国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

基于高光譜遙感數(shù)據(jù)的水稻葉溫反演

2020-03-20 03:44梁金晨江曉東楊沈斌孫浩梁文毅妙丹書(shū)
關(guān)鍵詞:植被指數(shù)水稻

梁金晨 江曉東 楊沈斌 孫浩 梁文毅 妙丹書(shū)

摘要:【目的】研究水稻葉溫與冠層反射光譜間的關(guān)系,為水稻葉溫的模擬與監(jiān)測(cè)提供理論依據(jù)?!痉椒ā坷肍ieldSpec Pro FR光譜儀和Raynger ST紅外溫度探測(cè)儀測(cè)量水稻抽穗期冠層的反射光譜和葉片溫度,分析原始反射光譜、一階微分光譜、歸一化植被指數(shù)(NDVI)、比值植被指數(shù)(DVI)、再歸一化差值植被指數(shù)(RDVI)和轉(zhuǎn)換型土壤調(diào)整指數(shù)(TSAVI)與葉溫的關(guān)系?!窘Y(jié)果】葉溫的變化直接影響水稻冠層光譜的反射率,影響水稻紅邊特征。一階微分光譜與葉溫存在極顯著相關(guān)性(P<0.01,下同),990 nm處相關(guān)系數(shù)(0.889)最高,885 nm處相關(guān)系數(shù)(-0.893)最低。選取葉溫敏感波段光譜組合計(jì)算植被指數(shù),發(fā)現(xiàn)RDVI和TSAVI與葉溫的關(guān)系呈極顯著相關(guān),相關(guān)系數(shù)分別為0.724和0.733。由RDVI和TSAVI建立經(jīng)驗(yàn)?zāi)P?,結(jié)果顯示由TSAVI建立的葉溫估算模型效果更好,其驗(yàn)證樣本的決定系數(shù)為0.610,相對(duì)誤差為1.97%,均方根誤差為2.546?!窘ㄗh】綜合考慮多種預(yù)處理方法,最大程度還原光譜信息;優(yōu)化特征波長(zhǎng)的提取,提高建立模型的精度;基于高光譜技術(shù),實(shí)現(xiàn)冠層葉溫的無(wú)損監(jiān)測(cè)。

關(guān)鍵詞: 水稻;葉溫;高光譜遙感;植被指數(shù);模型反演

中圖分類號(hào): S127? ? ? ? ? ? ? ? ? ? ? ? ? 文獻(xiàn)標(biāo)志碼: A 文章編號(hào):2095-1191(2020)01-0230-07

Abstract:【Objective】The canopy reflectance spectra of rice at different leaf temperatures were measured to study the relationship between leaf temperature and canopy reflectance spectra, which provided a theoretical basis for the simulation and monitoring of rice leaf temperature. 【Method】The reflectance spectra and leaf temperature of canopy in rice heading stage were measured by FieldSpec Pro FR spectrometer and Raynger ST infrared temperature detector. Original reflection spectrum, first-order differential spectrum, normalized vegetation index(NDVI), difference vegetation index(DVI), renormalized difference vegetation index(RDVI), and converted soil adjustment index(TSAVI) and leaf tempe-rature relationship were analyzed. 【Result】The change of leaf temperature directly affected the reflectance of rice canopy spectrum and affected the red edge characteristics of rice. There was highly significant correlation between the first-order differential spectroscopy and leaf temperature(P<0.01,the same below). The correlation coefficient at 990 nm was the highest(0.889), and the correlation coefficient at 885 nm was the lowest (-0.893). Vegetation index were calculated by spectral combination of leaf temperature sensitive bands. The relationship between RDVI and TSAVI and leaf temperature was highly significantly correlated, and the correlation coefficients were 0.724 and 0.733, respectively. The empirical model was established by RDVI and TSAVI. The results showed that the model established by TSAVI had better effects. Its determinant coefficient for sample detection was 0.610, relative error was 1.97% and root mean square error was 2.546. 【Suggestion】Comprehensive consideration of multiple pre-processing methods to maximize spectral information; optimize the extraction of characteristic wavelengths and improve the accuracy of model building; and the non-destructive monitoring of the canopy leaf temperature should be realized based on the hyperspectral technique.

