趙文慧,馬 壘,徐基勝,譚 鈞,張佳寶,趙炳梓?
秸稈與木本泥炭短期施用對潮土有機(jī)質(zhì)及微生物群落組成和功能的影響*
趙文慧1,2,馬 壘1,2,徐基勝1,譚 鈞3,張佳寶1,趙炳梓1?
(1. 土壤與農(nóng)業(yè)可持續(xù)發(fā)展國家重點實驗室(中國科學(xué)院南京土壤研究所),南京 210008;2. 中國科學(xué)院大學(xué),北京 100049;3. 北京中向利豐科技有限公司,北京 100004)
直接添加富含腐殖物質(zhì)的木本泥炭可快速提升土壤有機(jī)碳含量,但其與常規(guī)施用秸稈相比的效應(yīng)如何尚不清楚。通過設(shè)置不添加物料(CK)、施用秸稈(R)、施用木本泥炭(MT)、秸稈還田和木本泥炭聯(lián)合施用(RMT)四個田間試驗處理,經(jīng)過一季玉米生長后比較不同處理對玉米產(chǎn)量、土壤肥力、細(xì)菌群落組成和功能的影響。結(jié)果表明,R和RMT處理的地上生物量與CK無顯著差異,而在玉米整個生育期的平均呼吸速率則分別較CK高40%和64%;MT處理的地上生物量較CK低10%,但MT和CK的平均呼吸速率無顯著差異。另一方面,R處理的土壤有機(jī)質(zhì)(SOM)含量與CK無顯著差異,而MT和RMT處理的SOM含量則較CK分別高79%和56%?;谥鞒煞址治龊凸δ茴A(yù)測發(fā)現(xiàn),與CK處理比,R處理分解利用新鮮秸稈的綠彎菌門、芽單胞菌門、節(jié)細(xì)菌屬、指孢囊菌屬和顯著增多,而化能異養(yǎng)、需氧化能異養(yǎng)、尿素代謝功能顯著降低;MT處理降解大分子有機(jī)物的土壤桿菌屬纖維菌屬、德沃斯氏菌屬、農(nóng)研絲桿菌屬、類諾卡氏菌屬和顯著增多,需氧化能異養(yǎng)功能顯著降低,纖維素代謝功能顯著升高;而RMT處理與CK群落組成和功能類似。因此,在潮土區(qū)單獨(dú)施用MT盡管能迅速提升SOM含量,但可能導(dǎo)致短期內(nèi)作物產(chǎn)量降低,而R和MT聯(lián)合施用在迅速提升SOM的同時可提高土壤呼吸,維持穩(wěn)定的微生物群落和功能。
秸稈還田;木本泥炭;高通量測序;微生物群落;功能預(yù)測
土壤有機(jī)質(zhì)是土壤肥力的重要指標(biāo),是影響黃淮海平原潮土區(qū)作物產(chǎn)量高低的決定性因子之一[1]。黃淮海平原典型潮土是由河流沖積物受地下水運(yùn)動和耕作活動影響而形成,砂粒含量高、土壤結(jié)構(gòu)差、土壤微生物活動強(qiáng)烈,使得土壤有機(jī)質(zhì)含量低且難以積累[2]。因此,如何促進(jìn)潮土土壤有機(jī)質(zhì)積累是提升潮土生產(chǎn)力的關(guān)鍵所在[3]。
秸稈作為農(nóng)業(yè)生產(chǎn)的主要副產(chǎn)品,含有豐富的有機(jī)碳,是一類重要的能直接利用的可再生生物資源,因此,秸稈還田是提高作物產(chǎn)量和土壤有機(jī)質(zhì)的重要途徑[4]。但利用秸稈還田提升土壤有機(jī)質(zhì)通常需要冗長過程,在黃淮海平原潮土區(qū),即使連續(xù)18 a配施化肥和秸稈,土壤有機(jī)質(zhì)含量也僅有12.10 g·kg–1[5],不能達(dá)到當(dāng)?shù)馗弋a(chǎn)區(qū)土壤有機(jī)質(zhì)水平[6]。研究表明,小麥秸稈在黃潮土中一年后腐殖化系數(shù)為25.80%[7],因此,較低的秸稈腐殖化程度不利于土壤有機(jī)質(zhì)快速累積。
木本泥炭是由木本植物殘體在水分過多、通氣不良、氣溫較低的沼澤環(huán)境中,經(jīng)過長期累積而形成的一種不易分解、穩(wěn)定的有機(jī)物堆積層。其具有有機(jī)質(zhì)和腐殖酸含量高、纖維素豐富、疏松多孔、比表面積大、保水保肥能力強(qiáng)等優(yōu)點[8]。腐殖物質(zhì)是土壤有機(jī)質(zhì)的重要組成部分[9],由于其表面含有羧基、酚羥基和醇羥基等含氧官能團(tuán),能夠與土壤中養(yǎng)分離子發(fā)生相互作用,影響土壤養(yǎng)分吸附、釋放[10]。腐殖物質(zhì)也能與黏土礦物結(jié)合形成有機(jī)無機(jī)復(fù)合體,促進(jìn)土壤團(tuán)聚體的形成和穩(wěn)定,對土壤物理化學(xué)及生物性狀有重要影響[11]。木本泥炭施用還能夠提高土壤碳庫管理指數(shù),提高土壤團(tuán)聚體的穩(wěn)定性[12]。有研究表明,土壤有機(jī)質(zhì)含量與作物產(chǎn)量存在顯著正相關(guān)關(guān)系[3],因而預(yù)測在土壤中直接施用木本泥炭可能會在短期內(nèi)快速提升土壤有機(jī)質(zhì)含量,從而有可能快速提高瘠薄潮土上作物的產(chǎn)量,但其效應(yīng)如何、與直接秸稈還田相比是否具有優(yōu)越性等問題尚不清楚。
