田 雨,劉曉剛,趙 玉,詹 華,王 虹※,李翠清,宋永吉
稻殼炭制備工藝參數(shù)對吸附性能的影響
田 雨1,2,劉曉剛1,趙 玉1,詹 華1,王 虹1※,李翠清1,宋永吉1
(1. 北京石油化工學院化學工程學院/燃料清潔化及高效催化減排技術北京市重點實驗室,北京 102617;2. 北京工業(yè)大學環(huán)境與生命學部,北京 100124)
以稻殼為原料,采用水熱法制備稻殼炭,將稻殼炭用于吸附印染廢水中亞甲基藍。利用XRD、SEM、TG、FT-IR等手段對稻殼炭進行表征分析,探究炭化溫度和炭化時間對稻殼炭理化性質(zhì)和亞甲基藍吸附性能的影響。結果表明,炭化溫度是影響稻殼炭吸附性能的重要因素。炭化時間為4 h,炭化溫度為180~220 ℃,稻殼炭對亞甲基藍去除率大于90%,亞甲基藍的吸附量大于6.27 mg/g,其中,炭化溫度為200℃、炭化時間為8 h,即(RH-200-8)的稻殼炭結構完整,稻殼炭產(chǎn)率較高為65.20%,亞甲基藍的去除率和吸附能力分別為93.04%和6.62 mg/g。炭化溫度為180~220 ℃,纖維素未完全分解,孔隙結構良好,孔徑適中,有利于亞甲基藍分子的擴散與吸附,含氧官能團數(shù)量較多,吸附活性點位較多,對亞甲基藍吸附性能較好。炭化溫度大于220 ℃,隨著炭化溫度的升高,纖維素和富氧官能團的分解加速,吸附活性點位減少,稻殼炭結構發(fā)生改變,比表面積增加,但最可幾孔徑減小,不利于亞甲基藍分子的擴散,導致稻殼炭對亞甲基藍的去除率和吸附能力降低。RH-200-8稻殼炭再生循環(huán)使用實驗表明,RH-200-8稻殼炭再生次數(shù)增加,稻殼炭對亞甲基藍去除率略有下降,RH-220-8-3(即稻殼炭使用第3次)的亞甲基藍去除率達82.20%(10 h)。
生物質(zhì)炭;吸附;水熱炭化;稻殼;亞甲基藍
隨著印染技術的發(fā)展,中國造紙、紡織、皮革和制造等行業(yè)使用染料時產(chǎn)生大量印染廢水,印染廢水排放造成水污染,破壞生態(tài)環(huán)境,危害人體健康[1-3]。隨著環(huán)保意識加強,處理印染廢水已刻不容緩。印染廢水具有水量大、有機毒物含量高[4-5]、成分復雜及難降解[4]等特點,是國內(nèi)外公認較難處理的工業(yè)廢水之一。印染廢水的處理方法主要有物理法、化學法和吸附法[6]。其中,吸附法具有效率高、成本低、易開發(fā)等優(yōu)點,是目前污染治理技術中廣泛應用的方法之一[1-2,6]。
生物炭具有比表面積較大、孔隙度較高等特點,表現(xiàn)出良好的吸附性,廣泛應用于吸附廢水中有機污染物和無機污染物等。水熱炭是生物質(zhì)經(jīng)過一系列的水解、縮合、脫羧和脫水反應形成以脂肪族化合物為主的生物炭[7],熱解炭是以芳香族化合物為主的生物炭[8-9]。水熱炭化(HTC)是在封閉的系統(tǒng)中將生物質(zhì)置于水懸浮液中加熱到180~260 ℃,把生物質(zhì)轉(zhuǎn)化為熱化學更穩(wěn)定的、納米結構的水熱炭[8-10]。相比于熱解炭化,水熱炭化是一種環(huán)境友好的新興環(huán)保技術,因其具有產(chǎn)率高[11]、反應條件溫和[12]、成本低和工藝簡單環(huán)保[8,12]等優(yōu)點,受到國內(nèi)外學者的廣泛關注。
稻殼是稻米加工的副產(chǎn)物,來源廣泛、價格低廉,是可再生的富碳生物質(zhì)資源[13],稻殼生物炭是一種良好的生物質(zhì)基污染物去除吸附材料[6,14-15],是稻殼高附加值資源化利用途徑之一。王洪杰等[16]研究發(fā)現(xiàn),使用KMnO4改性的水熱稻殼炭吸附孔雀石綠和甲基橙,其去除率可以達到90%。Jian等[17]考察了不同炭化溫度對水熱稻殼炭和熱解稻殼炭的亞甲基藍吸附性能,結果表明,水熱稻殼炭對亞甲基藍表現(xiàn)出更強的親和力。稻殼炭作為吸附劑具有較好的應用前景,但是稻殼炭的處理和再生過程的損失限制了其發(fā)展。