1. 2. 4 統(tǒng)計(jì)分析 對(duì)水稻一階導(dǎo)數(shù)光譜、植被指數(shù)與冠層葉溫進(jìn)行相關(guān)分析,并在Matlab R2015b中進(jìn)行葉溫經(jīng)驗(yàn)?zāi)P徒⒑徒徊骝?yàn)證。

2 基于光譜數(shù)據(jù)的水稻葉溫相關(guān)分析及水稻葉溫反演

2. 1 不同水稻葉溫冠層反射光譜及紅邊特征對(duì)比

從反射光譜曲線(圖1)可看出,不同葉溫下水稻冠層光譜的變化趨勢(shì)一致,均具有一般綠色植物“綠峰”“紅谷”及高反射平臺(tái)的反射特征;不同葉溫間冠層反射率在近紅外區(qū)出現(xiàn)明顯差異,28、30、32和34 ℃葉溫的近紅外平臺(tái)反射率平均值分別為0.45、0.51、0.57和0.61,平臺(tái)反射率隨著葉溫的升高而逐漸升高。當(dāng)葉溫逐漸遞增時(shí),近紅外平臺(tái)反射率的增加逐漸減緩,28 ℃到30 ℃增加了0.06,30 ℃到32 ℃增加了0.05,32 ℃到34 ℃增加了0.03。

紅邊是綠色植物最明顯的光譜特征,常通過(guò)紅邊位置、紅邊幅值和紅邊面積來(lái)定量描述植被光譜紅邊特征。紅邊位置是紅光范圍(680~760 nm)內(nèi)反射一階導(dǎo)數(shù)光譜最大值所對(duì)應(yīng)的波長(zhǎng),紅邊幅值是紅光范圍內(nèi)一階導(dǎo)數(shù)光譜的最大值,紅邊面積是紅光范圍的一階導(dǎo)數(shù)光譜曲線所包圍的面積。由圖2可知,水稻紅光波段的一階導(dǎo)數(shù)光譜具有明顯雙峰現(xiàn)象,主峰主要位于730 nm處,次峰主要位于718 nm處,隨著葉溫的升高,雙峰現(xiàn)象更加明顯。28、30、32和34 ℃葉溫的紅邊位置分別為729、735、736和730 nm,隨著葉溫的升高,紅邊位置向長(zhǎng)波方向偏移,即“紅移”,當(dāng)葉溫上升至34 ℃時(shí),紅邊位置向短波方向偏移,表現(xiàn)為“藍(lán)移”;隨著葉溫的升高,紅邊幅值分別為0.913、1.019、1.203和1.214,紅邊面積分別為0.410、0.451、0.520和0.551,均出現(xiàn)“紅移”現(xiàn)象。

2. 2 冠層反射光譜與水稻葉溫變化的相關(guān)性分析

對(duì)水稻葉溫與光譜各波段的相關(guān)系數(shù)(圖3)進(jìn)行分析發(fā)現(xiàn),水稻光譜與平均葉溫相關(guān)性變化曲線的變化趨勢(shì)在350~450 nm持續(xù)下降,450~700 nm為負(fù)相關(guān),700 nm之后相關(guān)性快速升高,760 nm后逐漸穩(wěn)定,780 nm之后的近紅光波段冠層光譜與葉溫的相關(guān)性呈顯著相關(guān)(P<0.05,下同),其中在945 nm處達(dá)相關(guān)系數(shù)最大值,為0.562。從圖3可看出,水稻光譜與葉溫相關(guān)性僅在945和1120 nm兩個(gè)波段附近達(dá)0.05水平的顯著性檢驗(yàn);從水稻葉溫與一階微分光譜各波段的相關(guān)系數(shù)(圖4)可看出,相對(duì)于水稻葉溫與原始反射光譜相關(guān)系數(shù),在350~670 nm及850~1000 nm波段處有更多波長(zhǎng)葉溫與一階反射光譜相關(guān)性達(dá)0.01水平的顯著性檢驗(yàn),其中,在990 nm處相關(guān)系數(shù)最高,為0.889,在885 nm處相關(guān)系數(shù)最低,為-0.893,在650~850 nm波段及1200 nm后原始反射光譜與一階導(dǎo)數(shù)光譜均未達(dá)顯著相關(guān)。對(duì)比圖3和圖4,發(fā)現(xiàn)在近紅光波段處,一階光譜與葉溫的相關(guān)性明顯高于原始光譜與葉溫的相關(guān)性,說(shuō)明對(duì)反射光譜進(jìn)行一階微分處理能較好地降低環(huán)境因素的影響。

