徐如玉 左明雪 袁銀龍 孫杰 顧文杰 盧鈺升 解開(kāi)治 徐培智
摘要:【目的】研究氮肥用量?jī)?yōu)化對(duì)甜玉米氮肥利用率及根際土壤氮循環(huán)微生物功能基因的影響,為農(nóng)業(yè)生產(chǎn)中氮肥減施及高效利用提供參考。【方法】在磷、鉀肥用量?jī)?yōu)化一致的基礎(chǔ)上,設(shè)3個(gè)施氮水平:(1)對(duì)照,不施氮;(2)常規(guī)施氮水平,氮用量420 kg/ha;(3)優(yōu)化施氮水平,氮用量330 kg/ha。玉米成熟期采集植株樣品及土壤樣品,采用常規(guī)分析、根際土壤高通量測(cè)序和功能基因芯片(GeoChip 5.0)技術(shù),對(duì)不同氮肥用量處理甜玉米產(chǎn)量、可溶性糖含量、土壤氮肥利用率、細(xì)菌群落結(jié)構(gòu)及氮循環(huán)功能基因進(jìn)行分析?!窘Y(jié)果】與對(duì)照相比,優(yōu)化施氮水平與常規(guī)施氮水平均能顯著提高甜玉米鮮苞產(chǎn)量(P<0.05,下同),但二者間無(wú)顯著差異(P>0.05,下同),優(yōu)化施氮水平的可溶性糖含量最高(122.2 mg/kg),顯著高于常規(guī)施氮水平(113.8 mg/kg),氮肥吸收利用率和氮肥偏生產(chǎn)力也分別較常規(guī)施氮水平處理提高8.5%(絕對(duì)值)和7.7 kg/kg。9個(gè)土壤樣品16S rRNA高通量測(cè)序共檢測(cè)到144736個(gè)OTUs,分屬于46門(mén)106綱213目289科404屬。優(yōu)化施氮水平與氮循環(huán)相關(guān)的固氮菌屬Rhodanobacter和Bradyrhizobium的相對(duì)豐度高于常規(guī)施氮水平,而氨氧化細(xì)菌Bryobacter和硝化作用細(xì)菌Candidatus_Nitrocosmicus的相對(duì)豐度則低于常規(guī)施氮水平。采用GeoChip 5.0技術(shù)在9個(gè)土壤樣品中共發(fā)現(xiàn)了2752個(gè)氮循環(huán)基因,分屬于8個(gè)亞類功能。其中固氮、氨化、硝化、同化氮還原、氮同化和異化氮還原等作用表現(xiàn)為優(yōu)化施氮水平高于常規(guī)施氮水平,除固氮作用外,兩個(gè)處理間差異顯著;氨氧化作用表現(xiàn)為常規(guī)施氮水平高于優(yōu)化施氮水平,但兩個(gè)處理間差異不顯著?!窘Y(jié)論】氮肥用量?jī)?yōu)化有助于調(diào)控參與氮循環(huán)關(guān)鍵環(huán)節(jié)的細(xì)菌菌屬豐度,促進(jìn)氮循環(huán)微生物功能基因的固氮作用和氨化作用,提高土壤氮肥吸收利用率和甜玉米可溶性糖含量,且甜玉米鮮苞產(chǎn)量與常規(guī)施氮水平相當(dāng),在氮肥減量增效的同時(shí)達(dá)到甜玉米穩(wěn)產(chǎn)提質(zhì)的效果,可作為推薦施肥方式進(jìn)行推廣應(yīng)用。
關(guān)鍵詞: 甜玉米;氮肥用量;根際土壤氮循環(huán);細(xì)菌群落;高通量測(cè)序;功能基因芯片
中圖分類號(hào): S143.1? ? ? ? ? ? ? ? ? ? ? 文獻(xiàn)標(biāo)志碼: A 文章編號(hào):2095-1191(2020)12-2919-08
Abstract:【Objective】To study the effects of nitrogen fertilizer application optimization on nitrogen fertilizer utilization efficiency and microbial functional genes of nitrogen cycle in rhizosphere soil of sweet corn, and to provide reference for nitrogen fertilizer reduction and efficient utilization in agricultural production. 【Method】The optimized dosages of phosphorus and potash fertilizer were the same, three nitrogen application levels were set in this experiment :(1) control, no nitrogen application;(2)conventional nitrogen application level, nitrogen dosage 420 kg/ha;(3) the nitrogen application level was optimized, and the nitrogen dosage was 330 kg/ha. Plant samples and soil samples were collected during maize maturity. The yield, soluble sugar content, soil nitrogen utilization efficiency, bacterial community structure and nitrogen cycle function genes of sweet corn treated with different nitrogen fertilizer dosages were analyzed by conventional sweet corn index analysis, high throughput sequencing of rhizosphere soil and GeoChip 5.0 technology. 【Result】Compared with the control, the results of this study showed that both optimized and conventional nitrogen levels could significantly increase the fresh ear yield of sweet corn (P<0.05, the same below), there was no significant difference between the fresh ear yield of sweet corn treated with optimized nitrogen application level and that treated with conventional nitrogen application level(P>0.05,the same below). The soluble sugar content was the highest in the treatment with optimized nitrogen application level(122.2 mg/kg) which was significantly higher than the conventional nitrogen application level(113.8 mg/kg). The results showed that the nitrogen recovery efficiency and nitrogen partial productivity were increased by 8.5%(absolute value) and 7.7 kg/kg. At the same time, 144736 OTUs were detected after 16S rRNA high-throughput sequencing was performed on 9 soil samples, which belonged to 404 genera, 289 families, 213 orders, 106 classes and 46 phylum. The results of relative abundance of Rhodanobacter and Bradyrhizobium were higher than that of conventional nitrogen application, while the results of relative abundance of Bryobacter and Candidatus_Nitrocosmicus were lower than that of conventional nitrogen application. A total of 2752 nitrogen cycle genes were found in 9 soil samples using GeoChip 5.0 technology, and the functions of these genes were divided into 8 subclasses. The effects of nitrogen fixation, ammoniation, nitrification, nitrogen assimilation reduction, nitrogen assimilation and nitrogen alienation reduction on nitrogen substances were shown as that the optimized nitrogen application level treatment was higher than the conventional nitrogen application level treatment. Except biological nitrogen fixation, the difference between the two treatment groups was significant. The effect of ammonia oxidation mainly showed that the conventional nitrogen application level treatment was higher than the optimized nitrogen application level treatment, but the difference between the two treatment groups was not significant. 【Conclusion】The improvement of the amount of nitrogen fertilizer used in crops can help regulate the bacterial species abundance of crops that participate in the key link of the nitrogen cycle, so as to promote the nitrogen fixa-tion and ammoniation of microbial functional genes in the nitrogen cycle, ultimately improve the uptake and utilization rate of nitrogen fertilizer in plant soil and soluble sugar content of sweet corn, and the fresh ear yield of sweet corn is equivalent to that of conventional nitrogen application level, which can achieve the effect of stable yield and quality improvement of sweet corn while reducing nitrogen fertilizer and increasing efficiency. This treatment can be promoted as a recommended fertilization mode.