本研究以稻殼為原料,采用水熱法制備稻殼炭,運用XRD、SEM、TG和FT-IR等手段對稻殼炭的理化性質(zhì)進行表征,系統(tǒng)考察炭化溫度和炭化時間稻殼炭對亞甲基藍吸附性能的影響及其稻殼炭再生循環(huán)使用吸附性能。
稻殼,采購于三聚環(huán)保公司;亞甲基藍(C16H18ClN3S,純度>97%),美國Aladdin公司。
熱重分析,STA449F3型,耐馳科學儀器商貿(mào)(上海)有限公司;X射線粉末衍射儀,XRD-7000型,日本島津株式會社;pH計,pH525型,天津市賽得利斯;水浴恒溫振蕩器,SHA-C型,鞏義予華儀器有限責任公司;紫外可見分光光度計,7890B型,Agilent;掃描電子顯微鏡,S-4800型,日本日立公司;傅里葉紅外光譜儀,Vector22型,德國Bruker公司。
采用水熱法制備稻殼炭。稻殼經(jīng)干燥研磨成粉末狀,沖洗干燥備用。稻殼炭典型制備過程如下:稱取4 g稻殼,加入80 mL去離子水,置于內(nèi)襯為100 mL的聚四氟乙烯反應釜中,在電熱恒溫鼓風干燥箱(DF-101S)中升至目標溫度(180、200、220、240和260 ℃),停留規(guī)定時間(2、4、6、8和10 h),冷卻至室溫,3 500 r/min離心5 min、乙醇和水洗數(shù)次后,置于干燥箱中100 ℃干燥7 h后得到稻殼炭,稱量計算稻殼炭產(chǎn)率(即反應后稻殼炭質(zhì)量與原料質(zhì)量之比)。稻殼炭標記為RH-,RH代表原料為稻殼(Rice Husk),為炭化溫度,為炭化時間。
稻殼炭再生:將亞甲基藍吸附性能最佳的稻殼炭置于燒杯中,加入10 mL乙醇超聲10 min,離心3 min,重復3次;再加入10 mL甲苯重復超聲洗滌3次后,移入旋轉(zhuǎn)蒸發(fā)器中60 ℃真空干燥,恒溫干燥箱80 ℃干燥6 h,取出備用。RH-200-8-(=1、2、3,定義為稻殼炭再生次數(shù))。
采用日本島津XRD-7000型X射線衍射儀(XRD)檢測稻殼炭的晶相結構。試驗條件為:Cu-K靶,管電流30 mA,電壓40 kV,掃描速度4(°)/min,掃描步長0.02o,掃描范圍10°~80°。
采用日本日立S-4800型掃描電子顯微鏡(SEM)觀察稻殼炭形貌。
熱失重(TG)分析采用耐馳科學儀器商貿(mào)(上海)有限公司STA449F3型熱重儀器測量。試驗條件為:高純氮氣為載氣,氣體流速為100 mL/min,以10 ℃/min的升溫速率從40 ℃升溫至1 000℃。
采用pH525型pH計測定稻殼炭的pH值。稻殼炭和水以1∶10的比例混合,室溫下震蕩4 h,離心取上清液。
采用德國Bruker公司Vector22型傅里葉變換紅外(FT-IR)光譜儀進行測定。試驗條件為:掃描范圍400~4 000 cm-1,分辨率4 cm-1,掃描次數(shù)64次。稻殼炭與KBr質(zhì)量比為1∶100壓片。
采用北京金埃普科技公司的比表面積及孔徑分析儀(V-Sorb 2800型)測定比表面積(BET)及孔結構。0.15 g稻殼炭粉末預處理:第一階段40 ℃處理30 min,第二階段80 ℃處理60 min;-196 ℃進行N2吸附。
模擬印染廢水配制:以亞甲基藍為印染廢水中模型化合物,去離子水為溶劑,配制3.5 mg/L亞甲基藍溶液,密封置于冰箱中備用。
亞甲基藍吸附試驗:稱12.5 mg稻殼炭置于50 mL錐形瓶中,加入25 mL模擬印染廢水,混合均勻,30 ℃下恒溫震蕩10 h,每隔2 h使用帶有孔徑為0.45m聚四氟乙烯濾頭的注射器吸取3 mL亞甲基藍溶液,采用紫外-可見分光光度計(SOPTOP-752型)在波長為665 nm處測量亞甲基藍濃度,按公式(1)和公式(2)計算亞甲基藍去除率()和吸附量(Q),以亞甲基藍去除率評價稻殼炭的吸附能力。
式中為亞甲基藍去除率,%;Q為時刻稻殼炭對亞甲基藍的吸附量,mg/g;0、C分別為亞甲基藍的初始濃度和時刻質(zhì)量濃度,mg/L;為溶液的體積,L;為稻殼炭的質(zhì)量,g。