2. 3 植被指數(shù)與葉溫的相關(guān)分析

對(duì)表1的植被指數(shù)進(jìn)行計(jì)算,并根據(jù)圖4選取葉溫變化特征波長(zhǎng)進(jìn)行組合(885 nm,990 nm),研究各植被指數(shù)與葉溫變化的關(guān)系。結(jié)果顯示,只有NDVI未達(dá)顯著相關(guān)水平,相關(guān)系數(shù)為0.411,RVI、RDVI、TSAVI與葉溫的相關(guān)性均達(dá)顯著相關(guān)水平,相關(guān)系數(shù)分別為0.639、0.724和0.733,其中RDVI和TSAVI達(dá)極顯著相關(guān)水平(P<0.01,下同),與葉溫的相關(guān)性最佳。

2. 4 基于植被指數(shù)建立葉溫估算模型

2. 4. 1 葉溫估算模型 由上述分析可知,TSAVI和RDVI的相關(guān)性較高,說(shuō)明采用這兩個(gè)植被指數(shù)對(duì)葉溫進(jìn)行模擬具有較好精度。因此基于TSAVI和RDVI指數(shù),選用2017年8月14日的葉溫與冠層光譜數(shù)據(jù)作為建模樣本建立葉溫反演模型(表2),綜合考慮兩個(gè)模型的確定系數(shù)(R?)及RMSE,最佳的模擬結(jié)果應(yīng)是選擇R2相對(duì)較大而RMSE相對(duì)較小。因此,選擇由RDVI建立的方程y=5770.137x2-748.965x+53.615(建模樣本R?=0.544,RMSE=2.443)和TSAVI建立的方程y=0.0007x2+0.0067x+29.8645(建模樣本R?=0.632,RMSE=2.458)進(jìn)行模擬。

2. 4. 2 模型檢驗(yàn) 根據(jù)交叉驗(yàn)證,通過(guò)2017年8月15日測(cè)得的葉溫與冠層光譜數(shù)據(jù)對(duì)反演模型進(jìn)行檢驗(yàn)。由圖5和表3可知,由RDVI建立的方程其模擬值與實(shí)測(cè)值的R2為0.544,達(dá)極顯著相關(guān)水平,RE為1.94%,均方根誤差為2.567;由TSAVI建立的方程其模擬值與實(shí)測(cè)值的R2為0.610,達(dá)到極顯著相關(guān)水平,RE為1.97%,RMSE為2.546。兩種模型模擬結(jié)果的RE和RMSE較為接近,但由TSAVI建立的方程模擬結(jié)果的相關(guān)性更顯著,因此使用TSAVI模擬的葉溫模型能很好地反演葉溫變化。

3 討論

葉溫作為植物的重要生理指標(biāo),其變化與氣孔的開(kāi)閉、葉片水含量、光合活性及酶活性的變化密切相關(guān)(吳冰潔等,2015;周寧等,2017),同時(shí)作物的反射光譜能較好地反映作物基本生理特性,因此,本研究分析了水稻冠層反射光譜與葉溫間的關(guān)系,并根據(jù)光譜數(shù)據(jù)對(duì)葉溫進(jìn)行反演。