Key words: sweet corn; nitrogen fertilizer dosage; nitrogen cycle in rhizosphere soil; bacterial community; high-throughput sequencing; functional gene chip
Foundation item: National Key Research and Development Program of China(2018YFD0200706);Science and Technology Planning Project of Guangdong(2016A030313776,2017B020233002,2017B020203002)
0 引言
【研究意義】氮素是對(duì)作物生長(zhǎng)發(fā)育及產(chǎn)量品質(zhì)影響最大的必需礦質(zhì)營(yíng)養(yǎng)元素。近年來(lái),盲目增施氮肥追求高產(chǎn)導(dǎo)致農(nóng)田氮肥投入量過(guò)高而氮肥利用率偏低,不僅浪費(fèi)了肥料資源,還帶來(lái)了一系列環(huán)境問(wèn)題(時(shí)成俏等, 2011;楊小梅等, 2013;周晶等, 2016)。土壤氮循環(huán)與根際微生物密切相關(guān),根際微生物是土壤和植物養(yǎng)分吸收、轉(zhuǎn)運(yùn)的重要紐帶。肥料的施用不僅會(huì)影響土壤養(yǎng)分與作物生長(zhǎng),也會(huì)影響根際土壤微生物的群落結(jié)構(gòu)組成(陳春蘭等,2011;彭衛(wèi)福,2017;李明松,2018;馬鵬等,2020)。明確土壤氮轉(zhuǎn)化相關(guān)微生物菌屬及氮循環(huán)功能基因的強(qiáng)度,對(duì)促進(jìn)土壤氮素轉(zhuǎn)化及提高氮肥利用率均具有重要意義。【前人研究進(jìn)展】近年來(lái),越來(lái)越多的報(bào)道表明長(zhǎng)期施氮肥顯著影響與氮循環(huán)相關(guān)的微生物群落結(jié)構(gòu)。Ai等(2013)、侯海軍等(2014)研究發(fā)現(xiàn),長(zhǎng)期施氮會(huì)影響氨氧化菌和亞硝酸鹽氧化菌的群落結(jié)構(gòu),進(jìn)而影響硝化作用,還會(huì)導(dǎo)致氨氧化菌群豐度的變化;當(dāng)土壤中的氨分子濃度過(guò)高時(shí),在酸性土壤中,氨氧化細(xì)菌的群落組成以Nitrosospira cluster 2為主。Zhao等(2014)研究發(fā)現(xiàn),土壤中NH4+含量的提高會(huì)使Acidimicrobiia、Alphaproteobacteria和Gammaproteobacteria豐度提高,總氮含量的提高有利于Chloroflexi的生長(zhǎng)繁殖。Jorquera(2014)等研究發(fā)現(xiàn),長(zhǎng)期施氮會(huì)影響固氮、硝化(氨氧化和亞硝酸鹽氧化)和反硝化過(guò)程的微生物菌群。周志成等(2015)通過(guò)構(gòu)建氨單加氧酶基因(amoA)克隆文庫(kù),發(fā)現(xiàn)長(zhǎng)期施用氮肥能顯著降低湖南酸性紅壤中氨氧化古菌的豐度,并且氨氧化古菌在紅壤的硝化作用中占主導(dǎo)作用。Yu等(2016)研究表明,氨氧化細(xì)菌的相對(duì)豐度隨著施氮量的增加而逐漸升高。Zhong等(2016)研究發(fā)現(xiàn),隨著施氮量的增加,氨氧化古細(xì)菌和氨氧化細(xì)菌數(shù)量下降,說(shuō)明施氮量對(duì)氨氧化細(xì)菌群落結(jié)構(gòu)的影響更強(qiáng)。彭衛(wèi)福(2017)研究表明,高肥力土壤能提高土壤微生物活性和生化作用強(qiáng)度,施氮能增強(qiáng)氨氧化細(xì)菌及反硝化細(xì)菌的豐度?!颈狙芯壳腥朦c(diǎn)】氮肥施用過(guò)量是農(nóng)業(yè)生產(chǎn)中的突出問(wèn)題,化肥減量增效仍是施肥調(diào)控措施的首要目標(biāo),以往關(guān)于氮素轉(zhuǎn)化的研究多集中在形態(tài)變化和理化性質(zhì)對(duì)氮素循環(huán)的影響,近年來(lái)雖然有學(xué)者利用微生態(tài)分子生物技術(shù)如(16S rRNA、qPCR定量等技術(shù))對(duì)于氮循環(huán)功能基因進(jìn)行研究(儲(chǔ)成等,2019;李慧等, 2019),但基于功能基因芯片GeoChip技術(shù)研究甜玉米土壤氮循環(huán)功能基因亞類功能的報(bào)道甚少。【擬解決的關(guān)鍵問(wèn)題】本研究采用大田區(qū)組試驗(yàn),利用16S rRNA高通量測(cè)序與功能基因芯片(GeoChip 5.0)技術(shù),研究氮肥用量?jī)?yōu)化對(duì)甜玉米氮肥利用率及根際土壤氮循環(huán)微生物功能基因的影響,揭示甜玉米根際土壤細(xì)菌對(duì)不同氮肥用量水平的響應(yīng)特征,探討氮循環(huán)亞類功能基因在細(xì)菌優(yōu)勢(shì)屬中的分布以及驅(qū)動(dòng)甜玉米根際土壤氮循環(huán)的強(qiáng)度,以期為農(nóng)業(yè)生產(chǎn)中氮肥減施及高效利用提供參考。
