国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

不同肥料粒形特征對(duì)肥料球度的影響

2020-03-03 14:02:58張宏建石紹軍劉雙喜慕君林王金星
關(guān)鍵詞:薄片肥料顆粒

張宏建,石紹軍,劉雙喜,王 震,慕君林,王金星

不同肥料粒形特征對(duì)肥料球度的影響

張宏建1,2,石紹軍2,劉雙喜1,3,王 震1,2,慕君林2,王金星1,3※

(1. 山東省園藝機(jī)械與裝備重點(diǎn)實(shí)驗(yàn)室,泰安 271018;2. 山東農(nóng)業(yè)大學(xué)機(jī)械與電子工程學(xué)院,泰安 271018;3. 山東省農(nóng)業(yè)裝備智能化工程實(shí)驗(yàn)室,泰安 271018)

為明確肥料粒形特征之間的相互關(guān)系,該文通過單因素及中心組合試驗(yàn)研究肥料不同粒形特征對(duì)肥料球度的影響。首先,通過農(nóng)業(yè)物料粒形分析儀測(cè)定肥料長(zhǎng)、寬、厚、等軸率、薄片率、磨圓度及球度;其次,通過單因素方差試驗(yàn)確定不同粒形特征與肥料球度之間的相關(guān)性;最后,以肥料等軸率、薄片率和磨圓度為主要影響因素,采用Box-Behnken中心組合試驗(yàn),建立關(guān)于肥料球度的數(shù)學(xué)模型,通過回歸統(tǒng)計(jì)方差、響應(yīng)面和等高線分析各影響因素與肥料球度之間的相互關(guān)系。結(jié)果表明:肥料球度與等軸率、薄片率及磨圓度之間能建立顯著性較高的多元回歸方程(2為0.94);各因素對(duì)肥料球度影響程度從高到低依次為等軸率、薄片率、磨圓度,且當(dāng)?shù)容S率在0.98~1.00,薄片率在0.92~0.95,磨圓度在0.85~0.88范圍內(nèi)時(shí),肥料球度最高,達(dá)到92.9%。研究結(jié)果可為肥料生產(chǎn)和質(zhì)量檢驗(yàn)提供理論依據(jù)。

肥料;模型;粒形特征;響應(yīng)曲面法;單因素試驗(yàn);中心組合試驗(yàn)

0 引 言

農(nóng)業(yè)是國(guó)民經(jīng)濟(jì)的命脈,而肥料是農(nóng)業(yè)生產(chǎn)的基礎(chǔ)。肥料作為重要農(nóng)業(yè)投入品,在中國(guó)的生產(chǎn)量和使用量均居世界首位,對(duì)保障國(guó)家糧食安全和提高農(nóng)業(yè)生產(chǎn)力水平都起著舉足輕重和不可替代的作用[1-3]。肥料作為農(nóng)業(yè)物料的一種,其粒形特征影響肥料外觀質(zhì)量、強(qiáng)度、流動(dòng)性及機(jī)播施肥效果等,并對(duì)農(nóng)業(yè)機(jī)械設(shè)計(jì)和研究有重要意義[4-7]。闞洪福等[8]通過研究發(fā)現(xiàn):肥料球度越高,肥料顆粒越致密,肥料強(qiáng)度也越高,肥料越不易變形和破碎??鬃縖9]通過研究發(fā)現(xiàn):肥料磨圓度越高,肥料越圓滑、越均勻,肥料孔隙率越大、散熱越快,流動(dòng)性越好。Silverberg等[10]通過研究發(fā)現(xiàn):肥料形狀及肥料堆積所形成的孔道結(jié)構(gòu)影響肥料的鹽離子擴(kuò)散,進(jìn)而影響肥料結(jié)塊。在顆粒粒形特征研究方面,國(guó)內(nèi)外學(xué)者已取得一些成就。王蘊(yùn)嘉等[11]對(duì)不同顆粒形狀的堆石料進(jìn)行等向固結(jié)和常規(guī)三軸試驗(yàn),得到了配位數(shù)、顆粒長(zhǎng)軸各向異性、接觸各向異性、結(jié)構(gòu)各向異性等變化規(guī)律。裴潤(rùn)有等[12]測(cè)量壓裂支撐劑的磨圓度及球度,并得到兩者之間的相互關(guān)系。Guo等[13]通過DIP(digital image processing)技術(shù)分析骨料的粒形特征,并證明瀝青混合料的馬歇爾穩(wěn)定度和永久變形與骨料的粒形特征有很好的相關(guān)性。

綜合分析國(guó)內(nèi)外研究現(xiàn)狀,發(fā)現(xiàn)肥料粒形影響肥料性能,目前顆粒粒形的研究多集中于骨料、壓裂支撐劑、堆石料等顆粒,而對(duì)于肥料粒形的研究相對(duì)較少。為明確肥料粒形特征之間的相互關(guān)系,也為后續(xù)研究肥料粒形特征對(duì)其理化性能影響提供依據(jù),本文通過農(nóng)業(yè)物料粒形分析儀測(cè)定肥料的三軸特征、磨圓度及球度等肥料粒形特征,采用單因素及Box-Behnken中心組合試驗(yàn)建立肥料球度的數(shù)學(xué)模型,通過回歸統(tǒng)計(jì)方差、響應(yīng)面和等高線分析不同粒形特征與肥料球度之間的相互關(guān)系。