水稻為喜溫作物,溫度變化會(huì)直接影響水稻的生長(zhǎng),其在抽穗期最適生長(zhǎng)溫度為28~32 ℃(霍治國(guó)和王石立,2009)。在本研究中,反射光譜近紅外區(qū)的反射率隨著葉溫的升高而升高,與王平榮等(2009)的研究結(jié)果一致。且隨著葉溫的升高,光譜反射率增加的幅度越來(lái)越小,34 ℃時(shí)反射率僅增加0.03;對(duì)比水稻的最適生長(zhǎng)溫度,說(shuō)明過(guò)高的溫度會(huì)抑制葉片光合作用強(qiáng)度,與謝曉金等(2010)的研究結(jié)果一致。同時(shí),紅邊參數(shù)在適宜的溫度范圍內(nèi),隨著葉溫的升高而發(fā)生“紅移”現(xiàn)象,當(dāng)葉溫升高到34 ℃時(shí),超過(guò)水稻的最適生長(zhǎng)溫度,紅邊參數(shù)出現(xiàn)“藍(lán)移”現(xiàn)象,與周峰等(2010)的研究結(jié)論一致。通過(guò)對(duì)原始光譜及紅邊參數(shù)的對(duì)比分析,證明通過(guò)高光譜數(shù)據(jù)研究水稻葉溫的可行性。

關(guān)于葉溫的高光譜反演研究,許改平等(2014)發(fā)現(xiàn)隨著葉溫的升高,葉片反射率逐漸上升。黃春燕等(2014)研究發(fā)現(xiàn)620和850 nm單波長(zhǎng)光譜參數(shù)及RVI、NDVI與冠層葉溫均存在顯著相關(guān)性,其中,NDVI和RVI與冠層葉片溫度的相關(guān)性高于620和850 nm單波長(zhǎng)光譜參數(shù)與冠層葉片溫度的相關(guān)性,說(shuō)明相較于單波長(zhǎng)光譜參數(shù),植被指數(shù)能更好地反映植被溫度信息。本研究通過(guò)對(duì)原始光譜導(dǎo)數(shù)處理篩選光譜對(duì)葉溫的敏感波段,發(fā)現(xiàn)885和990 nm的近紅外波段水稻冠層反射光譜與葉溫的相關(guān)性最顯著,通過(guò)了0.01水平的顯著性檢驗(yàn),與黃春燕等(2014)在850 nm波長(zhǎng)處研究結(jié)果一致,但在620 nm波長(zhǎng)處無(wú)明顯相關(guān)性,主要原因是試驗(yàn)作物、試驗(yàn)儀器和環(huán)境的不同;根據(jù)前人研究選用DVI、NDVI、RDVI和TSAVI等4種光譜指數(shù),其中RDVI由DVI和NDVI組合計(jì)算,綜合了兩者的優(yōu)點(diǎn),更適用于水稻的冠層光譜研究,而基于土壤線的TSAVI能減少土壤背景的影響。結(jié)果顯示,相對(duì)于DVI和NDVI,TSAVI和RDVI對(duì)葉溫的相關(guān)性更好,其中TSAVI的相關(guān)系數(shù)最大;根據(jù)敏感波段計(jì)算植被指數(shù),構(gòu)建葉溫反演模型,對(duì)比由RDVI和TSAVI分別構(gòu)建的模型,發(fā)現(xiàn)由TSAVI構(gòu)建的模型對(duì)葉溫的模擬效果更好。

雖然本研究基于光譜數(shù)據(jù)成功地建立了水稻葉溫反演模型,但仍存在一些缺陷。在對(duì)原始數(shù)據(jù)進(jìn)行預(yù)處理時(shí),只考慮稻田背景的光譜信息對(duì)原始光譜的影響,而忽略了作物葉片表面散射的影響,因此應(yīng)優(yōu)化光譜原始數(shù)據(jù)的預(yù)處理方法,如多元散射校正、聚類算法等,綜合各種預(yù)方法最大程度地還原冠層光譜信息。另外,在提取與葉溫相關(guān)性最顯著的植被指數(shù)時(shí),對(duì)葉溫敏感波段內(nèi)特征波長(zhǎng)的篩選方法過(guò)于簡(jiǎn)單,可結(jié)合標(biāo)準(zhǔn)誤差及相對(duì)誤差等統(tǒng)計(jì)學(xué)參數(shù)優(yōu)化特征波長(zhǎng)的選取,提高模型的精度。