1 材料與方法
1. 1 試驗(yàn)材料及試驗(yàn)地概況
供試甜玉米(Zea mays L.)品種為粵甜28號(hào),由廣東省農(nóng)業(yè)科學(xué)院作物研究所提供。
定位試驗(yàn)于2018年春季開(kāi)始在廣東省惠州市惠陽(yáng)區(qū)農(nóng)業(yè)技術(shù)推廣中心試驗(yàn)基地(東經(jīng)113°20′,北緯23°08′)進(jìn)行,一年春秋兩季栽培。試驗(yàn)區(qū)氣候類型為亞熱帶季風(fēng)氣候,年均降水量800~1500 mm,年均氣溫13~22 ℃;土壤類型為赤紅壤,土壤理化性質(zhì):有機(jī)質(zhì)21.89 g/kg、pH 5.1、堿解氮191.5 mg/kg、有效磷59.1 mg/kg、速效鉀224.1 mg/kg。
1. 2 試驗(yàn)方法
廣東省甜玉米氮肥用量調(diào)研數(shù)據(jù)顯示,甜玉米常規(guī)施氮水平為420 kg/ha。通過(guò)測(cè)土配方和前期7個(gè)不同氮肥用量?jī)?yōu)化篩選試驗(yàn),本研究在磷、鉀肥用量?jī)?yōu)化一致的基礎(chǔ)上,設(shè)3個(gè)施氮水平:(1)對(duì)照,不施氮肥;(2)常規(guī)施氮水平,氮用量420 kg/ha;(3)優(yōu)化施氮水平,氮用量330 kg/ha。每處理3次重復(fù),隨機(jī)區(qū)組排列,共9個(gè)小區(qū),小區(qū)面積為67.5 m2(4.5 m×15.0 m)。各處理磷肥用量150 kg/ha(以P2O5計(jì)),鉀肥用量225 kg/ha(以K2O計(jì))。氮、磷、鉀肥品種分別為尿素(N 46%)、過(guò)磷酸鈣(P2O5 12%)和硫酸鉀(K2O 50%)。氮肥基施20%,苗期(10月10日)和拔節(jié)期(10月28日)分別追施30%和50%,磷肥作為基肥一次性施入土壤,鉀肥在基肥和拔節(jié)期各施入50%。甜玉米實(shí)行起壟種植,種植密度為45000 株/ha。其他田間管理同當(dāng)?shù)爻R?guī)大田。試驗(yàn)于2019年9月18日移苗,12月10日收獲。
1. 3 植株樣品采集及測(cè)定
收獲期選取各處理中10株長(zhǎng)勢(shì)一致的植株整棵挖出,植株地上部分稱重、殺青(105 ℃下殺青30 min)、烘干(75 ℃烘干至恒重)、稱重和粉碎后測(cè)定地上部分全氮含量。甜玉米鮮苞產(chǎn)量采用全小區(qū)實(shí)收測(cè)產(chǎn),并折算為公頃產(chǎn)量。植株樣品經(jīng)H2SO4—H2O2消煮堿化后,采用凱氏定氮法測(cè)定植株全氮含量;甜玉米可溶性糖含量采用蒽酮法測(cè)定(魯如坤, 1999)。參照黃巧義等(2017)的方法計(jì)算以下參數(shù):
地上部分吸氮量(kg/ha)=地上部分生物量×地上部分含氮量
氮肥偏生產(chǎn)力(kg/kg)=施氮區(qū)鮮苞產(chǎn)量/施氮量氮肥吸收利用率(%)=(施氮區(qū)地上部分吸氮量?對(duì)照區(qū)地上部分吸氮量)×100/施氮量
1. 4 土壤樣品采集及16S rRNA高通量測(cè)序
供試土壤樣品采集于2019年秋季甜玉米成熟期(12月10日),采用抖根法(Inderjit,1997)獲取甜玉米根際土壤放入無(wú)菌密封袋密封后用冰盒帶回實(shí)驗(yàn)室于-80 ℃保存,用于16S rRNA高通量測(cè)序及基因芯片檢測(cè)。
采用土壤DNA提取試劑盒(MinkaGene Soil DNA Kit)對(duì)土壤樣品進(jìn)行總DNA提取,利用NanoDrop One檢測(cè)DNA的完整性、純度和濃度。使用帶barcode的特異引物F515(5'-GTGCCAGCMGCCGC GGTAA-3')和R806(5'-GGACTACHVGGGTWTCTAAT-3')對(duì)細(xì)菌V4區(qū)域進(jìn)行PCR擴(kuò)增(Zhang et al.,2017)。PCR反應(yīng)體系50 μL:2×PCR Mix 25 μL,20 ng/μL DNA模板3 μL,10 mmol/L正、反向引物各1 μL,ddH2O 20 μL。擴(kuò)增程序:94 ℃ 5 min;94 ℃ 30 s,52 ℃ 30 s,72 ℃ 30 s,進(jìn)行30個(gè)循環(huán);72 ℃ 10 min,最后4 ℃保存。將擴(kuò)增產(chǎn)物用瓊脂糖凝膠回收、純化洗脫并用瓊脂糖凝膠電泳檢測(cè)DNA的純度和濃度,長(zhǎng)度在正常范圍(16S V4:290~310 bp)內(nèi)。
建庫(kù)及測(cè)序:按照NEBNext? UltraTM DNA Library Prep Kit for Illumina?(New England Biolabs, USA)標(biāo)準(zhǔn)操作流程進(jìn)行建庫(kù),并委托廣東美格基因科技有限公司應(yīng)用Illumina HiSeq 2500 平臺(tái)對(duì)構(gòu)建的擴(kuò)增子文庫(kù)進(jìn)行上機(jī)測(cè)序。
