国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

探空火箭減阻桿氣動特性分析

2020-02-04 07:30常耀予劉帆張家齊
航空科學技術 2020年11期

常耀予 劉帆 張家齊

摘要:為了研究減阻桿對探空火箭氣動力特性,通過采用SST兩方程湍流模型、有限體積法求解N-S方程,對探空火箭高速流場進行數(shù)值模擬。計算結果顯示,減阻桿能有效減小火箭阻力。亞跨聲速(Ma0.8~1.2)最大減阻25%;高超聲速(≥Ma6)階段,最大減阻量35%,減阻效果隨迎角增大而降低,到12°迎角時減阻量為12%。壓跨聲速及高超聲速全箭升阻比增量隨馬赫數(shù)增大均增加,高超聲速階段升阻比增大18%。同時采用工程方法結合數(shù)值預示結果,評估減阻桿帶來的氣動熱影響,結果顯示,氣動支桿的存在使得端頭的平均熱流密度下降了51%,并與飛行試驗結果進行對比分析。計算得到熱流結果與飛行實測熱流結果相當,熱環(huán)境預示比較準確,對于高超聲速階段的飛行器被動熱防護技術研究具有良好的指導價值。

關鍵詞:減阻桿;氣動熱;氣動力;高超聲速;探空火箭

中圖分類號:V211.73文獻標識碼:ADOI:10.19452/j.issn1007-5453.2020.11.010

近半個世紀,高超聲速流動機理及控制方面較低速流動領域取得的進展較少[1],高超聲速流動控制主要集中在減阻防熱控制方面,控制方法為在鈍頭體頭部安裝減阻桿進行流場重構,減小氣動阻力[2]。

減阻桿屬于被動流動控制,通過前伸支桿外推鈍頭體頭部弓形激波,轉換為強度較弱的錐形斜激波,在頭部形成低壓回流區(qū),減小激波阻力,降低表面熱流。減阻桿以其顯著的減阻和降熱效果,在國外導彈上已經(jīng)實現(xiàn)工程應用。美國飛行速度Ma24的三叉戟Ⅱ型彈道導彈(UGM-133 Trident-II,1990年服役)采用伸縮式尖針狀減阻桿[3]。導彈出水發(fā)動機點火不久,加速度觸發(fā)伸出減阻桿,到位后鎖定,這種設計便于導彈頭部在保證裝填空間的前提下,同時兼顧高速飛行時的低阻特性,導彈在高超聲速情況下減阻達52%,同時導彈射程增加了550km[4]。

由于減阻桿外形為針狀結構,尖針桿會帶來防熱和流場不穩(wěn)定問題[5-6],本文研究了“球形頭+圓錐”減阻桿構型下[7],探空火箭在高超聲速下的氣動力特性與氣動熱特性。通過仿真手段對比分析了氣動力減阻效果,同時采用工程算法及飛行試驗對減阻桿帶來的降熱效果進行評估,為后續(xù)工程應用提供設計依據(jù)。

1計算方法

1.1氣動力計算方法

2探空火箭外形

火箭采用軸對稱氣動布局,任務飛行器采用“球頭+圓錐”氣動外形,球頭前端布置減阻桿;控制艙、發(fā)動機及尾段為柱段形式;空氣舵和燃氣舵共軸布置,均采用X形布局?;鸺龤鈩硬季秩鐖D1所示。

根據(jù)目前對減阻桿的氣動布局特性研究,減阻桿采用“端頭帽+細長桿”布局[8],設計參數(shù)主要有減阻桿長度、端頭直徑及減阻桿直徑,如圖2所示。

根據(jù)圖3減阻降熱的計算結果,優(yōu)化設計,選取減阻桿長度為錐段球頭直徑的兩倍,端頭帽為球頭直徑的0.3倍,減阻桿直徑為球頭直徑的0.1倍[9]。

根據(jù)火箭幾何參數(shù),減阻桿端頭半徑45mm;圓柱長度555mm,直徑30mm;減阻桿后部的錐段前緣半徑150mm,半錐角12°,如圖4所示。

3減阻桿氣動特性結果分析

3.1減阻桿氣動力分析

氣動力計算網(wǎng)格采用混合網(wǎng)格,為準確模擬邊界層內黏性對氣動力的影響,采用Octree八叉樹法構建空間四面體網(wǎng)格,在壁面沿法向生成9層棱柱形網(wǎng)格,頭部及尾段采用密度盒加密,總網(wǎng)格量1145萬。