4 建議

4. 1 綜合考慮多種預(yù)處理方法,最大程度還原光譜信息

光譜數(shù)據(jù)的精度會(huì)直接影響模型對(duì)作物生理指標(biāo)的反演精度,而在測(cè)量光譜數(shù)據(jù)時(shí),稻田環(huán)境、葉片本身的表面散射及作物莖稈等均會(huì)直接或間接影響光譜數(shù)據(jù)的準(zhǔn)確性,因此在建立模型之前,對(duì)光譜數(shù)據(jù)進(jìn)行預(yù)處理是必不可少的操作。不同的預(yù)處理方法能降低不同因素對(duì)光譜信息的干擾,其中,微分處理能降低稻田背景光譜信息的影響,多元散射校正能有效消除散射影響,聚類算法能減少作物莖稈、穗粒等對(duì)光譜信息的影響。綜合多種預(yù)處理方法,可還原最準(zhǔn)確的光譜信息。

4. 2 優(yōu)化特征波長(zhǎng)的提取,提高建立模型的精度

特征波長(zhǎng)會(huì)直接影響植被指數(shù)的大小,進(jìn)而改變?nèi)~溫與植被指數(shù)間的相關(guān)性,改變?nèi)~溫的建模方式,影響最終模型的準(zhǔn)確性。首先根據(jù)預(yù)處理結(jié)果,提取葉溫的敏感波段,在對(duì)特征波長(zhǎng)進(jìn)行提取時(shí)可對(duì)葉溫敏感波段內(nèi)的全波長(zhǎng)進(jìn)行組合計(jì)算植被指數(shù),將所有的植被指數(shù)組合情況納入考量,再通過(guò)決定系數(shù)、標(biāo)準(zhǔn)誤差和相對(duì)誤差確定最終的特征波長(zhǎng),提高植被指數(shù)與葉溫的相關(guān)性水平,增加模型精度,優(yōu)化反演結(jié)果。

4. 3 基于高光譜技術(shù),實(shí)現(xiàn)冠層葉溫的無(wú)損監(jiān)測(cè)

高光譜遙感技術(shù)以其光譜分辨率高、光譜信息量大等特點(diǎn)和優(yōu)勢(shì),對(duì)植被的生長(zhǎng)變化具有高度的敏感性,在農(nóng)業(yè)監(jiān)測(cè)方面展現(xiàn)出快速精確的特點(diǎn),成為研究作物生理和生長(zhǎng)的重要手段。通過(guò)高光譜數(shù)據(jù)反演葉溫能減少因直接接觸對(duì)水稻造成的損傷及增大測(cè)量區(qū)域的優(yōu)點(diǎn),避免人為測(cè)量可能出現(xiàn)的誤差,且減少人工測(cè)量的工作量,為水稻葉溫的模擬與監(jiān)測(cè)提供數(shù)據(jù)支持。

參考文獻(xiàn):

陳瑛瑛,王徐藝凌,朱宇涵,武威,劉濤,孫成明. 2018. 水稻穗部氮素含量高光譜估測(cè)研究[J]. 作物雜志,(5): 116-120. [Chen Y Y,Wang X Y L,Zhu Y H,Wu W,Liu T,Sun C M. 2018. Hyperspectral estimation of nitrogen content in rice panicle[J]. Crops,(5): 116-120.]

程高峰,張佳華,李秉柏,李萍萍,楊沈斌,王小寧. 2008. 不同溫度處理下水稻高光譜及紅邊特征分析[J]. 江蘇農(nóng)業(yè)學(xué)報(bào),24(5): 573-580. [Cheng G F,Zhang J H,Li B B,Li P P,Yang S B,Wang X N. 2008. Hyperspectral and red edge characteristics for rice under different temperature stress levels[J]. Journal of Jiangsu Agricultural Scien-ces,24(5): 573-580.]