1. 5 根際土壤微生物功能基因芯片分析
采用Cy3染料和DNA聚合酶I對(duì)純化后的DNA進(jìn)行標(biāo)記,采用QIAquiT1 PCR Purification Kit純化標(biāo)記的DNA,置于Labconco Centrivap濃縮器中50 ℃干燥45 min,DNA稀釋至相同濃度后在95 ℃下孵育5 min,并在42 ℃下進(jìn)行雜交16 h,將標(biāo)記的DNA置于陣列上,然后在雜交站(BioMicro Systems, Inc.,Salt Lake City,UT)將陣列預(yù)熱至42 ℃(5 min),最后用NimbleGen MS200掃描儀進(jìn)行預(yù)處理和信號(hào)強(qiáng)度的標(biāo)準(zhǔn)化。
1. 6 統(tǒng)計(jì)分析
采用Excel 2010和SPSS 20.0進(jìn)行統(tǒng)計(jì)分析,采用GraphPad Prism 8制圖,處理間的差異顯著性采用單因素方差分析進(jìn)行LSD檢驗(yàn)(P<0.05)。
2 結(jié)果與分析
2. 1 不同氮肥用量對(duì)甜玉米產(chǎn)量、可溶性糖含量和氮效率的影響
由表1可知,與對(duì)照相比,常規(guī)施氮水平和優(yōu)化施氮水平均能提高甜玉米鮮苞產(chǎn)量、可溶性糖含量及地上部分吸氮量,其中甜玉米鮮苞產(chǎn)量分別較對(duì)照顯著提高132.0%和123.7%(P<0.05,下同),但優(yōu)化施氮水平與常規(guī)施氮水平間鮮苞產(chǎn)量無(wú)顯著差異(P>0.05,下同)。優(yōu)化施氮水平的氮肥吸收利用率和偏生產(chǎn)力分別較常規(guī)施氮水平提高8.5%(絕對(duì)值)和7.7 kg/kg。
2. 2 不同氮肥用量對(duì)細(xì)菌群落結(jié)構(gòu)的影響
3個(gè)處理9個(gè)土壤樣品的16S rRNA高通量測(cè)序共檢測(cè)到144736個(gè)OTUs,分屬于46門(mén)106綱213目289科404屬。本研究測(cè)序深度達(dá)到80%時(shí),已基本覆蓋土壤樣品的絕大部分物種,繼續(xù)增加測(cè)序深度未發(fā)現(xiàn)更多新物種,說(shuō)明測(cè)序結(jié)果可靠。前25個(gè)細(xì)菌屬水平群落結(jié)構(gòu)組成分析結(jié)果如圖1所示,細(xì)菌群落菌屬豐度總體上表現(xiàn)為優(yōu)化施氮水平>常規(guī)施氮水平>對(duì)照。ADurb.Bin063-1、Geobacter、Rhodanobacter、Mucilaginibacter、Pajaroellobacter、Bradyrhizobium、Bacillus和Conexibacter的相對(duì)豐度表現(xiàn)為優(yōu)化施氮水平顯著高于常規(guī)施氮水平;Candidatus_Nitrosotales的相對(duì)豐度表現(xiàn)為對(duì)照>常規(guī)施氮水平>優(yōu)化施氮水平;常規(guī)施氮水平的Candidatus_Nitrosotales和Candidatus_Nitrocosmicus菌屬相對(duì)豐度分別比優(yōu)化施氮水平高0.6%和0.1%。Bryobacter和Gemma-timonas菌屬的豐度在優(yōu)化施氮水平和常規(guī)施氮水平上無(wú)顯著差異。但優(yōu)化施氮水平Bryobacter的相對(duì)豐度低于常規(guī)施氮水平。
2. 3 氮循環(huán)關(guān)鍵功能基因
采用GeoChip 5.0技術(shù)在9個(gè)土壤樣品中共發(fā)現(xiàn)2752個(gè)氮循環(huán)基因,分屬于8個(gè)亞類功能,分別具有固氮、氨化、硝化、反硝化、同化氮還原、氮同化、異化氮還原和氨氧化等作用。除氨氧化作用表現(xiàn)為常規(guī)施氮水平高于優(yōu)化施氮水平外,其他7個(gè)氮循環(huán)亞類功能強(qiáng)度均表現(xiàn)為優(yōu)化施氮水平高于常規(guī)施氮水平。優(yōu)化施氮水平的固氮和異化氮還原作用與常規(guī)施氮水平差異不顯著;氨化、硝化、同化氮還原和氮同化作用均表現(xiàn)為優(yōu)化施氮水平顯著高于常規(guī)施氮水平;反硝化作用相對(duì)強(qiáng)度表現(xiàn)為優(yōu)化施氮水平>對(duì)照>常規(guī)施氮水平,但各處理間差異不顯著。
2. 4 亞類氮循環(huán)功能基因在細(xì)菌優(yōu)勢(shì)屬中的分布及相關(guān)性