本研究通過田間試驗,在河南封丘典型潮土區(qū)設(shè)置不添加物料(CK)、秸稈還田(R)、木本泥炭(MT)以及秸稈還田+木本泥炭(RMT)四個處理,其中,R和MT為等碳量施用。主要研究目的包括:(1)明確秸稈和木本泥炭等碳量單獨(dú)施用條件下對作物產(chǎn)量和土壤肥力的影響;(2)明確秸稈和木本泥炭聯(lián)合施用的疊加效應(yīng);(3)基于高通量分析明確不同處理對土壤細(xì)菌群落結(jié)構(gòu)和組成的影響。旨在為潮土區(qū)土壤地力提升、作物增產(chǎn)提供理論依據(jù)和科學(xué)支持。
試驗地位于河南省封丘農(nóng)田生態(tài)系統(tǒng)國家野外科學(xué)觀測研究站內(nèi)(35°00′N,114°24′E)。該地位于黃河北岸,屬半干旱、半濕潤的暖溫帶季風(fēng)氣候,年均氣溫13.9℃,年均降水量為605 mm,土壤類型為潮土,種植模式為冬小麥—夏玉米輪作。試驗開始前耕層土壤基礎(chǔ)化學(xué)性質(zhì)為:pH 8.66,有機(jī)質(zhì)5.76 g·kg–1,全氮0.55 g·kg–1,有效磷 6.51 mg·kg–1,速效鉀96.92 mg·kg–1。
試驗于2016年玉米季開始,共設(shè)4個處理:(1)不施用有機(jī)物料(CK);(2)秸稈還田(R);(3)木本泥炭(MT);(4)秸稈還田+木本泥炭(RMT)。每個處理3個重復(fù),共12個小區(qū),每個小區(qū)面積為6 m×8 m。玉米播種期為2016年6月10日,種植密度為每公頃67 000株,行距為60 cm,株距為25 cm。有機(jī)物料在玉米播種前施用,R和MT處理為等碳量施用,秸稈施用量為7 500 kg·hm–2,木本泥炭施用量為7 005 kg·hm–2;RMT處理秸稈施用量為7 500 kg·hm–2,木本泥炭施用量為7 005 kg·hm–2。4個處理化肥施用量相同,即N 225.0 kg·hm–2,P2O5134.4 kg·hm–2,K2O 120.0 kg·hm–2。氮肥用尿素(CO(NH2)2),磷肥用磷酸二銨((NH4)2HPO4),鉀肥用硫酸鉀(K2SO4),其中,40%氮肥作為基肥施入,60%作為追肥在玉米拔節(jié)期施入,磷鉀肥均作為基肥施入。
供試玉米品種為登海605,購自山東登海種業(yè)股份有限公司。供試木本泥炭購自北京利豐公司,木本泥炭有機(jī)碳含量為482.8 g·kg–1,全氮、全磷和全鉀含量分別為10.77 g·kg–1、0.77 g·kg–1和2.72 g·kg–1。秸稈為上季小麥秸稈,有機(jī)碳含量為450.9 g·kg–1,全氮、全磷和全鉀含量分別為6.51 g·kg–1、0.51 g·kg–1和15.04 g·kg–1。
玉米籽粒和地上部生物量于玉米收獲期測定,每個小區(qū)選擇4 m2的面積,將果穗與莖稈分開曬干,測定籽粒產(chǎn)量和莖稈產(chǎn)量,地上部生物量為籽粒產(chǎn)量與莖稈產(chǎn)量之和。土壤樣品于2016年9月玉米收獲期采集。按照S采樣法,每個小區(qū)使用直徑5 cm的土鉆采集5份0~20 cm土樣,混合成一個樣品。所有樣品置于冰袋中運(yùn)回實驗室。去除植物根系和石塊后過2 mm篩混勻,樣品分為三部分,一部分風(fēng)干后用于土壤理化性質(zhì)的測定,一部分置于–20℃用于測定硝態(tài)氮含量,一部分置于–80℃用于土壤DNA提取。
在玉米全生育期采用Li-6400土壤呼吸測定系統(tǒng)(LI-COR,美國)檢測土壤呼吸,檢測時間為晴朗無風(fēng)天氣的上午9:00-11:00。
土壤DNA采用Fast DNA Spin Kit for Soil(MP Biomedicals,Santa Ana,CA,美國)試劑盒提取。每個樣品稱取0.50 g鮮土,按照說明書操作提取DNA。
選取細(xì)菌16S rRNA基因的V4~V5區(qū)進(jìn)行高通量測序測定。PCR擴(kuò)增采用特異性引物515F(5′-GTGCCAGCMGCCGCGGTAA-3′)/907R(5′-CC GTCAATTCMTTTRAGTTT-3′)。PCR擴(kuò)增條件包括94℃ 5 min,90℃ 60 s,55℃ 60 s,72℃ 75 s,30個循環(huán),之后72℃ 10 min。反應(yīng)產(chǎn)物采用QIA quick PCR Purification kit(Qiagen)進(jìn)行純化。將不同樣品的PCR擴(kuò)增產(chǎn)物等摩爾混合后,采用Illumina公司MiSeq測序儀完成序列分析(委托上海派森諾生物科技股份有限公司測定)。