1 肥料粒形特征的表征方法

1.1 三軸特征

顆粒的宏觀輪廓常用3個(gè)相互垂直的軸來表示,分別是長(zhǎng)軸、中軸、短軸,相當(dāng)于肥料顆粒長(zhǎng)、寬、厚3個(gè)方向的尺寸。長(zhǎng)指平面投影圖形中的最大尺寸,寬指垂直于長(zhǎng)度方向的最大尺寸,厚指垂直于長(zhǎng)寬方向的直線尺寸。肥料三軸之間的關(guān)系可用等軸率()和薄片率()[14]表示:

=/(1)

=/(2)

式中為肥料顆粒長(zhǎng),mm;為肥料顆粒寬,mm;為肥料顆粒厚,mm。

1.2 磨圓度

磨圓度()反映顆粒棱角的尖銳程度。Freeman定義顆粒磨圓度[15]為:

=4π/2(3)

式中為肥料顆粒投影輪廓周長(zhǎng),mm;為肥料顆粒投影面積,mm2。

磨圓度越小,顆粒棱角越尖銳;磨圓度越大,顆粒棱角越圓滑。肥料磨圓度越大,肥料相互之間的摩擦及肥料與排肥機(jī)構(gòu)之間的摩擦越小,肥料的流動(dòng)性能越佳。

1.3 球度

球度()反映顆粒接近球體的程度。Waddell定義顆粒球度[16]為

式中為肥料顆粒實(shí)際體積,mm3;V為肥料顆粒外接最小球(以長(zhǎng)軸為直徑的球體)的體積,mm3。

對(duì)于肥料顆粒實(shí)際體積,采用積分的思想將肥料側(cè)部輪廓分解成個(gè)球臺(tái),根據(jù)式(5)、式(6)計(jì)算肥料體積[17]。

式中V為第球臺(tái)體積,mm3;R為第球臺(tái)上底面半徑,mm;R+1為第球臺(tái)下底面半徑,mm;H為第球臺(tái)高,mm;為球臺(tái)個(gè)數(shù);σ為肥料側(cè)部磨圓度。

肥料球度對(duì)肥料外觀質(zhì)量及肥料結(jié)塊均有較大影響。肥料球度越大,肥料比表面積越小,肥料之間通過點(diǎn)接觸,肥料越不易結(jié)塊,肥料外觀質(zhì)量及機(jī)播施肥效果也越好。

2 農(nóng)業(yè)物料粒形分析儀

2.1 整機(jī)結(jié)構(gòu)

利用前期自主研發(fā)的農(nóng)業(yè)物料粒形分析儀獲取肥料粒形參數(shù),整機(jī)結(jié)構(gòu)如圖1所示,主要由基座、載物臺(tái)、步進(jìn)電機(jī)、頂部相機(jī)、頂部鏡頭、側(cè)部相機(jī)、側(cè)部鏡頭、電源、上位計(jì)算機(jī)及下位單片機(jī)等構(gòu)成。其中,步進(jìn)電機(jī)為普菲德電氣有限公司生產(chǎn)的86BYG250H型兩相電機(jī),步距角為1.8°,頂部相機(jī)和側(cè)部相機(jī)均為Point Grey生產(chǎn)的FL-U3-13S2C-CS型工業(yè)相機(jī),分辨率為1 328像素×1 048像素,頂部鏡頭和側(cè)部鏡頭均為Pentax生產(chǎn)的FL-CC3516-2M型定焦鏡頭,焦距為35mm。整機(jī)主要技術(shù)參數(shù)如表1所示。

2.2 工作原理

農(nóng)業(yè)物料粒形分析儀采用間歇式靜態(tài)采集方式工作,自動(dòng)采集單粒肥料的頂部及側(cè)部圖像。載物臺(tái)上刻有十字標(biāo)定中心,先在標(biāo)定中心處涂抹微量冷埋樹脂,后將待測(cè)肥料置于冷埋樹脂上并靜置一段時(shí)間;載物臺(tái)通過半圓鍵與步進(jìn)電機(jī)輸出軸相連,下位單片機(jī)控制步進(jìn)電機(jī)轉(zhuǎn)動(dòng)進(jìn)而帶動(dòng)載物臺(tái),實(shí)現(xiàn)待測(cè)肥料的轉(zhuǎn)動(dòng);步進(jìn)電機(jī)轉(zhuǎn)過設(shè)定角度后停止轉(zhuǎn)動(dòng),下位單片機(jī)通過串口向上位計(jì)算機(jī)發(fā)送轉(zhuǎn)動(dòng)完成指令,上位計(jì)算機(jī)分別控制頂部及側(cè)部相機(jī)采集待測(cè)肥料頂部及側(cè)部圖像,圖像采集完成后,上位計(jì)算機(jī)通過串口向下位單片機(jī)發(fā)送圖像采集完成指令,下位單片機(jī)控制步進(jìn)電機(jī)再次轉(zhuǎn)動(dòng)。重復(fù)此過程,直至得到目標(biāo)數(shù)量的頂部及側(cè)部圖像。

1.上位計(jì)算機(jī) 2.基座 3.調(diào)節(jié)腳 4.下位單片機(jī) 5.驅(qū)動(dòng)器 6.步進(jìn)電機(jī) 7.電源轉(zhuǎn)換模塊 8.電源 9.載物臺(tái) 10.待測(cè)肥料 11.側(cè)部鏡頭 12.側(cè)部相機(jī) 13.側(cè)部槽口 14.數(shù)據(jù)傳輸線 15.頂部鏡頭 16.相機(jī)調(diào)節(jié)架 17.頂部槽口 18.頂部相機(jī)