此種網(wǎng)格劃分方法、網(wǎng)格量已經(jīng)在OS-X0,OS-X1兩個型號飛行試驗中進行驗證,數(shù)據(jù)準確可靠,如圖5所示。

仿真計算設置壓力遠場邊界條件,選擇理想氣體介質,計算馬赫數(shù)從Ma0.6開始到發(fā)動機關機點Ma6,典型馬赫數(shù)狀態(tài)流場的馬赫數(shù)和壓力云圖[10-11]如圖6和圖7所示。

支桿頂部聚集起高壓區(qū),有效降低了端頭附近的壓力,從而降低了端頭阻力。

對減阻桿的減阻效果進行評估,亞跨聲速(Ma0.8~1.2)最大減阻25%;高超聲速(Ma6)階段,最大減阻量35%,減阻效果隨迎角增大而降低,到12°迎角時減阻量為12%。壓心位置飛行全程變化量在1%以內,馬赫數(shù)6小迎角狀態(tài)壓心前移3%,減阻桿對縱向壓心的影響如圖8所示。亞跨聲速及高超聲速全箭升阻比增量隨馬赫數(shù)增大均增加,高超聲速階段升阻比增大18%[12-14],如圖9所示。

3.2減阻桿氣動熱分析

根據(jù)工程算法,采用減阻桿后,支桿及端頭的熱流密度隨時間的變化曲線如圖10所示。支桿頂點最大熱流密度1738kW/m2,端頭最大熱流密度952kW/m2。

減阻桿的存在使得端頭的平均熱流密度下降了51%,對于高超聲速階段的飛行器被動熱防護技術研究而言,首飛通過熱流傳感器獲得的相關數(shù)據(jù),對比數(shù)值預示結果,將具有良好的指導價值[15]。

飛行試驗中,熱流傳感器布置如圖11所示。熱流傳感器采用JCR4-4-6型傳感器,參數(shù)值范圍0~800kW/m2,采樣頻率40Hz,測量誤差±5%。

根據(jù)傳感器位置布局,飛行試驗測得100s內高熱流段柱段熱流。圖12為理論計算與測量熱流對比圖,由圖可見,工程計算熱流與測量熱流一致性較好。從對比圖中可以看出,工程計算熱流與實測熱流相當,熱環(huán)境預示較準確[16-20]。

4結論

通過分析,得出以下結論:

(1)本文通過仿真手段對比分析了減阻桿的減阻效果,通過工程算法分析了減阻桿的降熱效果。

(2)通過仿真手段計算結果得到減阻桿的減阻效果在高超聲速階段最大減阻量35%。

(3)通過工程算法計算得到不同部位的熱流與飛行試驗測得熱流數(shù)據(jù)規(guī)律一致,相差最大為21.7%。

參考文獻

[1]Kremeyer K,Reilly M P,Miley G H.Lines of energy deposition for supersonic/hypersonic temperature/drag-reduction and vehicle control[R].AFRL-RZ-ED-TP-2009-359,2009.

[2]Sun X,Guo Z,Huang W,et al. Drag and heat reduction mechanism induced by a combinational novel cavity and counterflowing jet concept in hypersonic flows[J]. Acta Astronautica,2016,126:109-119.

[3]Crawford D. Investigation of the flow over a spiked-nose hemisphere-cylinder[R]. NASATN-D-118,1959.

[4]Motoyama N,Mihara K,Miyajima R,et al. Thermal protection and drag reduction with use of spike in hypersonic flow[R]. AIAA2001-1828,2001.

[5]Mehta R C. Flow field computations over conical,disc and flat spiked body at Mach 6[R].AIAA2009-325,2009.

[6]Menezes V,Saravanan S,Reddy K P J. Shock tunnel study of spiked aerodynamic bodies flying at hypersonic mach numbers[J]. Shock Waves,2002,12(3):197-204.

[7]Menezes V,Saravanan S,Jagadeesh G. Experimental investigations of hypersonic flow over highly blunted cones with aerospikes[J].AIAAJournal,2003,41(10):1955-1966.