高通量測序所得序列按照以下步驟進(jìn)行分析[14]:(1)雙端序列采用FLASH進(jìn)行拼接;(2)使用Cutadapt軟件切除引物;(3)采用QIIME(1.91)去除質(zhì)量分?jǐn)?shù)低于20、序列短于300 bp的低質(zhì)量序列;(4)采用RDP數(shù)據(jù)庫去除嵌合體;(5)得到的高質(zhì)量序列采用Uparse軟件,以97%相似度進(jìn)行操作分類單元(Operation taxonomic unit,OTU)劃分,采用Blast方法以Greengeens13.8數(shù)據(jù)庫為比對進(jìn)行注釋。將未注釋到門水平及注釋為古菌的序列刪除后,所有樣品隨機(jī)抽取11 000條序列進(jìn)行后續(xù)分析。細(xì)菌香農(nóng)指數(shù)(Shannon)和ACE指數(shù)在QIIME中計算。采用STAMP 2.1.3軟件Welch’s-test進(jìn)行屬水平上的差異物種分析。采用FAPROTAX 數(shù)據(jù)庫進(jìn)行細(xì)菌功能預(yù)測。
使用SPSS 22.0軟件中皮爾森(Pearson)雙尾檢驗進(jìn)行細(xì)菌功能與土壤性質(zhì)相關(guān)性分析;平均值多重比較采用鄧肯新復(fù)檢驗法(Duncan’s New Multiple Range Test)進(jìn)行顯著性檢驗(< 0.05)。采用單因素方差分析對不同處理全生育期內(nèi)土壤呼吸速率平均值進(jìn)行差異顯著性檢驗。采用Microsoft Excel 2007和Origin 8.0軟件進(jìn)行數(shù)據(jù)處理和繪圖。
圖1a)表示玉米籽粒產(chǎn)量在四個處理間無顯著差異,變動范圍為8 840~9 742 kg·hm–2;從地上部生物量角度來看,CK、R、RMT處理間生物量類似,但MT處理的生物量較CK顯著降低,降低了10%(圖1b))。
注:CK、R、MT和RMT分別表示不添加有機(jī)物料、施用秸稈、施用木本泥炭、秸稈和木本泥炭聯(lián)合施用;誤差線表示標(biāo)準(zhǔn)差;不同字母表示處理間的顯著差異(鄧肯法,P<0.05)。下同Note:CK,R,MT,RMT stands for treatment of no organic material,straw,wood peat and straw coupled with wood peat,respectively; The error bars represent the standard deviation of the mean,different letters indicate significant differences between treatments(Duncan method,P<0.05). The same below
由表1可見,與CK處理相比,玉米收獲后R處理土壤有機(jī)質(zhì)(SOM)無顯著變化,而MT和RMT處理的SOM含量分別較CK增加79%和56%。土壤全氮在處理間無顯著性差異,從而導(dǎo)致土壤碳氮比在不同處理間的變化趨勢與SOM的變化趨勢類似。有效磷含量為MT處理最高,較其他處理高39%~82%;硝態(tài)氮含量為MT與RMT處理間無顯著差異,并較其他兩個處理高44%~58%。
表1 不同處理下土壤理化性質(zhì)
圖2表示,在玉米生育期,施用秸稈的RMT和R處理土壤呼吸速率在整個玉米生育期通常較不施用秸稈的MT和CK處理高。對全生育期的土壤呼吸速率平均值進(jìn)行方差分析的結(jié)果表示,RMT和R處理分別較CK處理高64%和40%,而MT處理則與CK處理差異未達(dá)顯著水平。
經(jīng)過質(zhì)量控制,總共得到173 793條高質(zhì)量序列(每個樣品序列數(shù)在11 544~20 507之間)。將所有樣品序列均一化為11 000條后,以97%相似度與Greengeens數(shù)據(jù)庫進(jìn)行比對,總共得到841條基本分類單元(OTU)。圖3a)表示,土壤細(xì)菌豐富度(ACE指數(shù))在各處理間無顯著性差異,說明各處理間細(xì)菌群落豐富度變化不顯著。與CK處理相比,R和MT處理香農(nóng)指數(shù)顯著升高,說明細(xì)菌群落多樣性較高,而RMT處理則對細(xì)菌多樣性無顯著影響(圖3b))。
基于均一化后的OTU豐度進(jìn)行主成分分析,前三軸總共解釋了71%的總方差(圖4a))。 CK處理與RMT處理距離相對較近,而與R和MT距離較遠(yuǎn),處理間呈現(xiàn)一定的群落分異,說明與CK處理相比,R和MT處理對細(xì)菌群落組成的影響大于RMT處理,但多元方差分析(Adonis)發(fā)現(xiàn)并未達(dá)到顯著水平。
注:折線圖表示整個玉米生育期土壤呼吸速率的動態(tài)變化,柱狀圖表示整個玉米生育期土壤呼吸速率的平均值。Note:The dashed line represents dynamic change in soil respiration rate during the whole maize growth period,and the column mean of soil respiration rates during the whole maize growth period.