表1 整機(jī)主要技術(shù)參數(shù)

為建立肥料實(shí)際大小與像素之間的關(guān)系,采集標(biāo)定靶(10 mm×10 mm黑色正方形)的圖像信息,對(duì)其進(jìn)行灰度化、二值化處理,過程如圖2所示。由于閾值圖像中,目標(biāo)區(qū)域?yàn)楹谏撝禐?,利用指針掃描的方式遍歷閾值圖像,統(tǒng)計(jì)圖像上滿足限定閾值的全部像素點(diǎn)的行數(shù)0=550,根據(jù)式(7)計(jì)算得到單個(gè)像素代表實(shí)際長(zhǎng)度0.018 mm。

0=10/0(7)

式中0為單個(gè)像素代表的實(shí)際長(zhǎng)度值,mm;0為滿足限定閾值的全部像素點(diǎn)的行數(shù)。

圖2 長(zhǎng)度標(biāo)定

長(zhǎng)度標(biāo)定、單粒肥料的頂部及側(cè)部圖像全部采集完成后,上位計(jì)算機(jī)對(duì)肥料頂部及側(cè)部圖像分析,獲取肥料的基本參數(shù),如圖3所示。

注:a、b、c分別為肥料顆粒的長(zhǎng)、寬、厚,mm。

具體過程如下:1)對(duì)肥料頂部及側(cè)部圖像進(jìn)行灰度化,并利用Canny算子分別對(duì)肥料頂部及側(cè)部灰度圖像進(jìn)行邊緣檢測(cè),得到肥料頂部及側(cè)部輪廓圖像;2)在肥料頂部輪廓圖像中,獲取肥料頂部輪廓周長(zhǎng)、面積、最小外接圓及最大內(nèi)切圓等參數(shù),由于最小外接圓直徑代表平面投影圖形中的最大尺寸,最大內(nèi)切圓直徑代表垂直于長(zhǎng)度方向的最大尺寸,因此將最小外接圓直徑等效為肥料顆粒長(zhǎng),最大內(nèi)切圓直徑等效為肥料顆粒寬,再分別根據(jù)式(1)、式(3)計(jì)算肥料等軸率及磨圓度;3)在每張肥料側(cè)部輪廓圖像中,獲取肥料側(cè)部輪廓周長(zhǎng)、面積及最大內(nèi)切圓等參數(shù),由于最大內(nèi)切圓直徑代表垂直于長(zhǎng)寬方向的直線尺寸,因此將最大內(nèi)切圓直徑等效為肥料顆粒厚,再分別根據(jù)式(2)、式(3)計(jì)算肥料薄片率及側(cè)部磨圓度σ;4)為保證肥料體積精度,將單粒肥料所有側(cè)部輪廓下的體積求出,并將其均值作為肥料最終體積,再根據(jù)式(4)、式(5)、式(6)計(jì)算肥料球度。

3 試驗(yàn)設(shè)計(jì)與方法

3.1 數(shù)據(jù)獲取及預(yù)處理

在史丹利化肥股份有限公司生產(chǎn)的同一批顆粒復(fù)合肥中,以隨機(jī)抽樣的方式獲取100粒復(fù)合肥作為試驗(yàn)樣本,通過農(nóng)業(yè)物料粒形分析儀,測(cè)定其粒形參數(shù)并對(duì)試驗(yàn)數(shù)據(jù)進(jìn)行統(tǒng)計(jì)計(jì)算,分別求出待測(cè)肥料各參數(shù)的最大值、最小值、平均值、極差及標(biāo)準(zhǔn)差,結(jié)果如表2所示。其中,平均值和標(biāo)準(zhǔn)差[18-20]分別為

表2 肥料粒形參數(shù)

為了剔除由于過失誤差產(chǎn)生的異常數(shù)據(jù),本研究使用Grubbs檢驗(yàn)法進(jìn)行離散值檢驗(yàn)。首先,將原始試驗(yàn)數(shù)據(jù)按從小到大排序,求得該組數(shù)據(jù)的平均值及標(biāo)準(zhǔn)差;其次,根據(jù)式(10)計(jì)算統(tǒng)計(jì)量T,并得到其最大值Max,結(jié)果如表3所示;最后,將統(tǒng)計(jì)量Max與Grubbs檢驗(yàn)表中臨界值T比較(為顯著性水平,為樣本量),如果Max≥T,說明x為離散值,必須舍棄,反之予以保留。

表3 Grubbs檢驗(yàn)結(jié)果

查詢Grubbs檢驗(yàn)值表,取=0.05,=100,0.05,100=3.207,將表3中,各因素下的最大值Max分別與0.05,100比較,發(fā)現(xiàn)各組數(shù)據(jù)均小于0.05,100,因此組內(nèi)原始數(shù)據(jù)無離散值,證明數(shù)據(jù)有效、準(zhǔn)確。

3.2 單因素方差試驗(yàn)