圖1是炭化溫度和炭化時間與稻殼炭吸附亞甲基藍關系曲線。由圖1a可知,炭化時間為4 h,隨著炭化溫度升高,亞甲基藍去除率先升高后下降。炭化溫度為180~220 ℃,稻殼炭吸附性能較好,亞甲基藍去除率均高于90%,稻殼炭對亞甲基藍吸附量為6.27 mg/g,其中炭化溫度為200 ℃,亞甲基藍去除率較高,為91.35%,吸附量為6.44 mg/g;當炭化溫度高于220 ℃,亞甲基藍去除率和吸附量急劇下降,主要原因是炭化溫度過高(>220 ℃),纖維素過度分解,形成較大的炭顆粒附著并粘連在稻殼炭表面,使稻殼炭孔隙減少,同時,含氧官能團分解、縮合、芳香化,吸附活性點位減少,導致稻殼炭吸附亞甲基藍性能變差[2]。
由圖1b可知,炭化溫度為200 ℃,隨著炭化時間延長,稻殼炭對亞甲基藍去除率和吸附量先升高后降低,但整體去除水平較高。去除率高于91.14%,消耗量大于6.38 mg/g,其中RH-200-8稻殼炭的吸附性能較好,亞甲基藍去除率為93.04%,吸附量為6.62 mg/g,但吸附量低于文獻[17](9.7 mg/g)。原料來源及制備方法和條件等均影響稻殼炭對亞甲基藍的吸附性能。
圖2為RH-220-8-(=1、2、3,為RH-220-8樣品使用次數(shù))稻殼炭上亞甲基藍去除率與吸附時間關系曲線。由圖2可知,隨著反應時間的增加,RH-200-8稻殼炭對亞甲基藍去除率逐漸增大。吸附時間為0~2 h,稻殼炭對亞甲基藍去除率快速增加;吸附時間為2~10 h,稻殼炭對亞甲基藍去除率緩慢增加,逐漸趨于平衡。由圖2看到,RH-200-8稻殼炭再生后,對亞甲基藍的吸附性能不能完全恢復,且隨著再生次數(shù)增加,亞甲基藍去除率降低,吸附時間為10 h,第1次吸附到第3次吸附,亞甲基藍去除率分別為95.85%、88.81%、82.20%。
圖2 RH-220-8-n(再生次數(shù)n=1、2、3)稻殼炭上亞甲基藍去除率與吸附時間關系曲線
2.2.1稻殼炭產(chǎn)率
圖3為炭化溫度和炭化時間對稻殼炭產(chǎn)率的影響。由圖3稻殼炭產(chǎn)率與炭化溫度關系曲線可知,炭化時間為4 h,隨著炭化溫度升高,炭化溫度由180 ℃升至200 ℃,稻殼炭產(chǎn)率略有降低,由69.13%降至68.80%,僅下降0.33個百分點,變化率為0.17%/℃;炭化溫度由200升至240 ℃,稻殼炭產(chǎn)率由68.80%降至51.50%,下降17.30個百分點,變化率為0.43%/℃;炭化溫度由240升至260 ℃,稻殼炭產(chǎn)率下降緩慢,由51.50%降至50.09%,下降1.41個百分點,變化率為0.07%/℃。稻殼炭產(chǎn)率在200~240 ℃之間變化顯著,稻殼炭產(chǎn)率隨炭化溫度變化趨勢和文獻[18]研究成果一致。稻殼主要組成成分為纖維素、半纖維素和木質(zhì)素[19]。炭化時間為4 h,炭化溫度低于200 ℃,稻殼中半纖維素分解為低分子有機物,炭化溫度達220 ℃,稻殼炭產(chǎn)率急劇下降,纖維素發(fā)生脫水縮合反應,分解成為小分子氣體和有機物[20],隨著炭化溫度升高,固體有機物發(fā)生二次分解,高度縮合轉(zhuǎn)化為不可縮合的氣體,炭化溫度為240~260 ℃,未分解的纖維素繼續(xù)分解,而木質(zhì)素由復雜苯環(huán)聚合物組成,其結構基本保持不變[18]。
由圖3稻殼炭產(chǎn)率與炭化時間關系曲線看到,炭化溫度為200 ℃,炭化時間由2 h延長至10 h,稻殼炭產(chǎn)率由69.58%降至65.20%,僅降低4.38個百分點,炭化時間延長,僅使纖維素分解更完全,揮發(fā)性物質(zhì)逐漸減少,稻殼炭產(chǎn)率趨于穩(wěn)定[21]。由此可見,炭化溫度是影響稻殼炭產(chǎn)率的主要因素,炭化時間對稻殼炭產(chǎn)率影響不顯著[22-23]。
圖3 炭化溫度和炭化時間對稻殼炭產(chǎn)率的影響
2.2.2TG表征分析