8個(gè)氮循環(huán)亞類功能在前25個(gè)細(xì)菌菌屬中的分布情況如表2所示,其中Geobacter和Bradyrhizobium具有固氮作用基因;Haliangium、Gemmatimonas、Mucilaginibacter、Bacillus和Bradyrhizobium具有氨化作用基因;Rhodanobacter、Gemmatimonas、Baci-llus和Bradyrhizobium具有反硝化作用基因;Sphingomonas和Bradyrhizobium具有同化氮還原作用基因,Anaerolinea、Geobacter、Bacillus和Bradyrhizobium具有異化氮還原作用基因。通過(guò)對(duì)細(xì)菌優(yōu)勢(shì)屬與亞類氮循環(huán)功能基因的相關(guān)性進(jìn)一步分析,結(jié)果(表3)表明,與氨化作用顯著相關(guān)的細(xì)菌菌屬為Mucilaginibacter和Bradyrhizobium。
結(jié)合細(xì)菌群落特征進(jìn)一步分析表明,與氮循環(huán)密切相關(guān)的細(xì)菌菌屬Geobacter、Bradyrhizobium、Mucilaginibacter、Bacillus和Rhodanobacter的相對(duì)豐度表現(xiàn)為優(yōu)化施氮水平顯著大于常規(guī)施氮水平;Sphingomonas的相對(duì)豐度表現(xiàn)為常規(guī)施氮水平>對(duì)照>優(yōu)化施氮水平;Haliangium和Gemmatimonas 2個(gè)菌屬的相對(duì)豐度在優(yōu)化施氮水平和常規(guī)施氮水平間無(wú)顯著差異。由此表明,優(yōu)化施氮促進(jìn)了氮循環(huán)的固氮、氨化、反硝化和異化氮還原作用,常規(guī)施氮水平促進(jìn)了同化氮還原作用。
3 討論
3. 1 不同氮肥用量對(duì)甜玉米產(chǎn)量、可溶性糖含量和氮效率的影響
施氮量是影響甜玉米物質(zhì)累積及產(chǎn)量形成的主導(dǎo)因素。陳建生等(2010)認(rèn)為甜玉米的最佳經(jīng)濟(jì)施氮量一般在370 kg/ha左右;程杏安等(2011)研究指出,甜玉米氮肥用量為300 kg/ha時(shí)既能保證葉面積和穗長(zhǎng)等產(chǎn)量性狀得到有效提高,也不會(huì)導(dǎo)致氮肥過(guò)量引起氮營(yíng)養(yǎng)過(guò)剩;趙福成等(2013)研究顯示,揚(yáng)甜2號(hào)和超甜135甜玉米的鮮穗產(chǎn)量隨施氮量的增加先升高后降低,以施氮量為225 kg/ha時(shí)產(chǎn)量最高。合理的氮肥用量不僅能提高甜玉米鮮苞產(chǎn)量,還能提高甜玉米的可溶性糖含量,但過(guò)量施氮可能影響到正在發(fā)育籽粒的碳氮代謝,不利于產(chǎn)量形成和氮肥吸收利用率的提高(Osaki et al.,1995)。本研究中,優(yōu)化施氮水平的可溶性糖含量、氮肥吸收利用率和偏生產(chǎn)力均高于常規(guī)施氮水平,且鮮苞產(chǎn)量與常規(guī)施氮水平無(wú)顯著差異,說(shuō)明優(yōu)化施氮水平在減氮90 kg/ha的基礎(chǔ)上,既能滿足甜玉米優(yōu)質(zhì)高產(chǎn),又能提高氮肥吸收利用率,可作為推薦氮肥減施方案推廣應(yīng)用。
3. 2 氮優(yōu)化對(duì)甜玉米細(xì)菌群落結(jié)構(gòu)的影響
土壤微生物參與土壤中多種物質(zhì)的循環(huán),對(duì)土壤氮循環(huán)起著重要作用。施用肥料在影響作物生長(zhǎng)的同時(shí),還能影響土壤微生物群落結(jié)構(gòu)組成(張晶等,2009)。近年越來(lái)越多的報(bào)道表明,長(zhǎng)期施氮肥顯著影響與氮循環(huán)相關(guān)的微生物群落結(jié)構(gòu)。Jorquera(2014)等發(fā)現(xiàn)長(zhǎng)期施氮影響包括固氮、硝化(氨氧化和亞硝酸鹽氧化)和反硝化過(guò)程的微生物菌群。Yu等(2016)、Zhong等(2016)等得出氨氧化細(xì)菌的相對(duì)豐度隨著施氮量的增加而逐漸升高。彭衛(wèi)福(2017)研究表明,高肥力土壤能提高土壤微生物活性和生化作用強(qiáng)度,施氮能增強(qiáng)氨氧化細(xì)菌的豐度。Brussaard等(2007)、李明松(2018)研究表明,過(guò)量施氮會(huì)造成土壤酸化,不利于細(xì)菌群落的生長(zhǎng)。本研究結(jié)果表明,氨氧化細(xì)菌Bryobacter的相對(duì)豐度表現(xiàn)為常規(guī)施氮水平高于優(yōu)化施氮水平,與前人研究結(jié)果一致。周麗等(2017)的研究表明氮肥減量能增強(qiáng)土壤硝化作用,與本研究結(jié)果一致,優(yōu)化施氮水平中硝化作用細(xì)菌Candidatus_Nitrocosmicus相對(duì)豐度低于常規(guī)施氮水平。硝化作用作為氮循環(huán)的關(guān)鍵過(guò)程,在氮循環(huán)中發(fā)揮重要作用,為反硝化作用提供一定的底物,因此在優(yōu)化施肥處理中可能通過(guò)影響硝化作用進(jìn)一步影響反硝化作用。