為研究肥料長(zhǎng)、寬、厚、等軸率、薄片率及磨圓度等參數(shù)與球度的關(guān)系,分別以長(zhǎng)、寬、厚、等軸率、薄片率及磨圓度為因素,對(duì)試驗(yàn)數(shù)據(jù)進(jìn)行單因素試驗(yàn),結(jié)果如表4所示。通過表4可知:等軸率、薄片率及磨圓度對(duì)球度有顯著影響(<0.05);長(zhǎng)軸、中軸、短軸對(duì)球度無顯著影響(>0.05)。為統(tǒng)計(jì)肥料在不同等軸率、薄片率及磨圓度下的數(shù)量分布,繪制肥料顆粒等軸率、薄片率、磨圓度的分布直方圖,如圖4所示,其中肥料等軸率主要分布在0.92~0.98之間,薄片率主要分布在0.90~0.98之間,磨圓度主要分布在0.87~0.89之間。

表4 單因素方差試驗(yàn)結(jié)果

圖4 肥料等軸率、薄片率、磨圓度分布直方圖

3.3 Box-Behnken試驗(yàn)

根據(jù)單因素分析結(jié)果,選取等軸率1、薄片率2及磨圓度3作為試驗(yàn)因素,以球度為評(píng)價(jià)指標(biāo),采用Box-Behnken中心組合試驗(yàn)設(shè)計(jì)方法:各因素的取值范圍及試驗(yàn)中的因素及水平如表5所示。

表5 因素及水平表

4 結(jié)果與分析

4.1 肥料粒形特征線性回歸分析

依據(jù)Box-Behnken試驗(yàn)原理設(shè)計(jì)試驗(yàn),試驗(yàn)方案及結(jié)果如表6所示。利用統(tǒng)計(jì)分析軟件對(duì)表6中的試驗(yàn)數(shù)據(jù)進(jìn)行多項(xiàng)式回歸分析,最終得到復(fù)合肥的球度回歸方程

=86.59+4.641+2.392?1.593?1.7512?0.1413?

2.8523+0.4912?4.3122+1.5032(11)

對(duì)該數(shù)學(xué)模型進(jìn)行顯著性檢驗(yàn)及方差分析,結(jié)果見表7,通過數(shù)據(jù)結(jié)果可知,回歸模型顯著(<0.05),說明建立的模型有意義。模型回歸決定系數(shù)2為0.94,修正決定系數(shù)為0.82,表明實(shí)際測(cè)量值與數(shù)學(xué)模型之間差距較小,即此模型與數(shù)據(jù)擬合度較高,回歸模型顯著[21-22],試驗(yàn)誤差小,能夠較好地描述試驗(yàn)結(jié)果,因此該回歸方程的建立是正確的。

表6 Box-Behnken試驗(yàn)設(shè)計(jì)方案及球度響應(yīng)值

表7 回歸統(tǒng)計(jì)方差分析結(jié)果

由表7的回歸統(tǒng)計(jì)方差分析結(jié)果可以看出:模型的一次項(xiàng)中,1(等軸率)對(duì)球度的影響極其顯著,2(薄片率)影響顯著,3(磨圓度)影響不顯著;模型的二次項(xiàng)中,22對(duì)球度的影響顯著,12及32影響不顯著;考慮交互影響,23對(duì)球度的影響顯著,12及13影響不顯著。根據(jù)影響顯著性分析可知,在所選取的各因素范圍內(nèi),按照對(duì)球度的影響程度由高到低依次為:等軸率>薄片率>磨圓度。

4.2 肥料球度響應(yīng)曲面分析

利用Design-Expert 8.0繪出球度響應(yīng)曲面圖,可觀測(cè)到各因素變化對(duì)球度響應(yīng)值的影響,并能確定及檢驗(yàn)各變量的相互關(guān)系[23-26]。將等軸率、薄片率及磨圓度3個(gè)因素中的1個(gè)因素固定在0水平,分析另外2個(gè)因素及其交互作用對(duì)球度的影響,結(jié)果如圖5所示。

注:圖5a中磨圓度為0水平,圖5b中薄片率為0水平,圖5c中等軸率為0水平。

圖6a中,肥料球度響應(yīng)曲面開口向下,顯示了當(dāng)磨圓度為中水平,等軸率及薄片率對(duì)球度的交互影響,且薄片率為中水平,等軸率為高水平時(shí),肥料球度最高。由等高線圖可以看出:等軸率對(duì)球度的影響比薄片率對(duì)球度的影響更大。當(dāng)磨圓度為中水平時(shí),薄片率在任一水平,肥料球度隨等軸率的增大而呈現(xiàn)增大趨勢(shì),且薄片率為低水平時(shí),等軸率對(duì)球度的影響較為明顯,表現(xiàn)在圖中球度的曲線比較陡,說明薄片率在0.86~0.92范圍內(nèi)時(shí),適當(dāng)增大肥料等軸率能顯著提高肥料球度;當(dāng)磨圓度為中水平時(shí),等軸率在任一水平,肥料球度隨薄片率的增大而呈現(xiàn)先增大后減小趨勢(shì),且等軸率為低水平時(shí),薄片率對(duì)球度的影響較為明顯,表現(xiàn)在圖中的曲線較陡,說明在等軸率在0.86~0.94范圍內(nèi)時(shí),適當(dāng)增大肥料薄片率能顯著提高肥料球度。