圖4為稻殼炭TG曲線圖。由圖4a可知,RH-T-4稻殼炭重量損失主要為2個階段[24]:第一階段,小于150 ℃的質(zhì)量損失主要為水分蒸發(fā),其水分損失為大氣含水和稻殼本身;第二階段,200~600 ℃,稻殼炭的質(zhì)量損失為纖維素、半纖維素和木質(zhì)素的揮發(fā)和分解[19],半纖維素最不穩(wěn)定,主要在220~315 ℃階段分解,其次是纖維素,主要在315~400 ℃階段分解,木質(zhì)素最穩(wěn)定,分解溫度范圍寬達至900 ℃。隨著炭化溫度升高,RH-T-4稻殼炭最大失質(zhì)量率逐漸降低,表明炭化溫度升高,稻殼在水熱炭化中纖維素等物質(zhì)分解更加完全,稻殼炭的熱穩(wěn)定性提高[24]。
由圖4b可以看出,炭化溫度為200 ℃,隨著炭化時間延長,RH-200-稻殼炭質(zhì)量損失率逐漸降低。RH-200-稻殼炭(為2、4、6、8和10 h)最大質(zhì)量損失率分別為76.89%、70.98%、68.28%、64.57%和63.21%,表明炭化時間延長,纖維素等物質(zhì)分解更完全,炭化時間大于8 h,稻殼炭的熱穩(wěn)定性逐漸增強,表明稻殼炭結構已趨于穩(wěn)定[24]。
2.2.3XRD表征分析
圖5為稻殼炭XRD譜圖。由圖5a可知,炭化時間為4 h,炭化溫度為180~220 ℃,稻殼炭在2為16°和22°出現(xiàn)歸屬纖維素的特征峰(2為22°也可能是SiO2特征峰,與纖維素存在重疊峰),且隨著炭化溫度升高,峰強度無明顯變化,表明較低炭化溫度未能破壞纖維素結構[25]。炭化溫度達240 ℃,纖維素的特征衍射峰明顯減弱,表明較高的炭化溫度破壞了纖維素結構,炭化溫度對稻殼炭組成和結構影響較顯著。稻殼炭在2值為44°和77°附近的特征峰歸屬于炭結構(PDF#99-0043),炭的形成有利于稻殼吸附亞甲基藍[6]。由圖5b可知,炭化溫度為200 ℃,炭化時間對纖維素結構沒有顯著影響。
注:圖a中的數(shù)字為炭化溫度,℃;圖b中的數(shù)字為炭化時間,h。下同。
2.2.4SEM表征分析
圖6為稻殼炭SEM照片。由圖6可知,炭化溫度不同,RH-T-4稻殼炭形貌存在差異性。RH-200-4稻殼炭基本保留纖維狀結構,表面結構光滑,稻殼炭部分炭化和揮發(fā)性氣體釋放,表面具有明顯的凹槽和團聚的大塊顆粒,大大增加稻殼炭吸附亞甲基藍的活性點位[5]。RH-220-4稻殼炭纖維狀結構粗糙坍塌,出現(xiàn)大量裂隙,炭球尺寸增大,纖維素開始分解。RH-240-4稻殼炭纖維素逐漸分解,形成大量的炭球發(fā)生粘連附著在孔隙上[21]。RH-260-4稻殼炭表面產(chǎn)生不同形狀的炭球覆蓋在稻殼炭表面。隨著炭化溫度升高,纖維素和半纖維素水解聚合反應加快,導致炭球粘連、覆蓋在稻殼炭上,進而導致孔隙減少,活性點位減少,稻殼炭的吸附性能下降,與稻殼炭吸附亞甲基藍結果一致。
圖6 不同炭化溫度稻殼炭SEM照片
2.2.5BET表征結果
圖7為稻殼炭的等溫吸附曲線(圖7a)和孔徑分布(圖7b)。根據(jù)國際純粹與應用化學聯(lián)合會對孔徑大小的規(guī)定表示介孔范圍為2~50 nm。由圖7a可知,稻殼炭的吸附脫附等溫曲線為典型的帶有明顯H4型滯后環(huán)的第IV型的等溫曲線類,表明不同炭化溫度下,制備的稻殼炭均為介孔結構。由圖7b可知,炭化溫度為180~220 ℃,稻殼炭為明顯的介孔結構。隨著炭化溫度的升高,比表面積和孔徑增加(見表1),炭化溫度為240 ℃,比表面積達到最大,為30.621 m2/g;炭化溫度為220 ℃,最可幾孔徑最大,為6.743 nm,炭化溫度繼續(xù)升高,孔徑范圍較為分散,最可幾孔徑大幅度減小,炭化溫度為240 ℃,最可幾孔徑僅為2.486 nm。炭化溫度為240 ℃,RH-240-4樣品雖然比表面積較大,但對亞甲基藍吸附性能較差;而炭化溫度為200 ℃和220 ℃,即RH-200-4和RH-220-4雖然比表面積較RH-240-4樣品小,亞甲基藍吸附性能較好。稻殼炭對亞甲基藍的吸附性能同時與孔結構和表面含氧官能團有關[2],隨著炭化溫度的升高,有利于孔隙的形成,但是炭化溫度過高也加速了含氧官能團的分解,所以比表面積不是影響稻殼炭吸附性能唯一因素。
注:為系統(tǒng)壓力;0為大氣壓力。
Note:is system pressure;0atmospheric pressure.
圖7稻殼炭的N2等溫吸附曲線和孔徑分布圖
