi)沙門氏菌的存活與增殖。因此,miR-124/IQGAP2路徑可能是沙門氏菌在宿主體內(nèi)存活、增殖及建立攜帶狀態(tài)的重要因素,是沙門氏菌激活宿主免疫的剎車系統(tǒng),但具體作用機(jī)制尚需進(jìn)一步研究證實(shí)。
4 結(jié)論
沙門氏菌感染豬巨噬細(xì)胞中的miR-124表達(dá)水平與IQGAP2基因表達(dá)水平及胞內(nèi)沙門氏菌數(shù)量呈負(fù)相關(guān),即沙門氏菌可通過上調(diào)miR-124表達(dá)靶向抑制IQGAP2基因表達(dá),從而調(diào)節(jié)其在豬巨噬細(xì)胞內(nèi)的增殖。
參考文獻(xiàn):
李帆,羅行煒,劉建華,梁軍,賀丹丹,潘玉善,苑麗,胡功政. 2018. 豬源沙門氏菌多藥外排泵oqxAB和氟苯尼考耐藥基因floR的檢測分析[J]. 江西農(nóng)業(yè)學(xué)報(bào),30(11):82-85. [Li F,Luo X W,Liu J H,Liang J,He D D,Pan Y S,Yuan L,Hu G Z. 2018. Detection and analysis of multi-drug efflux pump oqxAB and florfenicol-tolerant gene floR in swine-derived Salmonella typhimurium[J]. Acta Agriculturae Jiangxi,30(11):82-85.]
施開創(chuàng),尹彥文,溫麗霞,屈素潔,王海清,胡杰. 2018. 黏菌素耐藥基因mcr-1 TaqMan-MGB熒光定量PCR檢測方法的建立[J]. 南方農(nóng)業(yè)學(xué)報(bào),49(7):1447-1452. [Shi K C,Yin Y W,Wen L X,Qu S J,Wang H Q,Hu J. 2018. Establishment of TaqMan-MGB fluorescent quantitative PCR for detection of colistin resistance gene mcr-1[J]. Journal of Southern Agriculture,49(7):1447-1452.]
楊懷珍,牟亞,羅薇. 2016. 食源性沙門氏菌的研究進(jìn)展[J]. 黑龍江畜牧獸醫(yī),(7):69-71. [Yang H Z,Mou Y,Luo W. 2016. Research progress of food-borne Salmonella[J]. Heilongjiang Animal Science and Veterinary Medicine,(7):69-71.]
Alban L,St?rk K D C. 2005. Where should the effort be put to reduce the Salmonella prevalence in the slaughtered swine carcass effectively?[J]. Preventive Veterinary Medi-cine,68(1):63-79.
Bonardi S. 2017. Salmonella in the pork production chain and its impact on human health in the European Union[J]. Epidemiology and Infection,145(8):1513-1526.
Brill S,Li S,Lyman C W,Church D M,Wasmuth J J,Weissbach L,Bernards A,Snijders A J. 1996. The Ras GTPase-activating-protein-related human protein IQGAP2 harbors a potential actin binding domain and interacts with calmo-dulin and Rho family GTPases[J]. Molecular and Cellular Biology,16(9):4869-4878.
Chen J,Tian J,Tang X Y,Rui K,Ma J,Mao C M,Liu Y Z,Lu L W,Xu H X,Wang S J. 2015. miR-346 regulates CD4+CXCR5+ T cells in the pathogenesis of Graves? disease[J]. Endocrine,49(3):752-760.
Chen L M,Hobbie S,Galán J E. 1996. Requirement of CDC42 for Salmonella-induced cytoskeletal and nuclear responses[J]. Science,274(5295):2115-2118.
Deng Z,Wang L J,Hou H L,Zhou J C,Li X. 2016. Epigenetic regulation of IQGAP2 promotes ovarian cancer progression via activating Wnt/beta-catenin signaling[J]. International Journal of Oncology,48(1):153-160.
Garrett W S,Chen L M,Kroschewski R,Ebersold M,Turley S,Trombetta S,Galán J E,Mellman I. 2000. Developmental control of endocytosis in dendritic cells by Cdc42[J]. Cell,102(3):325-334.
Guan T Y,Holley R A. 2003. Pathogen survival in swine manure environments and transmission of human enteric illness—A review[J]. Journal of Environmental Quality,32(2):383-392.
Hobbie S,Chen L M,Davis R J,Galán J E. 1997. Involvement of mitogen-activated protein kinase pathways in the nuclear responses and cytokine production induced by Salmonella typhimurium in cultured intestinal epithelial cells[J]. Journal of Immunology,159(11):5550-5559.