黃春燕,王登偉,肖莉娟,王雅芳. 2014. 不同水分條件下棉花光譜數(shù)據(jù)對(duì)冠層葉片溫度的響應(yīng)特征[J]. 棉花學(xué)報(bào),26(3): 244-251. [Huang C Y,Wang D W,Xiao L J,Wang Y F. 2014. The responsive characteristics between cotton canopy leaves temperature from infrared thermography and hyperspectral data under different water conditions[J]. Cotton Science,26(3): 244-251.]

霍治國(guó),王石立. 2009. 農(nóng)業(yè)和生物氣象災(zāi)害[M]. 北京: 氣象出版社: 16-25. [Huo Z G,Wang S L. 2009. Agricultural and biological meteorological disasters[M]. Beijing: Meteorological Press: 16-25.]

劉芬,屈成,肖楠,陳光輝,唐文幫,王悅. 2017. 水稻高光譜變化特征與葉綠素含量監(jiān)測(cè)研究[J]. 激光生物學(xué)報(bào),26(4): 326-333. [Liu F,Qu C,Xiao N,Chen G H,Tang W B,Wang Y. 2017. A study on spectral characteristics and chlorophyll content in rice[J]. Acta Laser Biology Sinica,26(4): 326-333.]

劉科,陸鍵,高夢(mèng)濤,盧碧林,魏中偉,馬國(guó)輝,田小海,張運(yùn)波. 2018. 施氮量對(duì)雜交水稻葉片光譜特征、SPAD值和光能攔截率關(guān)系的影響[J]. 核農(nóng)學(xué)報(bào),32(2): 362-369. [Liu K,Lu J,Gao M T,Lu B L,Wei Z W,Ma G H,Tian X H,Zhang Y B. 2018. Effects of different nitrogen treatments on the relationship between flag leaves spectral characteristic and SPAD and IPAR in hybrid rice varieties[J]. Journal of Nuclear Agricultural Sciences,32(2): 362-369.]

劉亞,丁俊強(qiáng),蘇巴錢德,廖登群,趙久然,李建生. 2009. 基于遠(yuǎn)紅外熱成像的葉溫變化與玉米苗期耐旱性的研究[J]. 中國(guó)農(nóng)業(yè)科學(xué),42(6): 2192-2201. [Liu Y,Ding J Q,Subhash Chander,Liao D Q,Zhao J R,Li J S. 2009. Identification of maize drought-tolerance at seedling stage based on leaf temperature using infrared thermography[J]. Scientia Agricultura Sinica,42(6): 2192-2201.]

劉怡晨,馬驛,仝春艷,段博,蔣琦. 2018. 基于偏角光譜檢索算法的油菜和水稻LAI反演研究[J]. 中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào),26(7): 999-1010. [Liu Y C,Ma Y,Tong C Y,Duan B,Jiang Q. 2018. Estimation of leaf area index of rapeseed and rice based on deflection angle and spectral retrieval algorithm[J]. Chinese Journal of Eco-Agriculture,26(7): 999-1010.]

王平榮,張帆濤,高家旭,孫小秋,鄧曉建. 2009. 高等植物葉綠素生物合成的研究進(jìn)展[J]. 西北植物學(xué)報(bào),29(3): 629-636. [Wang P R,Zhang F T,Gao J X,Sun X Q,Deng X J. 2009. An overview of chlorophyll biosynthesis in higher plants[J]. Acta Botanica Boreali-Occidentalia Sinica,29(3): 629-636.]

王仲林,諶俊旭,程亞嬌,范元芳,李凡,趙剛成,楊峰,楊文鈺. 2019. 不同寬窄波段組合的光譜參量對(duì)夏玉米穗位葉氮素含量估測(cè)[J]. 四川農(nóng)業(yè)大學(xué)學(xué)報(bào),37(2): 152-160. [Wang Z L,Chen J X,Cheng Y J,F(xiàn)an Y F,Li F,Zhao G C,Yang F,Yang W Y. 2019. Estimating nitrogen content of maize leaf based on spectral parameters of different wide and narrow band combination[J]. Journal of Sichuan Agricultural University,37(2): 152-160.]