不同施氮水平可導(dǎo)致土壤中的優(yōu)勢(shì)固氮菌群落結(jié)構(gòu)不同(陳春蘭等,2011)。本研究發(fā)現(xiàn),優(yōu)化施氮水平的固氮菌屬Rhodanobacter和Bradyrhizobium的相對(duì)豐度顯著高于常規(guī)施氮水平。Coelho等(2008)研究表明,生物固氮過(guò)程需要消耗大量能量,在很大程度上依賴土壤中的有機(jī)碳含量,氮肥能顯著提高土壤有機(jī)碳,從而提高固氮菌屬的豐度。而周晶(2017)研究表明,固氮微生物的數(shù)量和種類與施入土壤的外源氮素密切相關(guān),但施氮量過(guò)高也會(huì)抑制固氮微生物的生長(zhǎng)。因此,適量施氮有助于協(xié)調(diào)氮循環(huán)各環(huán)節(jié)的菌屬豐度,從而形成良好的土壤氮循環(huán),促進(jìn)氮高效利用。
3. 3 氮優(yōu)化對(duì)甜玉米根際土壤氮循環(huán)微生物功能基因的影響
微生物功能基因芯片主要獲取大量微生物群落參與生物化學(xué)過(guò)程的可靠性,尤其是微生物功能基因。本研究中3個(gè)處理共檢測(cè)出8個(gè)氮循環(huán)亞類功能,其中氨氧化作用表現(xiàn)為常規(guī)施氮水平高于優(yōu)化施氮水平。與此對(duì)應(yīng)的氨氧化細(xì)菌也有同樣的變化趨勢(shì),與Yu等(2016)、彭衛(wèi)福(2017)研究得出的施氮能增強(qiáng)氨氧化細(xì)菌豐度的結(jié)果一致。固氮作用表現(xiàn)為優(yōu)化施氮水平高于常規(guī)施氮水平,也與優(yōu)化施氮水平中固氮菌屬相對(duì)豐度高于常規(guī)施氮水平相一致。周晶(2017)關(guān)于長(zhǎng)期施氮對(duì)東北黑土微生物及主要氮循環(huán)菌群影響的研究中也得出了相同結(jié)論,即合理施氮能在一定程度上增加固氮菌屬的豐度,從而增加菌屬固氮作用,施氮量過(guò)高會(huì)降低固氮基因的豐度。如Bradyrhizobium和Geobacter 2個(gè)固氮菌屬的相對(duì)豐度表現(xiàn)為對(duì)照<優(yōu)化施氮水平>常規(guī)施氮水平。因此,施氮量能通過(guò)影響微生物群落結(jié)構(gòu)及菌屬豐度來(lái)調(diào)節(jié)氮循環(huán)亞類功能。通過(guò)氮循環(huán)亞類功能在細(xì)菌優(yōu)勢(shì)菌屬的分布和相關(guān)分析,得出氮循環(huán)亞類功能中的固氮、氨氧化、反硝化、同化氮還原和異化氮還原作用在前25個(gè)菌屬中有9個(gè)細(xì)菌菌屬分布,并且與氨化作用顯著相關(guān)的細(xì)菌菌屬有Mucilaginibacter和Bradyrhizobium。張晶等(2009)報(bào)道指出,Candidatus_Nitrocosmicus、Bryobacter和Pseudolabrys具有氮循環(huán)亞類功能。但本研究中氮循環(huán)亞類功能在這些細(xì)菌菌屬中并未體現(xiàn)分布,這主要是由于在基因芯片中功能基因?qū)?yīng)的物種是以該基因最早發(fā)現(xiàn)的物種信息命名。
4 結(jié)論
氮肥用量?jī)?yōu)化有助于調(diào)控參與氮循環(huán)關(guān)鍵環(huán)節(jié)的細(xì)菌菌屬豐度,促進(jìn)氮循環(huán)微生物功能基因的固氮作用和氨化作用,提高土壤氮肥吸收利用率和甜玉米可溶性糖含量,且甜玉米鮮苞產(chǎn)量與常規(guī)施氮水平相當(dāng),在氮肥減量增效的同時(shí)達(dá)到甜玉米穩(wěn)產(chǎn)提質(zhì)的效果,可作為推薦施肥方式進(jìn)行推廣應(yīng)用。
參考文獻(xiàn):
陳春蘭,吳敏娜,魏文學(xué). 2011. 長(zhǎng)期施用氮肥對(duì)土壤細(xì)菌硝化基因多樣性及組成的影響[J]. 環(huán)境科學(xué),32(5):1489-1496. [Chen C L,Wu M N,Wei W X. 2011. Effect of long-term application of nitrogen fertilizer on the diversity of nitrifying genes(amoA and hao) in paddy soil[J]. Environmental Science,32(5):1489-1496.]
陳建生,徐培智,唐拴虎,張發(fā)寶,解開(kāi)治,黃旭. 2010. 施肥對(duì)甜玉米物質(zhì)形成累積特征影響研究[J]. 植物營(yíng)養(yǎng)與肥料報(bào),16(1):58-64. [Chen J S,Xu P Z,Tang S H,Zhang F B,Xie K Z,Huang X. 2010. Effects of fertilization on cumulating characteristics of dried matter mass of sweet corn[J]. Plant Nutrition and Fertilizer Science,16(1):58-64.]