Huang T H,Huang X L,Chen W,Yin J,Shi B M,Wang F F,F(xiàn)eng W Z,Yao M. 2019. microRNA responses associa-ted with Salmonella enterica serovar typhimurium challenge in peripheral blood:Effects of miR-146a and IFN-gamma in regulation of fecal bacteria shedding counts in pig[J]. BMC Veterinary Research,15(1):195. doi:10.1186/ s12917-019-1951-4.
Huang T H,Huang X L,Yao M. 2018. miR-143 inhibits intracellular Salmonella growth by targeting ATP6V1A in macrophage cells in pig[J]. Research in Veterinary Science,117:138-143.
Jin S H,Akiyama Y,F(xiàn)ukamachi H,Yanagihara K,Akashi T,Yuasa Y. 2008. IQGAP2 inactivation through aberrant promoter methylation and promotion of invasion in gastric cancer cells[J]. International Journal of Cancer,122(5):1040-1046.
Lathrop S K,Binder K A,Starr T,Cooper K G,Chong A,Carmody A B,Steele-Mortimer O. 2015. Replication of Salmonella enterica serovar Typhimurium in human monocyte-derived macrophages[J]. Infection and Immunity,83(7):2661-2671.
Ma C Y,Li Y,Li M,Deng G C,Wu X L,Zeng J,Hao X J,Wang X P,Liu J,Cho W C S,Liu X M,Wang Y J. 2014. microRNA-124 negatively regulates TLR signaling in alveolar macrophages in response to mycobacterial infection[J]. Molecular Immunology,62(1):150-158.
Mastroeni P,Grant A,Restif O,Maskell D. 2009. A dynamic view of the spread and intracellular distribution of Salmonella enterica[J]. Nature Reviews. Immunology,7(1):73-80.
Mehta A,Baltimore D. 2016. microRNAs as regulatory elements in immune system logic[J]. Nature Reviews. Immunology,16(5):279-294.
Patel J C,Galán J E. 2006. Differential activation and function of Rho GTPases during Salmonella-host cell interactions[J]. The Journal of Cell Biology,175(3):453-463.
Pelossof R,Chow O S,F(xiàn)airchild L,Smith J J,Setty M,Chen C T,Chen Z B,Egawa F,Avila K,Leslie C S,Garcia-Aguilar J. 2016. Integrated genomic profiling identifies microRNA-92a regulation of IQGAP2 in locally advanced rectal cancer[J]. Genes,Chromosomes & Cancer,55(4):311-321.
Prouty A M,Brodsky I E,F(xiàn)alkow S,Gunn J S. 2004. Bile-salt-mediated induction of antimicrobial and bile resistance in Salmonella typhimurium[J]. Microbiology(Rea-ding),150(Pt 4):775-783.
Qiu S W,F(xiàn)eng Y M,LeSage G,Zhang Y,Stuart C,He L,Li Y,Caudle Y,Peng Y,Yin D L. 2015. Chronic morphine-induced microRNA-124 promotes microglial immunosuppression by modulating P65 and TRAF6[J]. Journal of Immunology,194(3):1021-1030.
Rodriguez-Escudero I,F(xiàn)errer N L,Rotger R,Cid V J,Molina M. 2011. Interaction of the Salmonella typhimurium effector protein SopB with host cell Cdc42 is involved in intracellular replication[J]. Molecular Microbiology,80(5):1220-1240.
Smerkova K,Hudcova K,Vlahova V,Vaculovicova M,Peka-rik V,Masarik M,Adam V,Kizek R. 2015. Label-free and amplification-free miR-124 detection in human cells[J]. International Journal of Oncology,46(2):871-877.
Spidlen J,Breuer K,Rosenberg C,Kotecha N,Brinkman R R. 2012. FlowRepository:A resource of annotated flow cytometry datasets associated with peer-reviewed publications[J]. Cytometry (Part A),81(9):727-731.
Sun Y,Li Q,Gui H,Xu D P,Yang Y L,Su D F,Liu X. 2013. microRNA-124 mediates the cholinergic anti-inflammatory action through inhibiting the production of pro-inflammatory cytokines[J]. Cell Research,23(11):1270-1283.
Sun Y,Qin Z,Li Q,Wan J J,Cheng M H,Wang P Y,Su D F,Yu J G,Liu X. 2016. microRNA-124 negatively regulates LPS-induced TNF-alpha production in mouse macrophages by decreasing protein stability[J]. Acta Pharmacologica Sincia,37(7):889-897.
Vinayaka A C,Ngo T A,Kant K,Engelsmann P,Dave V P,Shahbazi M A,Wolff A,Bang D D. 2019. Rapid detection of Salmonella enterica in food samples by a novel approach with combination of sample concentration and direct PCR[J]. Biosensors & Bioelectronics,129:224-230.
(責(zé)任編輯 蘭宗寶)