Fig.7N2adsorption-desorption isotherms and pore size distribution of rice husk carbon
表1 稻殼炭的物性分析結果
2.2.6pH值測定結果
圖8為稻殼炭的pH值曲線圖。由圖8可知,隨著炭化溫度升高和炭化時間延長,由于稻殼中纖維素等分解成各種有機酸,如甲酸、乙酸和乳酸等[26],稻殼炭pH值均呈現(xiàn)下降趨勢。RH-T-4稻殼炭,炭化溫度由180 ℃升至260 ℃,稻殼炭pH值從4.47降至4.16,降幅為0.31。RH-200-h稻殼炭,炭化時間由2 h延長至10 h,稻殼炭pH值從4.40降至4.25,降幅為0.15。pH值測定結果顯示,炭化溫度升高加速纖維素的分解,炭化時間達到8 h后,再延長炭化時間,對纖維素等分解影響不顯著,與TG表征結果一致。
圖8 稻殼炭的pH值變化
2.2.7FT-IR表征分析
圖9為稻殼炭的FT-IR譜圖。由圖9可知,3 419 cm-1處的吸收峰歸屬于O-H的伸縮振動[27];2 925 cm-1處的吸收峰歸屬于脂肪族C-H的伸縮振動[27];2 379 cm-1處的吸收峰歸屬于C≡C的伸縮振動;1 730 cm-1處的吸收峰歸屬于羧基、醛、酮和酯類基團上的C=O振動[26];1 598 cm-1處的吸收峰歸屬于芳香C=C振動[27];1 435 cm-1處的吸收峰歸屬于COOH或CH=O的振動[28];1 160 cm-1吸收峰歸屬于C-O振動;798和466 cm-1的吸收峰歸屬于Si-O鍵振動[29]。
由圖9a可知,炭化時間為4 h,隨著炭化溫度升高,在官能團區(qū)(3 500~1 500 cm-1),3 419 cm-1(-OH)峰強度降低,表明稻殼炭脫水脫氫縮合和不飽和程度加劇;而2 925 cm-1(C-H)、2 852 cm-1(C-H)、2 379 cm-1(C≡C)、1 730 cm-1(C=O)和1 598 cm-1(C=C)峰強度增加,表明稻殼炭逐漸脂肪化和芳香化。在指紋區(qū)(1 500~500 cm-1),RH-T-4稻殼炭的峰強度較高,分別有葡萄糖醇基(C-OH)、纖維素糖苷鍵(C-O-C)、木質(zhì)素芳基醚(-OCH3)、半纖維素酮基(C=O)等含氧官能團。炭化溫度為200 ℃時,稻殼炭中的纖維素結構基本完整,具有較多的豐富的含氧官能團,稻殼炭表面-OH、COOH等官能團充當吸附活性點位,而亞甲基藍(染料陽離子)通過靜電作用相互吸引[6],進而增強稻殼炭吸附亞甲基藍[2,28],當炭化溫度達到240 ℃,稻殼炭中的含氧官能團分解、縮合和芳香化而明顯減少,致使稻殼炭的吸附性能降低。此外,隨著炭化溫度升高,798 cm-1(Si-O)峰強度增加,表明SiO2在稻殼炭中富集,這與XRD相符合。
由圖9b可知,炭化溫度為200 ℃,隨著炭化時間延長,在2 379 cm-1(C≡C)呈現(xiàn)先增強后平穩(wěn)的趨勢。表明稻殼炭脫氫縮合程度加劇,炭化時間達到8 h后穩(wěn)定。3 419 cm-1(-OH)、2 925 cm-1(C-H)和指紋區(qū)含氧官能團變化不顯著,稻殼炭的吸附性能基本保持在91.14%之上,表明RH-200-稻殼炭中纖維素和木質(zhì)素未完全分解,稻殼炭中存在豐富含氧官能團。
圖9 稻殼炭FT-IR譜圖
采用水熱法制備稻殼炭,考察炭化溫度和炭化時間對稻殼炭理化性質(zhì)和亞甲基藍吸附性能的影響,結果表明炭化溫度是影響稻殼炭吸附性能的重要因素。炭化時間4 h,炭化溫度為180~220 ℃之間,稻殼中半纖維素和纖維素逐漸分解,形成孔隙結構清晰、含氧官能團較多、產(chǎn)率較高的稻殼炭,稻殼炭對亞甲基藍的吸附脫硫性能維持在較高水平,稻殼炭對亞甲基藍去除率和吸附量分別高于90%和6.27 mg/g;當炭化溫度大于220 ℃,炭化溫度的升高,使稻殼炭結構坍塌破碎,纖維素分解加速,稻殼炭中的含氧官能團分解、縮合和芳香化,吸附活性點位減少,稻殼炭結構發(fā)生改變,比表面積增加,但最可幾孔徑減小,不利于亞甲基藍分子的擴散,稻殼炭的吸附性能降低。炭化溫度為200 ℃,延長炭化時間,稻殼炭球化明顯,形貌逐漸良好,稻殼炭的吸附性能略有提高,其中炭化溫度為200 ℃,炭化時間為8 h,稻殼炭結構完整,含氧官能團較多,活性點位較多,稻殼炭吸附亞甲基藍性能較好,分別為93.04%和6.62 mg/g。RH-200-8稻殼炭再生循環(huán)使用試驗表明,隨著稻殼炭再生次數(shù)的增加,稻殼炭的去除率略有下降,RH-220-8-3稻殼炭的亞甲基藍最大去除率達82.20%。