吳冰潔,劉玉軍,姜闖道,石雷. 2015. 葉片生長(zhǎng)進(jìn)程中氣孔發(fā)育對(duì)葉溫調(diào)節(jié)的影響[J]. 植物生理學(xué)報(bào),(1): 119-126. [Wu B J,Liu Y J,Jiang C D,Shi L. 2015. Effects of stomatal development on leaf temperature during leaf expansion[J]. Plant Physiology Communications,(1): 119-126.]

謝曉金,申雙和,李映雪,李秉柏,程高峰,楊沈斌. 2010. 高溫脅迫下水稻紅邊特征及SPAD和LAI的監(jiān)測(cè)[J]. 農(nóng)業(yè)工程學(xué)報(bào),26(3): 183-190. [Xie X J,Shen S H,Li Y X,Li B B,Cheng G F,Yang S B. 2010. Red edge characte-ristics and monitoring SPAD and LAI for rice with high temperature stress[J]. Transactions of the Chinese Society of Agricultural Engineering,26(3): 183-190.]

辛明月,殷紅,陳龍,張美玲,任智勇,苗靜. 2015. 不同生育期水稻葉面積指數(shù)的高光譜遙感估算模型[J]. 中國(guó)農(nóng)業(yè)氣象,36(6): 762-768. [Xin M Y,Yin H,Chen L,Zhang M L,Ren Z Y,Miao J. 2015. Estimation of rice canopy LAI with different growth stages based on hyperspectral remote sensing data[J]. Chinese Journal of Agrometeoro-logy,36(6): 762-768.]

許改平,吳興波,劉芳,王玉魁,高巖,左照江. 2014. 高溫脅迫下毛竹葉片色素含量與反射光譜的相關(guān)性[J]. 林業(yè)科學(xué),50(5): 41-48. [Xu G P,Wu X B,Liu F,Wang Y K,Gao Y,Zuo Z J. 2014. The correlation between the pigment content and reflectance spectrum in Phyllostachys edulis leaves subjected to high temperature[J]. Scientia Silvae Sinicae,50(5): 41-48.]

楊晨波,馮美臣,孫慧,王超,楊武德,謝永凱,靖秉翰. 2019. 不同灌水處理下冬小麥地上干生物量的高光譜監(jiān)測(cè)[J]. 生態(tài)學(xué)雜志,38(6): 1767-1773. [Yang C B,F(xiàn)eng M C,Sun H,Wang C,Yang W D,Xie Y K,Jing B H. 2019. Hyperspectral monitoring of aboveground dry biomass of winter wheat under different irrigation treatments[J]. Chinese Journal of Ecology,38(6): 1767-1773.]

姚振坤,羅新蘭,李天來(lái),呂薇薇,李東,顏阿丹,仇家奇. 2010. 日光溫室番茄葉溫的模擬及與環(huán)境因子的關(guān)系[J]. 江蘇農(nóng)業(yè)學(xué)報(bào),26(3): 587-592. [Yao Z K,Luo X L,Li T L,Lü W W,Li D,Yan A D,Qiu J Q. 2010. A simulation model of the relationship between tomato leaf temperature and ambient factors in solar greenhouse[J]. Jiangsu Journal of Agricultural Sciences,26(3): 587-592.]

張晶,張玨,田海清. 2018. 基于高光譜成像技術(shù)的甜菜葉片氮素遙感估測(cè)[J]. 中山大學(xué)學(xué)報(bào)(自然科學(xué)版),57(6): 103-112. [Zhang J,Zhang J,Tian H Q. 2018. Remote sensing estimation research of leaf nitrogen in sugar beet based on hyperspectral imaging[J]. Acta Scientiarum Na-turalium Universitatis Sunyatseni,57(6): 103-112.]