圖6b中,肥料球度響應(yīng)曲面開口向上,顯示了當(dāng)薄片率為中水平,等軸率及磨圓度對(duì)球度的交互影響,且當(dāng)磨圓度為低水平,等軸率為高水平時(shí),肥料球度最高。由等高線圖可以看出:等高線分布較為均勻,響應(yīng)面變化相對(duì)平緩,等軸率對(duì)球度的影響比磨圓度對(duì)球度的影響更大。當(dāng)薄片率為中水平時(shí),等軸率在任一水平,肥料球度隨磨圓度的增大而呈現(xiàn)先平緩減小后穩(wěn)定趨勢(shì);當(dāng)薄片率為中水平時(shí),磨圓度在任一水平,肥料球度隨等軸率的增大而呈現(xiàn)增大趨勢(shì)。

圖6c中,肥料球度響應(yīng)曲面開口向下,顯示了當(dāng)?shù)容S率為中水平,薄片率及磨圓度對(duì)球度的交互影響,且當(dāng)磨圓度為低水平,薄片率為高水平時(shí),肥料球度最高。由等高線可以看出:磨圓度與薄片率的交互作用顯著,薄片率對(duì)球度的影響比磨圓度對(duì)球度的影響更大。當(dāng)?shù)容S率為中水平時(shí),薄片率在中、高水平,肥料球度隨磨圓度的增大而呈現(xiàn)減小趨勢(shì),且薄片率較大時(shí),磨圓度對(duì)球度的影響較為明顯,表現(xiàn)在圖中的球度曲線比較陡,說明在薄片率在0.92~1.00范圍內(nèi)時(shí),適當(dāng)減小磨圓度能顯著提高肥料球度;當(dāng)?shù)容S率為中水平時(shí),磨圓度在任一水平,肥料球度隨薄片率的增大而呈現(xiàn)先增大后減小趨勢(shì)。

通過測(cè)定數(shù)據(jù)及響應(yīng)曲面分析可知,肥料等軸率、薄片率及磨圓度對(duì)肥料球度有一定影響,影響程度由大到小依次為等軸率、薄片率、磨圓度,且肥料球度隨等軸率的增大而呈現(xiàn)增大趨勢(shì),隨薄片率的增大而呈現(xiàn)先增大后減小趨勢(shì),隨磨圓度的增大而呈現(xiàn)先平緩減小后穩(wěn)定趨勢(shì)。綜合考慮肥料粒形特征對(duì)其球度的影響規(guī)律,應(yīng)用Design-Expert8.0軟件進(jìn)行優(yōu)化求解,得到肥料球度最佳的條件:等軸率為高水平,薄片率為中水平,磨圓度為低水平,即等軸率在0.98~1.00范圍內(nèi),薄片率在0.92~0.95范圍內(nèi),磨圓度在0.85~0.88范圍內(nèi)時(shí),肥料球度最佳,球度為92.9%。

5 試驗(yàn)驗(yàn)證

2019年2月在山東農(nóng)業(yè)大學(xué)山東省園藝機(jī)械與裝備重點(diǎn)實(shí)驗(yàn)室進(jìn)行驗(yàn)證試驗(yàn)。在同一批史丹利化肥股份有限公司生產(chǎn)的顆粒復(fù)合肥中,隨機(jī)選取50粒復(fù)合肥作為驗(yàn)證樣本,通過試驗(yàn)獲得肥料實(shí)測(cè)球度,利用球度回歸方程獲得肥料預(yù)測(cè)球度,根據(jù)式(12)計(jì)算誤差率,通過誤差率評(píng)定球度模型準(zhǔn)確性,試驗(yàn)結(jié)果如表8所示,球度及誤差率分布如圖6、圖7所示。

式中1為實(shí)測(cè)球度;2為預(yù)測(cè)球度;為誤差率。

試驗(yàn)結(jié)果表明:肥料實(shí)測(cè)球度與預(yù)測(cè)球度最大正負(fù)誤差率在9%以內(nèi),說明試驗(yàn)結(jié)果與響應(yīng)面分析值相符合,驗(yàn)證了所建數(shù)學(xué)模型的適合性。通過測(cè)量肥料的長(zhǎng)、寬、厚,計(jì)算肥料的等軸率、薄片率及磨圓度,間接測(cè)量、評(píng)定肥料的球度參數(shù),為肥料生產(chǎn)和質(zhì)量檢驗(yàn)提供理論依據(jù)。肥料球度等粒形參數(shù)影響肥料的結(jié)塊及養(yǎng)分?jǐn)U散,測(cè)量、評(píng)定肥料球度也可為研究粒形參數(shù)對(duì)肥料的擴(kuò)散規(guī)律提供基礎(chǔ)參數(shù)。

表8 驗(yàn)證試驗(yàn)結(jié)果

圖6 誤差率分布

圖7 球度分布

6 結(jié) 論

1)確定肥料粒形特征之間的相互關(guān)系,通過回歸統(tǒng)計(jì),結(jié)合響應(yīng)面和等高線分析,得知:肥料球度與等軸率、薄片率及磨圓度各因素之間存在顯著性較高的多元相關(guān)關(guān)系,各因素對(duì)肥料球度影響程度從高到低依次為等軸率、薄片率、磨圓度,且當(dāng)?shù)容S率在0.98~1.00,薄片率在0.92~0.95,磨圓度在0.85~0.88范圍內(nèi)時(shí),肥料球度最高,為92.9%。

2)建立肥料球度數(shù)學(xué)模型,通過農(nóng)業(yè)物料粒形分析儀測(cè)定肥料粒形特征,采用單因素及Box-Behnken中心組合試驗(yàn)建立肥料球度的數(shù)學(xué)模型,并通過試驗(yàn)驗(yàn)證發(fā)現(xiàn):肥料預(yù)測(cè)球度與實(shí)測(cè)球度最大正負(fù)誤差率在9%以內(nèi),說明肥料球度數(shù)學(xué)模型準(zhǔn)確可靠,為肥料生產(chǎn)和質(zhì)量檢驗(yàn)提供理論依據(jù)。雖完成粒形特征相互關(guān)系的研究,但并未研究肥料粒形特征對(duì)其理化性質(zhì)的影響,肥料粒形特征對(duì)其理化性質(zhì)的影響是下一步研究計(jì)劃。

[1]王維平,羅洪波,蔣紹志,等. 復(fù)合肥料結(jié)塊機(jī)理研究[J]. 磷肥與復(fù)肥,2010,25(6):24-25,28.