[1]Li W, Mu B, Yang Y. Feasibility of industrial-scale treatment of dye wastewater via bio-adsorption technology[J]. Bioresource Technology, 2019, 277: 157-170.
[2]Wang B, Zhai Y, Wang T, et al. Fabrication of bean dreg-derived carbon with high adsorption for methylene blue: Effect of hydrothermal pretreatment and pyrolysis process[J]. Bioresource Technology, 2019, 274: 525-532.
[3]Bu J, Yuan L, Zhang N, et al. High-efficiency adsorption of methylene blue dye from wastewater by a thiosemicarbazide functionalized graphene oxide composite[J]. Diamond and Related Materials, 2020, 101: 107604.
[4]Zhu Y, Xu J, Cao X, et al. Characterization of functional microbial communities involved in different transformation stages in a full-scale printing and dyeing wastewater treatment plant[J]. Biochemical Engineering Journal, 2018, 137: 162-171.
[5]Hou Y, Yan S, Huang G, et al. Fabrication of N-doped carbons from waste bamboo shoot shell with high removal efficiency of organic dyes from water[J]. Bioresource Technology, 2020, 303: 122939.
[6]Shamsollahi Z, Partovinia A. Recent advances on pollutants removal by rice husk as a bio-based adsorbent: A critical review[J]. Journal of Environment Management, 2019, 246: 314-323.
[7]Lu X, Flora J R V, Berge N D. Influence of process water quality on hydrothermal carbonization of cellulose[J]. Bioresource Technology, 2014, 154: 229-239.
[8]Unur E, Brutti S, Panero S, et al. Nanoporous carbons from hydrothermally treated biomass as anode materials for lithium ion batteries[J]. Microporous and Mesoporous Materials, 2013, 174: 25-33.
