汪吉東 馮冰 李傳哲 徐聰 吳迪 王磊 張輝 許仙菊 艾玉春 張永春
摘要:通過測定土壤酸堿緩沖容量,可以評價土壤抗酸化能力,了解土壤酸化過程,為修復酸化土壤提供依據(jù)。以中國部分典型地域的潮土、紅壤及太湖地區(qū)水稻土為對象,對測定土壤酸堿緩沖容量的酸堿滴定法和培養(yǎng)法進行比較分析,探索適合測定不同土壤類型土壤酸堿緩沖容量的方法。結果顯示,使用無CO2蒸餾水、CaCl2(0.01 mol/kg)浸提土壤(土水質(zhì)量比為1.0∶2.5),運用HCl 和NaOH 滴定法分析的pH(H2O)、pH(CaCl2)在突變范圍內(nèi)與酸堿加入量呈極顯著線性相關(P<0.01;CaCl2浸提的紅壤pH除外)。利用CaCO3和H2SO4培養(yǎng)法分析則發(fā)現(xiàn),初始反應為酸性的土壤,其pH值與酸堿加入量呈顯著的線性相關關系(P<0.05),但潮土和烏柵土除外。研究結果表明,以無CO2蒸餾水進行浸提,運用HCl和NaOH進行滴定的方法測定土壤酸堿緩沖容量對不同土壤類型都具有較好的適應性。利用該方法對長期不同施肥條件下太湖地區(qū)水稻土酸堿緩沖容量進行測定發(fā)現(xiàn),各施肥處理土壤酸堿緩沖容量為19.6~24.8 mmol/kg;太湖地區(qū)黃泥土酸堿緩沖容量受土壤有機質(zhì)含量及陽離子交換量的影響,增施豬糞和施用過磷酸鈣是提高該土壤酸堿緩沖能力的重要舉措。
關鍵詞:土壤酸化;酸堿緩沖容量;測定方法;紅壤;水稻土
中圖分類號:S153文獻標識碼:A文章編號:1000-4440(2020)06-1452-07
Abstract:By determination of soil acidity buffering capacity (pHbc), the anti-acidification ability of soils can be evaluated and the acidization of soils can be understood, thus provide basis for the remediation of acidified soils. To explore the suitable method for determining pHbc of different soil types, fluvo-aquic soil and red soil from partial typical regions and paddy soil from Taihu Lake region of China were used as the objects, acid-base titration method and culturing method for measuring pHbc were compared and analyzed. The results showed that the pH values of the jump rang analyzed by HCl-NaOH titration method showed highly significant (P<0.01, except for the red soil extracted by CaCl2 solution) linear relationship with the volumes of the acid or base added, using CO2-free deionized water and CaCl2 solution (0.01 mol/kg) in the leaching of soils, and the mass ratio of soil to solution was 1.0 to 2.5. Analysis on the results of CaCO3 and H2SO4 incubation methods showed that, for the acid soils according to initial reaction, the relationship between the adding amount of acid or base and soil pH values showed significantly linear regression correlation (P<0.05), except for fluvo-aquic soil and Wuzha soil. The results indicated that pHbc detected by the HCl-NaOH titration method showed good adaptability for different soils types, using CO2-free deionized water in leaching. The pHbc of paddy soil under long-term fertilization conditions in Taihu Lake region determined by the method showed that, the pHbc ranged from 19.6 mmol/kg to 24.8 mmol/kg. The pHbc of yellow soil in Taihu Lake region was affected by content of soil organic matter and cation exchange capacity, and the application of pig manure and superphosphate had positive effects on enhancing soil pHbc.
Key words:soil acidification;acid buffering capacity;determination method;red soil;paddy soil
參考文獻:
[1]ZHU Q C, LIU X, HAO T, et al. Modeling soil acidification in typical Chinese cropping systems[J]. Science of the Total Environment, 2018(613/614):1339-1348.
[2]VRIES W D, BREEUWSMA A. Relative importance of natural and anthropogenic proton sources in soils in the Netherlands[J]. Water Air & Soil Pollution, 1986, 28(1/2): 173-184.
[3]王代長,蔣新,卞永榮,等. 酸沉降下加速土壤酸化的影響因素[J]. 生態(tài)環(huán)境學報, 2002, 11(2): 152-157.
[4]BAILEY V L , FANSLER S J, STEGEN J C, et al. Linking microbial community structure to β-glucosidic function in soil aggregates[J]. Isme Journal, 2013, 7(10): 2044-2053.