Wang Weiping, Luo Hongbo, Jiang Shaozhi, et al. Study on caking mechanism of compound fertilizer[J]. Phosphate and Compound Fertilizer, 2010, 25(6): 24-25, 28. (in Chinese with English abstract)

[2]田慎重,郭洪海,姚利,等. 中國(guó)種養(yǎng)業(yè)廢棄物肥料化利用發(fā)展分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(增刊1):123-131.

Tian Shenzhong, Guo Honghai, Yao Li, et al. Development analysis for fertilizer utilization of agricultural planting and animal wastes in China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(Supp.1): 123-131. (in Chinese with English abstract)

[3]陳娉婷,鄧丹丹,羅治情,等. 基于農(nóng)業(yè)信息化應(yīng)用的肥料分類與編碼[J]. 湖北農(nóng)業(yè)科學(xué),2016,55(22):5949-5953,5957.

Chen Pinting, Deng Dandan, Luo Zhiqing, et al. Classification and coding of agricultural fertilizer based on agriculture industry informatization[J]. Hubei Agricultural Sciences, 2016, 55(22): 5949-5953, 5957. (in Chinese with English abstract)

[4]馬云海,張金波,吳亞麗. 農(nóng)業(yè)物料學(xué)[M]. 北京:化學(xué)工業(yè)出版社,2015:2-4.

[5]徐立章,李洋,李耀明,等. 谷物聯(lián)合收獲機(jī)清選技術(shù)與裝置研究進(jìn)展[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2019,50(10):1-16.

Xu Lizhang, Li Yang, Li Yaoming, et al. Research progress on cleaning technology and device of grain combine harvester[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(10): 1-16. (in Chinese with English abstract)

[6]宋亞美,熊耀,沈玉霞,等. 化肥的結(jié)塊問題及防結(jié)塊措施[J]. 河南化工,2016,33(12):10-13.

Song Yamei, Xiong Yao, Shen Yuxia, et al. Problem of fertilizer caking and anti-caking measures[J]. Henan Chemical Industry, 2016, 33(12): 10-13. (in Chinese with English abstract)

[7]侯華銘,崔清亮,郭玉明. 全喂入谷子聯(lián)合收獲機(jī)脫出物含水率對(duì)其懸浮特性的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(24):29-35.

Hou Huaming Cui Qingliang Guo Yuming. Effects of moisture contents of threshed materials from whole-feeding combine for foxtail millet on their suspension characteristics[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(24): 29-35. (in Chinese with English abstract)

[8]闞洪福,蘇景利,唐傳軍. 氨酸法復(fù)合肥防結(jié)塊措施及其應(yīng)用[J]. 磷肥與復(fù)肥,2016,31(6):31-32.

Kan Hongfu, Su Jingli, Tang Chuanjun. Anti-caking measure for compound fertilizer by acid ammoniation process and its application[J]. Phosphate and Compound Fertilizer, 2016, 31(6): 31-32. (in Chinese with English abstract)

[9]孔卓. 復(fù)混肥結(jié)塊原因及防范措施[J]. 化肥工業(yè),2001(1):10-13,59.

Kong Zhuo. Causes for caking of compound fertilizers and precautions to be taken[J]. Chemical Fertilizer Industry, 2001(1): 10-13, 59. (in Chinese with English abstract)

[10]Silverberg J, Lehr J R, Jr G H. Fertilizer caking, microscopic study of the mechanism of caking and its prevention in some granular fertilizers[J]. Journal of Agricultural & Food Chemistry, 1958, 6(6): 442-448. (in Chinese with English abstract)

[11]王蘊(yùn)嘉,宋二祥. 堆石料顆粒形狀對(duì)堆積密度及強(qiáng)度影響的離散元分析[J]. 巖土力學(xué),2019,40(6):1-11.

Wang Yunjia, Song Erxiang. Dem analysis of the particle shape effect on packing density and strength of rockfills[J]. Rock and Soil Mechanics, 2019, 40(6): 1-11. (in Chinese with English abstract)

[12]裴潤(rùn)有,解彩麗,胡科先,等. 壓裂支撐劑圓度球度測(cè)定方法研究[J]. 電子測(cè)量技術(shù),2015,38(1):21-24,46.

Pei Runyou, Xie Caili, Hu Kexian, et al. Research on measurement of sphericity and roundness of proppant[J]. Electronic Measurement Technology, 2015, 38(1): 21-24, 46. (in Chinese with English abstract)

[13]Guo C Y, Rollings R S, Lynch L N. Morphological study of coarse aggregates using image analysis[J]. Journal of Materials in Civil Engineering, 1998, 10(3): 135-142. (in Chinese with English abstract)

[14]李北星,王威,陳夢(mèng)義,等. 粗骨料的等軸率、圓度和球度及其相互關(guān)系[J]. 建筑材料學(xué)報(bào),2015,18(4):531-536.