[9]李音,單勝道,楊瑞芹,等. 低溫水熱法制備竹生物炭及其對有機物的吸附性能[J]. 農(nóng)業(yè)工程學報,2016,32(24):240-247. Li Yin, Shan Shengdao, Yang Ruiqin, et al. Preparation of bamboo biochars by low-temperature hydrothermal method and its adsorption of organics[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(24): 240-247. (in Chinese with English abstract)
[10]Islam M A, Benhouria A, Asif M, et al. Methylene blue adsorption on factory-rejected tea activated carbon prepared by conjunction of hydrothermal carbonization and sodium hydroxide activation processes[J]. Journal of the Taiwan Institute of Chemical Engineers, 2015, 52: 57-64.
[11]常春,劉天琪,王瑀婷,等. 水熱法制備玉米葉基生物炭對亞甲基藍的吸附性能研究[J]. 環(huán)境科學學報,2017,37(7):2680-2690. Chang Chun, Liu Tianqi, Wang Yuting, et al. Hydrothermal preparation of maize leaf based biochar and its adsorption performance for methylene blue[J]. Acta Scientiae Circumstantiae, 2017, 37(7): 2680-2690. (in Chinese with English abstract)
[12]劉慧慧,曲磊,陳應泉,等. 天然微藻水熱炭理化特性及熱解動力學研究[J]. 農(nóng)業(yè)工程學報,2019,35(14):235-242. Liu Huihui, Qu Lei, Chen Yingquan, et al. Physicochemical characteristics and pyrolysis kinetics of hydrothermal carbon from natural scenedesmus[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(14): 235-242. (in Chinese with English abstract)
[13]Eduah J O, Nartey E K, Abekoe M K, et al. Phosphorus retention and availability in three contrasting soils amended with rice husk and corn cob biochar at varying pyrolysis temperatures[J]. Geoderma, 2019, 341: 10-17.
[14]Hu L, He Z, Zhang S. Sustainable use of rice husk ash in cement-based materials: Environmental evaluation and performance improvement[J]. Journal of Cleaner Production, 2020, 264: 121744.
[15]Zhang Y, Yue X, Xu W, et al. Amino modification of rice straw-derived biochar for enhancing its cadmium (II) ions adsorption from water[J]. Journal of Hazardous Materials, 2019, 379: 120783.
[16]王洪杰,蘭依博,李曉東. KMnO4改性稻殼、稻稈水熱炭吸附染料的研究[J]. 應用化工,2019,48(6):1344-1350. Wang Hongjie, Lan Yibo, Li Xiaodong. Hydrothermal synthesis of KMnO4modified rice husk and rice straw and its adsorption properties[J]. Applied Chemical Industry, 2019, 48(6): 1344-1350. (in Chinese with English abstract)
[17]Jian X, Zhuang X, Li B, et al. Comparison of characterization and adsorption of biochars produced from hydrothermal carbonization and pyrolysis[J]. Environmental Technology & Innovation, 2018, 10: 27-35.
[18]Gao Y, Wang X, Yang H, et al. Characterization of products from hydrothermal treatments of cellulose[J]. Energy, 2012, 42(1): 457-465.
[19]Kalderis D, Kotti M S, Méndez A, et al. Characterization of hydrochars produced by hydrothermal carbonization of rice husk[J]. Solid Earth, 2014, 5(1): 477-483.
[20]Xu J, Zhang J, Huang J, et al. Conversion of phoenix tree leaves into hydro-char by microwave-assisted hydrothermal carbonization[J]. Bioresource Technology Reports, 2020, 9: 100353.
[21]He C, Giannis A, Wang J Y. Conversion of sewage sludge to clean solid fuel using hydrothermal carbonization: Hydrochar fuel characteristics and combustion behavior[J]. Applied Energy, 2013, 111: 257-266.
[22]Khan T A, Saud A S, Jamari S S, et al. Hydrothermal carbonization of lignocellulosic biomass for carbon rich material preparation: A review[J]. Biomass and Bioenergy, 2019, 130: 105384.
[23]Wang Z, Zhai Y, Wang T, et al. Effect of temperature on the sulfur fate during hydrothermal carbonization of sewage sludge[J]. Environmental Pollution, 2020, 260: 114067.
[24]Li J, Zhao P, Li T, et al. Pyrolysis behavior of hydrochar from hydrothermal carbonization of pinewood sawdust[J]. Journal of Analytical and Applied Pyrolysis, 2020, 146: 104771.
[25]Sun Y, Gao B, Yao Y, et al. Effects of feedstock type, production method, and pyrolysis temperature on biochar and hydrochar properties[J]. Chemical Engineering Journal, 2014, 240: 574-578.