[5]CAPUTO J, BEIER C M, SULLIVAN T J, et al. Modeled effects of soil acidification on long-term ecological and economic outcomes for managed forests in the Adirondack region (USA)[J]. Science of the Total Environment, 2016, 565: 401-411.
[6]TIAN D, NIU S. A global analysis of soil acidification caused by nitrogen addition[J]. Environmental Research Letters, 2012, 10(2): 1714-1721.
[7]GUO J H, LIU X J, ZHANG Y, et al. Significant acidification in major Chinese croplands[J]. Science, 2010, 327(5968): 1008-1010.
[8]XIA X, YANG Z, YU T, et al. Detecting changes of soil environmental parameters by statistics and GIS: a case from the lower Chang jiang plain, China[J]. Journal of Geochemical Exploration, 2017, 181: 116-128.
[9]ZHU H H, WU J S, HUANG D Y, et al. Improving fertility and productivity of a highly-weathered upland soil in subtropical China by incorporating rice straw[J]. Plant & Soil, 2010, 331(1/2): 427-437.
[10]戎秋濤,楊春茂,徐文彬. 土壤酸化研究進展[J]. 地球科學進展, 1996, 11(4): 396-401.
[11]LESTURGEZ G, POSS R, NOBLE A, et al. Soil acidification without pH drop under intensive cropping systems in Northeast Thailand[J]. Agriculture Ecosystems & Environment, 2006, 114(2): 239-248.
[12]ULRICH B. Natural and anthropogenic component of soil acidification[J]. Z Pflanzenernhr Bodenk, 1986, 149: 702-717.
[13]CAI Z, WANG B, XU M, et al. Intensified soil acidification from chemical N fertilization and prevention by manure in an 18-year field experiment in the red soil of southern China[J]. Journal of Soils and Sediments, 2015, 15(2): 260-270.
[14]汪吉東,張輝,張永春,等. 連續(xù)施用不同比例雞糞氮對水稻土有機質(zhì)積累及土壤酸化的影響[J]. 植物營養(yǎng)與肥料學報, 2014, 20(5): 1178-1185.
[15]李志,袁穎丹,張學玲,等. 不同干擾程度對山地草甸土壤有機質(zhì)及酸度的影響[J].江蘇農(nóng)業(yè)科學,2018,46(9):285-288.
[16]趙敏,范瓊,鄧愛妮,等. 酸性土壤改良對土壤鎘形態(tài)改變及數(shù)仔菜鎘含量的影響[J].南方農(nóng)業(yè)學報,2018,49(6):1089-1094.
[17]于兵,門明新,劉霈珈,等.有機酸對重金屬污染土壤的淋洗效果[J]. 江蘇農(nóng)業(yè)科學,2018,46(13):284-287.
[18]姜軍,徐仁扣,趙安珍. 用酸堿滴定法測定酸性紅壤的pH緩沖容量[J]. 土壤通報, 2006(6): 1247-1248.
[19]XU J M , TANG C , CHEN Z L . The role of plant residues in pH change of acid soils differing in initial pH[J]. Soil Biology & Biochemistry, 2006, 38(4): 709-719.
[20]黃平,張佳寶,朱安寧,等. 黃淮海平原典型潮土的酸堿緩沖性能[J]. 中國農(nóng)業(yè)科學, 2009, 42(7): 2392-2396.
[21]TARKALSON D D, PAYERO J O, HERGERT G W, et al. Acidification of soil in a dry land winter wheat-sorghum/corn-fallow rotation in the semiarid U.S. Great Plains[J]. Plant & Soil, 2006, 283(1/2): 367-379.
[22]成杰民,胡光魯,潘根興. 用酸堿滴定曲線擬合參數(shù)表征土壤對酸堿緩沖能力的新方法[J]. 農(nóng)業(yè)環(huán)境科學學報, 2004, 23(3): 569-573.
[23]魯如坤. 土壤農(nóng)業(yè)化學分析方法[M]. 北京:中國農(nóng)業(yè)科技出版社, 1998.
[24]TANG C, RAPHAEL C, RENGEL Z, et al. Understanding subsoil acidification: effect of nitrogen transformation and nitrate leaching[J]. Australian Journal of Soil Research, 2000, 38(4): 837-849.
[25]汪吉東,戚冰潔,張永春,等. 長期施肥對砂壤質(zhì)石灰性潮土土壤酸堿緩沖體系的影響[J]. 應用生態(tài)學報, 2012, 23(4): 1031-1036.
(責任編輯:陳海霞)