Li Beixing, Wang Wei, Chen Mengyi, et al. Isometric ratio, roundness and sphericity of coarse aggregates and their relationship[J]. Journal of Building Materials, 2015, 18(4): 531-536. (in Chinese with English abstract)

[15]Kuo C Y, Freeman R. B. Imaging indices for quantification of shape, angularity, and surface texture of aggregates[J]. Journal of Transportation Research Board, 2000, 1721(1): 57-65.

[16]Wadell H. Volume, shape, and roundness of rock particles[J]. Journal of Geology, 1932, 40: 443-451.

[17]張峰,張曉東,趙冬玲,等. 利用圖像處理技術(shù)進(jìn)行蘋果外觀質(zhì)量檢測(cè)[J]. 中國(guó)農(nóng)業(yè)大學(xué)學(xué)報(bào),2006,11(6):96-99.

Zhang Feng, Zhang Xiaodong, Zhao Dongling, et al. External quality detection of apples using image processing technology[J]. Journal of China Agricultural University, 2006, 11(6): 96-99. (in Chinese with English abstract)

[18]苑進(jìn),劉勤華,劉雪美,等. 多肥料變比變量施肥過程模擬與排落肥結(jié)構(gòu)優(yōu)化[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2014,45(11):81-87.

Yuan Jin, Liu Qinhua, Liu Xuemei, et al. Granular multi-flows fertilization process simulation and tube structure optimization in nutrient proportion of variable rate fertilization[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(11): 81-87. (in Chinese with English abstract)

[19]劉雙喜,孫林林,付千悅,等. 單粒谷物體積排液法精確測(cè)量研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2018,49(3):36-42.

Liu Shuangxi, Sun Linlin, Fu Qianyue, et al. Accurate measurement of single grain volume draining method[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(3): 36-42. (in Chinese with English abstract)

[20]龔愛平,張衛(wèi)正,何勇,等. 基于三維線框模型的類球體農(nóng)產(chǎn)品體積和表面積測(cè)量[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,47(7):338-344.

Gong Aiping, Zhang Weizheng, He Yong, et al. Measurement of volume and surface area for spheroid agricultural product based on 3D wire frame model[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(7): 338-344. (in Chinese with English abstract)

[21]王俊,申立中,楊永忠,等. 基于響應(yīng)曲面法的非道路用高壓共軌柴油機(jī)設(shè)計(jì)點(diǎn)優(yōu)化標(biāo)定[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(3):31-39.

Wang Jun, Shen Lizhong, Yang Yongzhong, et al. Optimizing calibration of design points for non-road high pressure common rail diesel engine base on response surface methodology[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(3): 31-39. (in Chinese with English abstract)

[22]劉春景,唐敦兵,鄭加強(qiáng),等. 滴灌梯形迷宮滴頭流道水力性能的響應(yīng)曲面法優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2011,27(2):46-51.

Liu Chunjing, Tang Dunbing, Zheng Jiaqiang, et al. Optimization of hydraulic performance for drip irrigation trapezoidal labyrinth channel of emitter using response surface methodology[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(2): 46-51. (in Chinese with English abstract)

[23]欒慶祥,趙楊,周欣,等. 單因素試驗(yàn)結(jié)合響應(yīng)面分析法優(yōu)化杜仲最佳提取工藝[J]. 藥物分析雜志,2013,33(5):859-865.

Luan Qingxiang, Zhao Yang, Zhou Xin, et al. Optimization on extraction technology for eucommia ulmoides by single factor experiment combined with response surface methodology[J]. Chin J Pharm Anal, 2013, 33(5): 859-865. (in Chinese with English abstract)

[24]李明,張婷,董學(xué)虎,等. 3ZSP-2型甘蔗中耕施肥培土機(jī)刮板式排肥裝置參數(shù)優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(23):36-42.

Li Ming, Zhang Ting, Dong Xuehu, et al. Parameter optimization on scraper fertilizer feed unit of 3ZSP-2 type sugarcane intertillage fertilizer applicator-cum-hiller[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(23): 36-42. (in Chinese with English abstract)

[25]郁志宏,淮守成,王文明,等. 基于彈齒軌跡的滾筒式牧草撿拾器遺漏率及工作參數(shù)優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(4):37-43.

Yu Zhihong, Huai Shoucheng, Wang Wenming, et al. Leakage rate and optimization of working parameters for cylinder pickup collector based on spring-finger trajectory[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(4): 37-43. (in Chinese with English abstract)

[26]王建楠,劉敏基,曹明珠,等. 薏苡脫殼機(jī)關(guān)鍵部件作業(yè)參數(shù)優(yōu)化與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(13):288-295.