圖3 不同處理土壤細(xì)菌豐富度與多樣性
細(xì)菌16S rRNA高通量測序序列經(jīng)物種注釋后歸屬于20個門、66個綱、128個目、195個科和262個屬(圖4b))。優(yōu)勢菌門為放線菌門(Actinobacteria)、變形菌門(Proteobacteria)和綠彎菌門(Chloroflexi),相對豐度分別為34.07%、27.77%和11.75%。其余相對豐度大于1%的門分別為酸桿菌門(Acidobacteria,11.22%)、芽單胞菌門(Gemmatimonadetes,5.85%)、浮霉菌門(Planctomycetes,5.43%)、擬桿菌門(Bacteroidetes,2.86%)、厚壁菌門(Firmicutes,1.60%)和硝化螺旋菌門(Nitrospirae,1.26%)。單因素方差分析發(fā)現(xiàn),與CK 處理相比,綠彎菌門和芽單胞菌門相對豐度在R處理中升高20.61%和20.05%(<0.05),而浮霉菌門相對豐度在R和MT處理分別降低了13.80%和8.73%(<0.05)。
圖4 不同處理土壤細(xì)菌主成分分析(a))和門水平下微生物組成(b))
以CK處理為對照,在屬水平上對R、MT和RMT處理進(jìn)行差異物種分析,結(jié)果如圖5。其中R處理中放線孢菌屬()、厭氧粘細(xì)菌屬()節(jié)細(xì)菌屬()固氮弧菌屬()指孢囊菌屬()褐螺菌屬()和桿狀孢囊菌屬()等8個屬相對豐度顯著升高,而壤霉菌屬()微桿菌屬()硝化桿菌屬()和諾卡氏菌屬()等四個屬相對豐度顯著降低;MT處理中土壤桿菌屬()節(jié)螺藻屬()固氮弧菌屬()纖維菌屬()德沃斯氏菌屬()藤黃色單胞菌屬()農(nóng)研絲桿菌屬()類諾卡氏菌屬()和等9個屬相對豐度顯著升高,而出芽菌屬()和硝化桿菌屬()等2個屬相對豐度顯著降低;RMT處理物種組成與CK相似,僅有節(jié)細(xì)菌屬()和農(nóng)研絲桿菌屬()2個屬相對豐度顯著升高,微桿菌屬()和蒼白桿菌屬()2個屬相對豐度顯著降低。
圖5 不同處理細(xì)菌屬水平菌種差異
使用FAPROTAX 1.1對微生物群落進(jìn)行功能預(yù)測,在一定程度上反映微生物群落功能。經(jīng)分析,共獲得37項功能分組,將該37項預(yù)測功能進(jìn)行單因素方差分析,篩選出在處理間有顯著差異的6項功能,包括化能異養(yǎng)(Chemoheterotrophy)、需氧化能異養(yǎng)(Aerobic chemoheterotrophy)、硝化功能(Nitrification)、硝酸鹽還原功能(Nitrate reduction)、尿素代謝功能(Ureolysis)和纖維素代謝功能(Cellulolysis)。對上述6種功能中心化后進(jìn)行聚類分析(圖6),發(fā)現(xiàn)所有樣品可以分為三組。其中,第一組包含R處理3個重復(fù),第二組包含MT處理3個重復(fù),第三組包括CK處理的3個重復(fù)和RMT處理的3個重復(fù)。與CK相比,R處理中化能異養(yǎng)、需氧化能異養(yǎng)、尿素代謝功能均顯著降低;此外,R處理中硝化功能最高,較其他處理高22.06%~41.44%。MT處理中需氧化能異養(yǎng)、尿素代謝功能顯著降低,而纖維素代謝功能則顯著升高;CK與RMT處理間功能無顯著性差異。
注:CH表示化能異養(yǎng)功能、ACH表示需氧化能異養(yǎng)功能、Ni表示硝化功能、NR表示硝酸鹽還原功能、Ur表示尿素代謝功能、Cel表示纖維素代謝功能。下同Note:CH stands for chemoheterotrophy,ACH for aerobic chemoheterotrophy,Ni for nitrification,NR for nitrate reduction,Ur for ureolysis,and Cel for cellulolysis. The same below
表2 差異功能與土壤理化指標(biāo)、細(xì)菌多樣性及差異門之間的關(guān)系
注:Chl表示綠彎菌門、Gem表示芽單胞菌門、 Pla表示浮霉菌門、Y表示玉米產(chǎn)量;ns表示相關(guān)關(guān)系不顯著(>0.05),*和**分別表示顯著相關(guān)(<0.05)和極顯著相關(guān)(<0.01)。Note:Chl stands for Chloroflexi,Gem for Gemmatimonadetes,and Pla for Planctomycetes,Y for maize yield;ns indicates no significant correlation,* and ** indicates significant correlation at 0.05 and 0.01 levels,respectively.