程杏安,梁秀蘭,胡美英. 2011. 不同施氮量對(duì)秋播超甜玉米產(chǎn)量性狀的影響[J]. 中國(guó)農(nóng)學(xué)通報(bào),27(9):291-294. [Cheng X A,Liang X L,Hu M Y. 2011. Effect of diffe-rent nitrogen application levels on yield traits of fall super-sweet maize[J]. Chinese Agricultural Science Bulletin,27(9):291-294.]
儲(chǔ)成,吳趙越,黃欠如,韓成,鐘文輝. 2019. 有機(jī)質(zhì)提升對(duì)酸性紅壤氮循環(huán)功能基因及功能微生物的影響[J]. 環(huán)境科學(xué),41(5):2468-2475. [Chu C,Wu Z Y,Huang Q R,Han C,Zhong W H. 2019. Effect of organic matter promotion on nitrogen-cycling genes and functional microorganisms in acidic red soils[J]. Environmental Science,41(5):2468-2475.]
侯海軍,秦紅靈,陳春蘭,魏文學(xué). 2014. 土壤氮循環(huán)微生物過(guò)程的分子生態(tài)學(xué)研究進(jìn)展[J]. 農(nóng)業(yè)現(xiàn)代化研究,35(3):588-592. [Hou H J,Qin H L,Chen C L,Wei W X. 2014. Research progress of the molecular ecology on microbiological processes in soil nitrogen cycling[J]. Research of Agricultural Modernization,35(3):588-592.]
黃巧義,唐拴虎,張發(fā)寶,張木,黃旭,逢玉萬(wàn),李蘋(píng),付弘婷. 2017. 控釋尿素與常規(guī)尿素配施比例對(duì)甜玉米產(chǎn)量和氮肥利用的影響[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào),23(3):622-631. [Huang Q Y,Tang S H,Zhang F B,Zhang M,Huang X,F(xiàn)eng Y W,Li P,F(xiàn)u H T. 2017. Effect of the blending ratio of controlled-release urea and conventional urea on yield and nitrogen utilization efficiency of sweet corn[J]. Plant Nutrition and Fertilizer Science,23(3):622-631.]
李慧,查建軍,孫慶業(yè). 2019. 酸性礦業(yè)廢水對(duì)土壤剖面中氮代謝功能基因豐度的影響[J]. 生物技術(shù)通報(bào),35(9):249-256. [Li H,Zha J J,Sun Q Y. 2019. Effects of acid mine drainage on the abundance of functional genes involved in nitrogen cycle in soil profiles[J]. Biotechnology Bulletin,35(9):249-256.]
李明松. 2018. 不同施氮水平下玉米根際微生物種群結(jié)構(gòu)的變化[D]. 長(zhǎng)春:吉林農(nóng)業(yè)大學(xué). [Li M S. 2018. Changes of microbial population structure in corn rhizosphere under different nitrogen application levels[D]. Changchun:Jilin Agricultural University.]
魯如坤. 1999. 土壤農(nóng)業(yè)化學(xué)分析方法[M]. 北京:中國(guó)農(nóng)業(yè)科技出版社. [Lu R K. 1999. Soil and agricultural chemi-stry analysis[M]. Beijing:China Agricultural Science and Technology Press.]
馬鵬,張宇杰,林鄲,呂旭,伍雜日曲,舒川海,楊志遠(yuǎn),孫永健,馬均. 2020. 油—稻輪作下前茬氮肥投入與稻季氮肥運(yùn) 籌對(duì)稻田土壤養(yǎng)分、碳庫(kù)及作物產(chǎn)量的影響[J]. 江蘇農(nóng)業(yè)學(xué)報(bào),36(4):896-904. [Ma P,Zhang Y J,Lin D,Lü X,Wuza R Q,Shu C H,Yang Z Y,Sun Y J,Ma J. 2020. Effects of nitrogen fertilizer input and rice season nitrogen fertilizer application on soil nutrients,carbon pool and yield in rape-rice rotation[J]. Jiangsu Journal of Agricultural Sciences,36(4):896-904.]
彭衛(wèi)福. 2017. 土壤肥力對(duì)水稻氮素利用效率和氮循環(huán)相關(guān)微生物的影響[D]. 南昌:江西農(nóng)業(yè)大學(xué). [Peng W F. 2017. Effects of soil fertility on nitrogen use efficiency of rice and nitrogen-cycling microorganisms[D]. Nanchang:Jiangxi Agricultural University.]
時(shí)成俏,王兵偉,黃安霞,覃永媛,覃嘉明. 2011. 不同種植密度、施氮量及栽培方式對(duì)玉米品種桂糯518產(chǎn)質(zhì)量的影響[J]. 南方農(nóng)業(yè)學(xué)報(bào),42(5):496-499. [Shi C Q,Wang B W,Huang A X,Qin Y A,Qin J M. 2011. Effects of different planting densities,nitrogen application rates and planting methods on yield and quality of maize variety Guinuo 518[J]. Journal of Southern Agriculture,42(5):496-499.]
楊小梅,劉樹(shù)偉,秦艷梅,陳楠楠,鄒建文. 2013. 中國(guó)玉米化學(xué)氮肥利用率的時(shí)空變異特征[J]. 中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào),21(10):1184-1192. [Yang X M,Liu S W,Qin Y M,Chen N N,Zou J W. 2013. Spatiotemporal distribution characteristics of synthetic nitrogen fertilizer use efficiency in maize fields in China[J]. Chinese Journal of Eco-Agriculture,21(10):1184-1192.]