Wang Jiannan, Liu Minji, Cao Mingzhu, et al. Working parameter optimization and experiment of key components of coix lacryma-jobi sheller[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(13): 288-295. (in Chinese with English abstract)

Effect of different fertilizer shape characteristics on fertilizer sphericity

Zhang Hongjian1,2, Shi Shaojun2, Liu Shuangxi1,3, Wang Zhen1,2, Mu Junlin2, Wang Jinxing1,3※

(1.,271018,; 2.,271018,; 3.,271018,)

A fertilizer that served as an important agricultural input, become rank first in the world in terms of Chinese production and utilization, further ensuring national food security and agricultural productivity. However, there are various effects of the shape characteristics of fertilizers on the appearance quality, strength, fluidity and the efficiency of mechanical fertilization in modern mechanized agriculture. If the sphericity of particles in a fertilizer is high, the strength of the fertilizer will be high, indicating hardly being deformed and/or broken. If the roundness of particles in a fertilizer is high, the porosity of the fertilizer will be large, indicating the better heat dissipation and flow effect. There are significant influences of particle shape and pore structure on the diffusion of salt ions in the fertilizer, while in turn the agglomeration of the fertilizer can affect the pore structure that caused by the accumulation of the fertilizer. Therefore, the effects of different shape characteristics on the fertilizer sphericity were studied by using single-factor and central combination tests, in order to clarify the relationship between various shape features and mechanical properties in the fertilizer. Firstly, the length, width, thickness, equiaxed rate, flake rate, roundness and sphericity of fertilizers were measured by the shape analyzer for agricultural materials. Secondly, the correlation coefficient between different shape characteristics and the fertilizer sphericity was determined by the single-factor variance test. Finally, taking the equiaxed rate, flake rate, roundness of fertilizers as the main influencing factors, the mathematical model of the fertilizer sphericity was established by Box-Behnken central combination test, and then the relationship between these factors and fertilizer sphericity was analyzed by the approaches of the regression statistical variance, response surface and isoline. The simulated results showed that a significant multiple regression equation could be fitted between the fertilizer sphericity and the equiaxed rate, flake rate, and roundness. The influence degree of each factor on the fertilizer sphericity from high to low was in the order of the equiaxed rate, flake rate, and roundness. When the equiaxed rate was in the range of 0.98-1.00, the flake rate was in the range of 0.92-0.95, and the roundness was in the range of 0.85-0.88, while the fertilizer sphericity was the highest, reaching over 92.9%. In the same batch of the compound fertilizer, 50 particles were randomly selected as verification samples, and the measured sphericity of fertilizer was obtained through various experiments. The predicted sphericity of fertilizer was achieved by the sphericity regression equations, while the accuracy of the sphericity model was evaluated by the error rate. The test results show that the maximum positive and negative error rate between the measured- and predicted sphericity of fertilizer was within 9%, indicating that the test results were consistent with the simulated values from the response surface analysis, as well verifying the proposed mathematical model. Therefore, a novel method for the indirect measurement of the fertilizer sphericity was proposed, which can provide significantly theoretical fundamentals for the production and quality inspection of fertilizers.

fertilizer; models; shape characteristic; response surface method; single-factor test; central composite test

張宏建,石紹軍,劉雙喜,王 震,慕君林,王金星. 不同肥料粒形特征對(duì)肥料球度的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(1):59-66.doi:10.11975/j.issn.1002-6819.2020.01.007 http://www.tcsae.org

Zhang Hongjian, Shi Shaojun, Liu Shuangxi, Wang Zhen, Mu Junlin, Wang Jinxing. Effect of different fertilizer shape characteristics on fertilizer sphericity[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(1): 59-66. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.01.007 http://www.tcsae.org

2019-09-11

2019-11-05

“十三五”國(guó)家重點(diǎn)研發(fā)計(jì)劃(2016YFD0201104);國(guó)家蘋果產(chǎn)業(yè)技術(shù)體系項(xiàng)目(CARS-27);山東省重點(diǎn)研發(fā)計(jì)劃(2017CXGC0211);“雙一流”獎(jiǎng)補(bǔ)資金項(xiàng)目(SYL2017XTTD14)

張宏建,博士生,主要從事圖像處理和機(jī)器視覺研究。Email:zhanghongji_an@163.com

王金星,教授,博士生導(dǎo)師,主要從事精密工程與科學(xué)儀器研究。Email:jinxingw@163.com

10.11975/j.issn.1002-6819.2020.01.007

S220

A

1002-6819(2020)-01-0059-08

猜你喜歡
薄片肥料顆粒
Efficacy and safety of Mianyi granules (免疫Ⅱ顆粒) for reversal of immune nonresponse following antiretroviral therapy of human immunodeficiency virus-1:a randomized,double-blind,multi-center,placebo-controlled trial
來自森林的植物薄片
2019年3月肥料購、銷、存統(tǒng)計(jì)
2019年3月肥料購、銷、存統(tǒng)計(jì)
要讓顆粒都?xì)w倉
心聲歌刊(2019年1期)2019-05-09 03:21:32
2018年12月肥料購、銷、存統(tǒng)計(jì)
肥料是否正規(guī) 教你快速辨別
你真好
你真好
疏風(fēng)定喘顆粒輔料的篩選
中成藥(2017年4期)2017-05-17 06:09:29
广东省| 华阴市| 江阴市| 北流市| 渝中区| 聂荣县| 南召县| 普兰县| 沂水县| 峨边| 古丈县| 迭部县| 吴江市| 监利县| 张家口市| 青岛市| 四川省| 安宁市| 佛学| 南开区| 肇州县| 康保县| 沈阳市| 绥芬河市| 运城市| 保定市| 阿克陶县| 正镶白旗| 河间市| 淮滨县| 吉安县| 南丰县| 霍林郭勒市| 家居| 华蓥市| 侯马市| 桑日县| 沙田区| 曲周县| 噶尔县| 纳雍县|