周龍飛,顧曉鶴,成樞,楊貴軍,孫乾,束美艷. 2019. 倒伏脅迫下玉米抽穗期葉面積密度光譜診斷[J]. 中國(guó)農(nóng)業(yè)科學(xué),52(9): 1518-1528. [Zhou L F,Gu X H,Cheng S,Yang G J,Sun Q,Shu M Y. 2019. Spectral diagnosis of leaf area density of maize at heading stage under lodging stress[J]. Scientia Agricultura Sinica, 52(9): 1518-1528.]

周寧,景立權(quán),王云霞,朱建國(guó),楊連新,王余龍. 2017. 開(kāi)放式空氣中CO2濃度和溫度增高對(duì)水稻葉片葉綠素含量和SPAD值的動(dòng)態(tài)影響[J]. 中國(guó)水稻科學(xué),31(5): 524-532. [Zhou N,Jing L Q,Wang Y X,Zhu J G,Yang L X,Wang Y L. 2017. Dynamic effects of CO2 concentration and temperature increase on chlorophyll content and SPAD value in rice leaves in open air[J]. Chinese Rice Science,31(5): 524-532.]

周峰,華春,周泉澄,王仁雷. 2010. 高溫脅迫對(duì)菠菜類囊體膜蛋白亞基和光譜特征的影響[J]. 南京師大學(xué)報(bào)(自然科學(xué)版),33(1): 98-101. [Zhou F,Hua C,Zhou Q C,Wang R L. 2010. Effects of high temperature stress on protein subunit and spectra characteristic of thylakoid of spinach[J]. Journal of Nanjing Normal University(Natural Science Edition),33 (1): 98-101.]

Baret F,Guyot G,Major D J. 2002. TSAVI: A vegetation index which minimizes soil brightness effects on LAI and APAR estimation[C]//12th Canadian Symposium on Remote Sensing Geoscience and Remote Sensing Symposium.Vancouver: IEEE. doi: 10.1109/IGARSS.1989.576128.

Bian Z J,Cao B,Li H,Du Y M,Song L S,F(xiàn)an W J,Xiao Q,Liu Q H. 2017. A robust inversion algorithm for surface leaf and soil temperatures using the vegetation clumping index[J]. Remote Sensing,9(8): 780-795.

Chen Z H,Guo J B,Zha T S,Qin S G,Tang S L,Jia X. 2014. Seasonal variation and water response of leaf nitrogen content for three psammophytic shrub species[J]. Journal of Arid Land Resources & Environment, 28(6): 63-67.

Jordan C F. 1969. Derivation of leaf-area index from quality of light on the forest floor[J]. Ecology,50(4): 663-666.

Kaufman Y J,Tanré D. 1992. Atmospherically resistant vegetation index (ARVI) for EOS-MODIS[J]. IEEE Transactions on Geoscience and Remote Sensing,30(2): 261-270.

Rogers A,Medlyn B E,Dukes J S,Bonan G,von Caemmerer S,Dietze M,Kattge J,Leakey A D B,Mercado L M,Niinemets ?,Prentice I C,Serbin S P,Sitch S,Way D A,Zaehle S. 2017. A roadmap for improving the representation of photosynthesis in Earth system models[J]. New Phytologist,213(1): 22-42.

Roujean J L,Breon F M. 1995. Estimating PAR absorbed by vegetation from bidirectional reflectance measurements[J]. Remote Sensing of Environment,51(3): 375-384.

(責(zé)任編輯 鄧慧靈)

猜你喜歡
植被指數(shù)水稻
中國(guó)水稻栽培現(xiàn)狀、存在問(wèn)題及改進(jìn)措施
水稻種子
水稻栽培現(xiàn)狀與高產(chǎn)栽培技術(shù)建議
水稻栽培現(xiàn)狀與高產(chǎn)栽培技術(shù)建議
黔北山鄉(xiāng)水稻飄香
高分一號(hào)提取植被信息方法對(duì)比
基于遙感影像的不同植被指數(shù)比較研究
淺談植被指數(shù)的分類與應(yīng)用