[26]Jain A, Balasubramanian R, Srinivasan M P. Hydrothermal conversion of biomass waste to activated carbon with high porosity: A review[J]. Chemical Engineering Journal, 2016, 283: 789-805.
[27]Wu J, Yang J, Huang G, et al. Hydrothermal carbonization synthesis of cassava slag biochar with excellent adsorption performance for rhodamine B[J]. Journal of Cleaner Production, 2019, 251: 119717.
[28]Reza M T, Rottler E, Herklotz L, et al. Hydrothermal carbonization (HTC) of wheat straw: Influence of feedwater pH prepared by acetic acid and potassium hydroxide[J]. Bioresource Technology, 2015, 182: 336-344.
[29]Adam F, Fook C L. Chromium modified silica from rice husk as an oxidative catalyst[J]. Journal of Porous Materials, 2009, 16(3): 291-298.
Effects of preparation process parameters of rice husk carbon on adsorption performance
Tian Yu1,2, Liu Xiaogang1, Zhao Yu1, Zhan hua1, Wang Hong1※, Li Cuiqing1, Song Yongji1
(1.,,102617,; 2.,,100124,)
Rice husk carbon was prepared by hydrothermal method from rice husk, and used to adsorb methylene blue from printing and dyeing wastewater. Rice husk carbon was characterized by X-ray diffraction(XRD), Scanning Electron Microscope(SEM), Thermo Gravimetric(TG), Fourier Transform Infrared Spectrometer(FT-IR), and the effects of hydrothermal temperature and hydrothermal time, respectively, on the physicochemical properties and adsorption properties of methylene blue in rice husk carbon were investigated. The results showed that hydrothermal temperature was the important factor to affect the adsorption performance of rice husk carbon. In this study, when the hydrothermal time was 4 h and the hydrothermal temperature was 180-220 ℃, the removal rate of methylene blue in rice husk carbon was more than 90% and the adsorption capacity of rice husk carbon to methylene blue was more than 6.27 mg/g. Among them, the hydrothermal temperature was 200 °C and the hydrothermal time was 8 h(RH-200-8), the structure of rice husk carbon was intact and the yield of rice husk carbon was 65.20%. Besides, theremoval rate and adsorption capacity of methylene blue in rice husk carbon were 93.04% and 6.62mg /g in the same condition, respectively. The phenomenon was due to thecellulose was not completely decomposed, the pore structure of rice husk carbon was better and the pore diameter of rice husk carbon was moderate when the hydrothermal temperature was 180-220 °C. In addition, the structure of rice husk carbon was conducted to the methylene blue molecule diffusion and adsorption, and rice husk carbon has more oxygen-containing functional groups with more adsorption active points, so the adsorption performance of rice husk carbon on methylene blue was better. When the hydrothermal temperature was greater than 220 °C, with the increase of hydrothermal temperature, the cellulose would be accelerated decomposition, the oxygen-enriched functional groups were decomposed quickly, the adsorption activity points of rice husk carbon were reduced, the rice husk carbon structure was also changedand the specific surface area was increased, but most probable pore sizes of rice husk carbon were decreased, the phenomenon was not conducted to the methylene blue molecule diffusion in rice husk carbon, so the removal rate and adsorption ability of methylene blue in rice husk carbon decreased. The experiment of rice husk carbon(RH-200-8) regeneration and recycling showed thatthe removal rate of methylene blue in rice husk carbon decreased slightly with the number of rice husk carbon regeneration increased, and the maximum methylene blue removal rate of RH-220-8-3(Rice husk charcoal use 3rd) reached 82.20% (10 h).
biomass carbon; adsorption; hydrothermal carbonization; rice husk; methylene blue
田雨,劉曉剛,趙玉,等. 稻殼炭制備工藝參數(shù)對吸附性能的影響[J]. 農(nóng)業(yè)工程學報,2020,36(24):211-217.doi:10.11975/j.issn.1002-6819.2020.24.025 http://www.tcsae.org
Tian Yu, Liu Xiaogang, Zhao Yu, et al. Effects of preparation process parameters of rice husk carbon on adsorption performance[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(24): 211-217. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.24.025 http://www.tcsae.org
2020-08-01
2020-11-02
國家自然科學基金(21673290)
田雨,研究方向為環(huán)境工程。Email:1583610160@qq.com
王虹,博士,教授,主要從事環(huán)境治理技術研究。Email:wanghong@bipt.edu.cn
10.11975/j.issn.1002-6819.2020.24.025
TQ424
A
1002-6819(2020)-24-0211-07