張晶,林先貴,尹睿. 2009. 參與土壤氮素循環(huán)的微生物功能基因多樣性研究進(jìn)展[J]. 中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào),17(5):1029-1034. [Zhang J,Lin X G,Yin R. 2009. Advances in functional gene diversity of microorganism in relation to soil nitrogen cycling[J]. Chinese Journal of Eco-Agriculture,17(5):1029-1034.]
趙福成,景立權(quán),閆發(fā)寶,陸大雷,王桂躍,陸衛(wèi)平. 2013. 施氮量對(duì)甜玉米產(chǎn)量、品質(zhì)和蔗糖代謝酶活性的影響[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào),19(1):45-53. [Zhao F C,Jing L Q,Yan F B,Lu D L,Wang G Y,Lu W P. 2013. Effects of nitrogen fertilization on yield,quality and enzyme activity associated with sucrose metabolism of sweet corn[J]. Plant Nutrition and Fertilizer Science,19(1):45-53.]
周晶,姜昕,馬鳴超,趙百鎖,李俊. 2016. 長(zhǎng)期施氮對(duì)土壤肥力及土壤微生物的影響[J]. 中國(guó)土壤與肥料,(6):8-13. [Zhou J,Jiang X,Ma M C,Zhao B S,Li J. 2016. Effects of long-term nitrogen fertilization on soil fertility and microorganism:A review[J]. Soil and Fertilizer Science in China,(6):8-13.]
周晶. 2017. 長(zhǎng)期施氮對(duì)東北黑土微生物及主要氮循環(huán)菌群的影響[D]. 北京:中國(guó)農(nóng)業(yè)大學(xué). [Zhou J. 2017. Influen-ce of long term nitrogen fertilization on microorganisms and major N-cycling related communities in black soil in northeast China[D]. Beijing:China Agricultural University.]
周麗,付智丹,杜青,陳平,楊文鈺,雍太文. 2017. 減量施氮對(duì)玉米/大豆套作系統(tǒng)中作物氮素吸收及土壤氨氧化與反硝化細(xì)菌多樣性的影響[J]. 中國(guó)農(nóng)業(yè)科學(xué),50(6):1076-1087. [Zhou L,F(xiàn)u Z D,Du Q,Chen P,Yang W Y,Yong T W. 2017. Effects of reduced N fertilization on crop N uptake,soil ammonia oxidation and denitrification bacteria diversity in maize/soybean relay strip intercropping system[J]. Scientia Agricultura Sinica,50(6):1076-1087.]
周志成,羅葵,唐前君,榮湘民,劉強(qiáng),何飛飛. 2015. 不同施肥方式對(duì)紅壤蔬菜田氨氧化細(xì)菌和氨氧化古菌群落的影響[J]. 中國(guó)蔬菜,(7):33-39. [Zhou Z C,Luo K,Tang Q J,Rong X M,Liu Q,He F F. 2015. Effect of different fertilization on ammonia-oxidizing bacteria and ammonia-oxidizing archaea in red soil vegetable field[J]. China Vegetables,(7):33-39.]
Ai C,Liang G Q,Sun J W,Wang X B,He P,Zhou W. 2013. Different roles of rhizosphere effect and long-term ferti-lization in the activity and communitystructure of ammonia oxidizers in a calcareousuvo-aquic soil[J]. Soil Biology and Biochemistry,57:30-42.
Brussaard L,de Ruiter P C,Brown G G. 2007. Soil biodiversity for agricultural sustainability[J]. Agriculture,Ecosystems and Environment,121(3):233-244.
Coelho M R R,de Vos M,Carneiro N P,Marriel I E,Paiva E,Selain L. 2008. Diversity of nifH gene pools in the rhizosphere of two cultivars of sorghum(Sorghum bicolor)treated with contrasting levels of nitrogen fertilizer[J]. FEMS Microbiology Letters,279(1):15-22.
Yu H L,Gao Q,Shao Z Q,Yang A N,Sun Y Y,Liu J W,Mao W,Zhang B. 2016. Decreasing nitrogen fertilizer input had little effect on microbial communities in three types of soils[J]. PLoS One,11(3):e0151622.
Inderjit A U M. 1997. Effect of phenolic compounds on selected soil properties[J]. Forest Ecology Management,92(1-3):11-18.
Jorquera M A,Martinez O A,Marileo L G,Acuna J J,Saggar S,Mora M L. 2014. Effect of nitrogen and phosphorus fertilization on the composition of rhizobacterial communities of two chilean andisol pastures[J]. World Journal of Microbiology and Biotechnology,30:99-107.
Osaki M,Iyoda M,Tadano T. 1995. Ontogenetic changes in the contents of ribulose-1,5-bisphosphate carboxylase/oxygenase,phospho enol pyruvate carboxylase,and chlorophyll in individual leaves of maize[J]. Soil Science and Plant Nutrition,41(2):285-293.
Zhang Y G,Liu X,Cong J,Lu H,Sheng Y Y,Wang X L,Li D Q,Liu X D,Yin H Q,Zhou J Z,Deng Y. 2017. The microbially-mediated soil organic carbon loss under degenerative succession in an alpine meadow[J]. Molecular Ecology,26(14):3676-3686.
Zhao J,Ni T,Li Y,Xiong W,Ran W,Shen B,Shen Q R,Zhang R F. 2014. Responses of bacterial communities in arable soils in a rice-wheat cropping system to different fertilizer regimes and sampling times[J]. PLoS One,9(1):e85301.
Zhong W H,Bian B Y,Gao N,Min J,Shi W M,Lin X G,Shen W S. 2016. Nitrogen fertilization induced changes in ammonia oxidation are attributable mostly to bacteria rather than archaea in greenhouse-based high N input vege-table soil[J]. Soil Biology & Biochemistry,93:150-159.
(責(zé)任編輯 王 暉)