本研究結(jié)果表明,MT處理玉米地上部生物量在所有處理中最低(圖1),一個可能的解釋是木本泥炭富含大分子惰性有機(jī)質(zhì),微生物很難分解利用,養(yǎng)分難以釋放,這與MT處理玉米生育期的土壤呼吸速率處于最低水平相一致(圖2)。此外,由于木本泥炭具有較強(qiáng)的吸附能力,導(dǎo)致土壤中養(yǎng)分離子難以被作物吸收利用,從而導(dǎo)致產(chǎn)量降低[15]。同時,R和RMT處理玉米籽粒產(chǎn)量和地上生物量均與CK無顯著差異。與前人的研究結(jié)果一致,長期秸稈還田可提高作物產(chǎn)量[16],而短期秸稈還田對作物產(chǎn)量無顯著影響[17]。上述結(jié)果說明,在潮土中單獨(dú)施用秸稈或秸稈和木本泥炭聯(lián)合施用可在短期內(nèi)維持玉米產(chǎn)量不變,甚至有增加的趨勢,而單獨(dú)施用木本泥炭則顯著降低玉米產(chǎn)量。
不同處理土壤細(xì)菌豐富度間無顯著性差異。R處理細(xì)菌多樣性顯著高于CK處理,與前人[20]的研究結(jié)果一致,這可能是由于秸稈的加入為土壤帶來大量易利用有機(jī)質(zhì),促進(jìn)土壤中豐富營養(yǎng)型微生物生長,從而導(dǎo)致多樣性升高。關(guān)于施用木本泥炭對細(xì)菌多樣性的研究鮮有報道,本研究結(jié)果表明,土壤加入微生物難以利用的木本泥炭后,細(xì)菌多樣性同樣顯著高于CK處理。一個可能的解釋是木本泥炭的加入有利于那些分解大分子有機(jī)物的貧瘠營養(yǎng)型微生物生長[20],導(dǎo)致多樣性升高。有意思的是,RMT處理中細(xì)菌多樣性與CK差異未達(dá)顯著水平。物料的性質(zhì)會影響微生物群落組成和多樣性[18],當(dāng)微生物易利用的秸稈和難利用的木本泥炭加入后,豐富營養(yǎng)型和貧瘠營養(yǎng)型細(xì)菌獲取碳源能力和微生物群落功能與CK處理差異不顯著(圖6),導(dǎo)致細(xì)菌多樣性維持在相似水平。與本結(jié)果類似,有研究[21]表明生物炭添加對土壤微生物多樣性無顯著影響。
與前人的研究結(jié)果相同,放線菌門、變形菌門和綠彎菌門是該地區(qū)潮土的優(yōu)勢細(xì)菌[22]。主成分分析的結(jié)果表明,RMT處理與CK處理細(xì)菌群落組成相似,而R和MT處理與CK處理細(xì)菌群落組成差異較大。在門水平上,綠彎菌門和芽單胞菌門相對豐度在R處理中顯著升高(圖4b))。與本研究結(jié)果類似,Yu等[23]采用高通量測序方法發(fā)現(xiàn),經(jīng)過6 a連續(xù)秸稈還田后,土壤中綠彎菌門相對豐度顯著高于秸稈移除處理。Wegner和Liesack[24]研究表明,綠彎菌門對還田秸稈半纖維素的降解具有重要作用。Navarro-Noya等[22]研究表明,芽單胞菌門在秸稈還田處理中顯著升高,此外,芽單胞菌門可根據(jù)代謝需求調(diào)節(jié)對C和N的攝入量[25],表明其對不同土壤環(huán)境的廣泛適應(yīng)性。浮霉菌門相對豐度在R和MT處理中顯著降低。研究表明浮霉菌門是一種貧瘠營養(yǎng)型細(xì)菌,參與土壤碳氮循環(huán),在土壤有機(jī)質(zhì)分解中具有重要作用,但生長速率慢[26]。R和MT處理中浮霉菌門相對豐度顯著降低,可能與兩處理中土壤細(xì)菌多樣性顯著提高,從而與生長較慢的浮霉菌門產(chǎn)生較強(qiáng)的競爭作用有關(guān)。
在屬水平上,與CK處理相比,R處理中和等8個屬相對豐度顯著升高(圖5)。其中和在秸稈分解中具有重要作用,能夠分解纖維素、淀粉等[27-28]。而和等四個屬相對豐度在R中顯著降低。其中和均屬于放線菌門,其在土壤有機(jī)質(zhì)轉(zhuǎn)化和溶磷方面具有重要作用[29-30],這與R處理土壤有效磷顯著降低結(jié)果一致(表1)。MT處理中和等9個屬相對豐度顯著升高(圖5)。其中和等6個屬均具有分解纖維素、木質(zhì)素、多環(huán)芳烴等大分子有機(jī)物的能力[31-32]。RMT處理與CK處理細(xì)菌屬相對豐度變化不明顯,其中,偏好高濃度碳環(huán)境的和相對豐度顯著升高,而具有溶磷作用的和[33]相對豐度顯著降低,這與RMT處理土壤有機(jī)質(zhì)顯著升高和有效磷較低結(jié)果一致(表1)。
以上結(jié)果說明,易利用的秸稈加入促進(jìn)了土壤中秸稈降解細(xì)菌的生長,但分解土壤有機(jī)質(zhì)的細(xì)菌相對豐度則顯著降低,這種微生物群落變化也在一定程度上解釋了R處理中較高的土壤呼吸速率以及較低的土壤有機(jī)質(zhì)增加量;難利用木本泥炭的加入導(dǎo)致土壤中降解大分子有機(jī)物的貧瘠營養(yǎng)型細(xì)菌相對豐度顯著升高,這與其較低的土壤呼吸速率及較高的土壤有機(jī)質(zhì)增加量結(jié)果一致;而秸稈和木本泥炭混合施用則對細(xì)菌群落組成影響較小。
由于木本泥炭和秸稈兩種有機(jī)物料本身性質(zhì)的差異,造成了秸稈施用能夠顯著提高土壤呼吸,R和RMT處理在玉米整個生育期的平均呼吸速率分別提高40%和64%;而木本泥炭施用能夠快速提高土壤有機(jī)質(zhì),MT和RMT處理土壤有機(jī)質(zhì)分別升高79%和56%,但MT處理地上生物量降低10%。此外,在微生物群落結(jié)構(gòu)和功能方面,主要表現(xiàn)為施用秸稈的R處理提高了土壤中降解秸稈的菌群,降低尿素代謝功能,而施用木本泥炭的MT處理提高了土壤中降解大分子有機(jī)物的菌群和尿素代謝功能,而二者配合施用對微生物群落和功能的影響不大。綜合而言,在潮土區(qū)秸稈和木本泥炭施用對作物產(chǎn)量、土壤養(yǎng)分、微生物群落結(jié)構(gòu)和功能影響不同,但二者配合施用有利于土壤肥力提升、維持穩(wěn)定的微生物群落結(jié)構(gòu)和功能,同時消除了單獨(dú)施用木本泥炭產(chǎn)量降低的消極影響。
[1] Nan X X,You D H,Tian X H,et al. Effect of returning of cropland straw to field on soil organic carbon and grain yield in Guanzhong Plain. Acta Agriculturae Boreali Sinica,2011,26(5):222—229. [南雄雄,游東海,田霄鴻,等. 關(guān)中平原農(nóng)田作物秸稈還田對土壤有機(jī)碳和作物產(chǎn)量的影響. 華北農(nóng)學(xué)報,2011,26(5):222—229.]
[2] Li F,Xin X L,Zhang C Z,et al. Soil enzyme levels in fluvo-auic soil with different long-term fertilization in North China Plain. Ecology and Environment Science,2015,24(6):984—991. [李芳,信秀麗,張叢志,等. 長期不同施肥處理對華北潮土酶活性的影響. 生態(tài)環(huán)境學(xué)報,2015,24(6):984—991.]
[3] Xia M,Zhao B Z,Hao X Y,et al. Soil quality in relation to agricultural production in the North China Plain. Pedosphere,2015,25(4):592—604.
[4] Li W,Qiao Y Q,Chen H,et al. Effects of combined straw and N application on the physicochemical properties of lime concretion black soil and crop yields. Acta Ecologica Sinica,2014,34(17):5052—5061. [李瑋,喬玉強(qiáng),陳歡,等. 秸稈還田和施肥對砂姜黑土理化性質(zhì)及小麥-玉米產(chǎn)量的影響. 生態(tài)學(xué)報,2014,34(17):5052—5061.]
[5] Zhao B Z,Chen J,Zhang J B,et al. Soil microbial biomass and activity response to repeated drying– rewetting cycles along a soil fertility gradient modified by long-term fertilization management practices. Geoderma,2010,160(2):218—224.
[6] Sun Y L,Liu Q. Soil fertilities and its relationship to maize productivity in the North China Plain. Soils,2009,41(2):274—277. [孫葉林,劉勤. 黃淮海平原封丘縣土壤肥力變異與農(nóng)田生產(chǎn)力相關(guān)研究. 土壤,2009,41(2):274—277.]
[7] Xia H Y,Wang K R,Zhao Q L,et al. Effects of straw addition on decomposition,transformation and composition of soil organic carbon pool. Chinese Journal of Eco-Agriculture,2014,22(4):386—393. [夏海勇,王凱榮,趙慶雷,等. 秸稈添加對土壤有機(jī)碳庫分解轉(zhuǎn)化和組成的影響. 中國生態(tài)農(nóng)業(yè)學(xué)報,2014,22(4):386—393.]
[8] Meng X M,Ma X H,Cui B S. Current situation and prospect of peat utilization in agriculture. Research of Agricultural Modernization,2000,21(3):187—191. [孟憲民,馬學(xué)慧,崔保山. 泥炭資源農(nóng)業(yè)利用現(xiàn)狀與前景. 農(nóng)業(yè)現(xiàn)代化研究,2000,21(3):187—191.]
[9] Xu J S,Zhao B Z,Zhang J B. Effects of long-term application of organic manure and chemical fertilizer on structure of humic acid in fluvo-aquic soil. Acta Pedologica Sinica,2017,54(3):647—656. [徐基勝,趙炳梓,張佳寶. 長期施有機(jī)肥和化肥對潮土胡敏酸結(jié)構(gòu)特征的影響. 土壤學(xué)報,2017,54(3):647—656.]
[10] Zheng Y Y,Zhang J J,Tan J,et al. Chemical composition and structure of humus relative to sources. Acta Pedologica Sinica,2019,56(2):386—397. [鄭延云,張佳寶,譚軍,等. 不同來源腐殖質(zhì)的化學(xué)組成與結(jié)構(gòu)特征研究. 土壤學(xué)報,2019,56(2):386—397.]
[11] Six J,Conant R T,Paul E A,et al. Stabilization mechanisms of soil organic matter:Implications for C-saturation of soils. Plant and Soil,2002,241(2):155—176.
[12] Shu H,Shi G R,Tan J. Effects of exogenous organic carbon on the stability of water stable aggregates in tobacco growing soil. Tianjin Agricultural Sciences,2017,23(6):20—23. [舒灝,石國榮,譚軍. 外源有機(jī)碳對植煙土壤水穩(wěn)性團(tuán)聚體穩(wěn)定性的影響. 天津農(nóng)業(yè)學(xué)報,2017,23(6):20—23.]
[13] Lu R K. Analytical methods for soil and agro-chemistry. Beijing:China Agricultural Science and Technology Press,2000. [魯如坤. 土壤農(nóng)業(yè)化學(xué)分析方法. 北京:中國農(nóng)業(yè)科學(xué)技術(shù)出版社,2000.]
[14] Ma L,Guo Z B,Wang D Z,et al. Effect of long-term application of phosphorus fertilizer on soil bacterial community structure and enzymatic activity in lime concretion black soil relative to P application rate. Acta Pedologica Sinica,2019,56(6):1459—1470. [馬壘,郭志彬,王道中,等. 長期三水平磷肥施用梯度對砂姜黑土細(xì)菌群落結(jié)構(gòu)和酶活性的影響. 土壤學(xué)報,2019,56(6):1459—1470.]
[15] Chen S,Nie H B,Tan J,et al. Effect of wood peat on greenhouse tomato growth and soil improvement. China Vegetables,2015(10):42—46. [陳碩,聶海斌,譚鈞,等. 木本泥炭促進(jìn)設(shè)施番茄生長和改良土壤的效果. 中國蔬菜,2015(10):42—46.]
[16] E S Z,Ding N P,Li L L,et al. Relationship of crop yield with long-term fertilization and soil organic carbon and total nitrogen in black loessial soil region on the Loess Plateau in China. Chinese Journal of Applied Ecology,2018,29(12):4047—4055. [俄勝哲,丁寧平,李利利,等. 長期施肥條件下黃土高原黑壚土作物產(chǎn)量與土壤碳氮的關(guān)系. 應(yīng)用生態(tài)學(xué)報,2018,29(12):4047—4055.]
[17]Li L J,Yang Z F,Li W G,et al. Effect of direct straw return on crop yield in season. Journal of Anhui Agricultural Sciences,2000,28(4):450—457. [李錄久,楊哲峰,李文高,等. 秸稈直接還田對當(dāng)季作物產(chǎn)量效應(yīng). 安徽農(nóng)業(yè)科學(xué),2000,28(4):450—457.]
[18] Wang Y H,Yu Z H,Li Y S,et al. Microbial association with the dynamics of particulate organic carbon in response to the amendment of elevated CO2-derived wheat residue into a mollisol. Science of the Total Environment,2017,607:972—981.
[19] Shen Y L. Several cheap adsorbents in waste water treatment. Chongqing Environmental Science,1995,17(3):49—53. [沈耀良. 廢水處理中的幾種廉價吸附劑. 重慶環(huán)境科學(xué),1995,17(3):49—53.]
[20] Li F,Chen L,Zhang J B,et al. Bacterial community structure after long-term organic and inorganic fertilization reveals important associations between soil nutrients and specific taxa involved in nutrient transformations. Frontiers in Microbiology,2017,8,DOI:10.3389/fmicb.2017.00187.
[21] Nguyen T T N,Wallace H M,Xu C Y,et al. The effects of short term,long term and reapplication of biochar on soil bacteria. Science of the Total Environment,2018,636:142—151.
[22] Navarro-Noya Y E,Gomez-Acata S,Montoya-Ciriaco N,et al. Relative impacts of tillage,residue management and crop-rotation on soil bacterial communities in a semi-arid agroecosystem. Soil Biology & Biochemistry,2013,65:86—95.
[23] Yu D,Wen Z G,Li X M,et al. Effects of straw return on bacterial communities in a wheat-maize rotation system in the north china plain. PLoS One,2018,13(6):e0198087.
[24] Wegner C E,Liesack W. Microbial community dynamics during the early stages of plant polymer breakdown in paddy soil. Environmental Microbiology,2016,18(9):2825—2842.
[25] Cederlund H,Wessen E,Enwall K,et al. Soil carbon quality and nitrogen fertilization structure bacterial communities with predictable responses of major bacterial phyla. Applied Soil Ecology,2014,84:62—68.
[26] Bei S K,Zhang Y L,Li T T,et al. Response of the soil microbial community to different fertilizer inputs in a wheat-maize rotation on a calcareous soil. Agriculture Ecosystems & Environment,2018,260:58—69.
[27] Fan F L,Yin C,Tang Y J,et al. Probing potential microbial coupling of carbon and nitrogen cycling during decomposition of maize residue by13C-DNA-SIP. Soil Biology & Biochemistry,2014,70:12—21.
[28] Wang J,Bao J T,Su J Q,et al. Impact of inorganic nitrogen additions on microbes in biological soil crusts. Soil Biology & Biochemistry,2015,88:303—313.
[29] Chang Y C,Choi D,Takamizawa K,et al. Isolation of bacillus sp strains capable of decomposing alkali lignin and their application in combination with lactic acid bacteria for enhancing cellulase performance. Bioresource Technology,2014,152:429—436.
[30] Pathma J,Sakthivel N. Molecular and functional characterization of bacteria isolated from straw and goat manure based vermicompost. Applied Soil Ecology,2013,70:33—47.
[31] Lian T X,Jin J,Wang G H,et al. The fate of soybean residue-carbon links to changes of bacterial community composition in mollisols differing in soil organic carbon. Soil Biology & Biochemistry,2017,109:50—58.
[32] Sundman V. Ability of alpha-conidendrin-decomposing agrobacterium strains to utilize other lignans and lignin-related compounds. Journal of General Microbiology,1964,36(2):185—201.
[33] Meena V S,Meena S K,Verma J P,et al. Plant beneficial rhizospheric microorganism(PBRM)strategies to improve nutrients use efficiency:A review. Ecological Engineering,2017,107:8—32.
[34] Buttrfield N J. Proterozoic Photosynthesis a Critical Review. Palaeontology,2015,58(6):953—972.
[35] Sun R B,Guo X S,Wang D Z,et al. Effects of long-term application of chemical and organic fertilizers on the abundance of microbial communities involved in the nitrogen cycle. Applied Soil Ecology,2015,95:171—178.
[36] Yu Z H,Liu J J,Li Y S,et al. Impact of land use,fertilization and seasonal variation on the abundance and diversity of nirs-type denitrifying bacterial communities in a mollisol in northeast China. European Journal of Soil Biology,2018,85:4—11.
[37] Zhang X M,Zhang Q,Liang B,et al. Changes in the abundance and structure of bacterial communities in the greenhouse tomato cultivation system under long-term fertilization treatments. Applied Soil Ecology,2017,121:82—89.
[38] Wang X J,Jia Z K,Liang L Y,et al. Changes in soil characteristics and maize yield under straw returning system in dryland farming. Field Crops Research,2018,218:11—17.
[39] Li C X,Ma S C,Shao Y,et al. Effects of long-term organic fertilization on soil microbiologic characteristics,yield and sustainable production of winter wheat. Journal of Integrative Agriculture,2018,17(1):210—219.
Effect of Application of Straw and Wood Peat for a Short Period on Soil Organic Matter and Microbial Community in Composition and Function in Fluvo-aquic Soil
ZHAO Wenhui1, 2, MA Lei1, 2, XU Jisheng1, TAN Jun3, ZHANG Jiabao1, ZHAO Bingzi1?
(1. State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. View Sino International Limited Company, Beijing 100004, China)
Fluvo-aquic soil is widely distributed in the North China Plain. The soil is very low in organic matter, which is hard accumulate therein. Maybe, this is the main cause preventing high crop yields. Application of extraneous organic materials (i.e. straw and woody peat) is a common agricultural strategy to improve soil organic matter (SOM) content in this agricultural region. However, so far only limited information is available in the literature about effects of applying crop straw and/or wood peat on crop yield and soil fertility, and it is not clear whether it is superior to direct straw returning to the field.In this study, a field experiment, designed to have four treatments, that is, CK(Do not apply any organic material, only chemical fertilizer), R (Chemical fertilizer and 7 500 kg·hm–2of straw), MT (Chemical fertilizer and 7 005 kg·hm–2of the wood peat), and RMT (Chemical fertilizer, 7 500 kg·hm–2of straw and 7 005 kg·hm–2of the wood peat) was conducted in a field of Fluvo-aquic soil in Fengqiu, Henan. Crop yield and soil fertility indices, such as SOM, total nitrogen (TN), available phosphorus (AP), nitrate (NO3-N) and carbon nitrogen ratio (C: N) of the soil were measured. High-throughput sequencing was employed to characterize diversity and composition of the bacterial community in the soil, FAPROTAX database was used in prediction of bacterial functions.Results show that there was no significant difference between Treatments R and RMT and CK in aboveground biomass, but Treatment R and RMT was 40% and 64% respectively, higher than CK in average respiration rate in the whole growth period of maize. However, Treatment MT was 10% lower than CK in aboveground biomass, and did not differ much in average respiratory rate. On the other hand, the treatments varied in effect on soil fertility. Compared with CK, Treatment R was 23.56% lower in AP, while Treatment MT was 79.30%, 39.12%, 43.63% and 86.50% higher, respectively, in SOM, AP, NO3-N and C: N. Through high-throughput sequencing and function prediction, it was found that the bacterial communities in Treatments R and MT differed significantly from that in CK in composition and function, while that in Treatment RMT was similar to that in CK, and the soil bacterial communities in Treatments R and MT were significantly higher than that in CK in diversity. Compared with CK, the relative abundances of Chloroflexi, Gemmatimonadetes,,andthat could decompose and utilize fresh straws were significantly increased in Treatment R, but the functions of Chemoheterotrophy, Aerobic chemoheterotrophy and Ureolysis were decreased, while in Treatment MT, the relative abundances of,,,,andthat could degrade macromolecular organics were significantly increased and the function of Cellulolysis was strengthened and that of Aerobic chemoheterotrophy was weakened. In addition, the predicted functions of the soil microbial communities in Treatments R and MT were significantly different from those in CK, but thoese in Treatment RMT were similar to those in CK. In addition, the predicted functions of the soil microbacterial communities in Treatments R and MT were significantly different from those in CK, while those in Treatment RMT were similar to those in CK.In conclusion, in the Fluvo-aquic soil area, although applying woody peat alone can rapidly increase SOM, it may lead to decrease in crop yield temporarily or in a short term, which may be relative to changes in the soil microbial community in composition and function, thus affecting nutrient recycling and transformation. Combined application of straw and woody peat is beneficial to building up of soil fertility, and maintaining the soil microbial community in structure and function.
Straw returning; Woody peat; High-throughput sequencing; Microbial community; Function prediction
S154.36
A
10.11766/trxb201811300537
趙文慧,馬壘,徐基勝,譚鈞,張佳寶,趙炳梓. 秸稈與木本泥炭短期施用對潮土有機(jī)質(zhì)及微生物群落組成和功能的影響[J]. 土壤學(xué)報,2020,57(1);153–164.
ZHAO Wenhui,MA Lei,XU Jisheng,TAN Jun,ZHANG Jiabao,ZHAO Bingzi. Effect of Application of Straw and Wood Peat for a Short Period on Soil Organic Matter and Microbial Community in Composition and Function in Fluvo-aquic Soil [J]. Acta Pedologica Sinica,2020,57(1);153–164.
* 國家重點研發(fā)計劃項目(2016YFD0300802)和現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系建設(shè)專項資金(CARS-03)共同資助Supported by the National Key Research and Development Program of China(No. 2016YFD0300802)and the Earmarked Fund for China Agriculture Research System(No. CARS-03)
,E-mail:bzhao@issas.ac.cn
趙文慧(1993—),女,安徽亳州人,碩士研究生,主要從事土壤微生物研究。E-mail:whzhao@issas.ac.cn
2018–11–30;
2019–02–15;
2019–03–15
(責(zé)任編輯:陳榮府)