[8]Kulkarni V,Kulkarni P S,Reddy K P J. Drag reduction by a forward facing aerospike for a large angle blunt cone in high enthalpy flows[R]. Shock Waves,Springer Berlin Heidel berg,2009:565-570.

[9]Gauer M,Paull A. Numerical investigation of a spiked blunt nose cone at hypersonic speeds[J]. Journal of Spacecraft and Rockets,2008,45(3):459-471.

[10]Boylan D E,Hahn J S,Sims W H. Drag on blunt bodies with and without spikes in low-density hypersonic flow[J]. AIAA Journal,1965,3(2):365-366.

[11]Kalimuthu R,Mehta R C,Rathakrishnan E. Experimental investigationonspikedbodyinhypersonicflow[J]. Aeronautical Journal,2008,112(1136):593-598.

[12]Asif M,Zahir S,Kamran N. Computational investigations aerodynamic forces at supersonic/hypersonic flow past a blunt body with various forward facing spikes[R]. AIAA 2004-5189,2004.

[13]GerdroodbaryMB,HosseinalipourSM.Numerical simulation of hypersonic flow over highly blunted cones with spike[J].ActaAstronautica,2010,67(1):180-193.

[14]Elsamanoudy M,Ghorab A,Hendy M. Drag reduction using spiked-aerodisk & reattachment ring for hypersonic hemispherical bodies[C]//15th International Conference on Aerospace Sciences&Aviation Technology,2013.

[15]TahaniM,KarimiMS,Motlagh A M.Numerical investigation of drag and heat reduction in hypersonic spiked blunt bodies[J]. Heat and Mass Transfer,2013,49(10):1369-1384.

[16]Yadav R,Guven U. Aerothermodynamics of a hypersonic projectilewithadouble-diskaerospike[J]. Aeronautical Journal,2013,117(1195):913-928.

[17]Joshi S. Effect of double disk aero-spikes on aerothermodynamics of blunt body at Mach 6.2[J]. International Journal of Applied Engineering Research,2016,11(1):366-376.

[18]Ahmed M Y M,Qin N. Surrogate-based multi-objective aerothermodynamic design optimization of hypersonic spiked bodies[J].AIAAJournal,2012,50(4):797-810.

[19]Ahmed M Y M,Qin N. Recent advances in the aerothermodynamics of spiked hypersonic vehicles[J]. Progress in Aerospace Sciences,2011,47(6):425-449.

[20]Srulije J,Gnemmi P,Runne K. High-pressure shock tunnel experiments and cfd calculations on spike-tipped blunt bodies[J].AIAAJournal,2002,5(1):2918-2926.

(責任編輯王為)

作者簡介

常耀予(1994-)女,碩士,工程師。主要研究方向:流體力學。

Tel:18600818348E-mail:changyaoyu@onespacechina.com劉帆(1984-)男,博士,高級工程師。主要研究方向:火箭總體設計。

張家齊(1984-)男,碩士,高級工程師。主要研究方向:流體力學。

Analysis of Aerodynamic Characteristics Using Spikes of Sounding Rocket

Chang Yaoyu*,Liu Fan,Zhang Jiaqi

Onespace Technology Group Co.,Ltd.,Beijing 100176,China

Abstract: In order to study the aerodynamic of sounding rocket with drag-reduction spike, the Navier-Stokes equations are solved by finite volume method based on the k-ωSST turbulent flow model. On this basis, the flow field of the hypersonic projectile is simulated. The calculation results show that the spike can effectively reduce the drag of sounding rocket. The study shows the maximum drag reduction of sub-sonic speed is 25%, and the maximum drag reduction of hypersonic phase is 35%. The drag reduction effect decreases with the increase of the angle of attack, and the drag reduction amount is 12% when the angle of attack is 12 degrees. The calculation results show there is a positive correlation between drag ratio and Mach number. Specifically, the drag ratio increases by 18% in hypersonic phase. At the same time, the engineering method is used to evaluate the aerothermal effect by the drag reduction spike, and compared with the flight test results. The theoretical value of heat flow is equivalent to the measured value of heat flow in the flight test, and the thermal circumstance prediction is comparatively accurate.

Key Words: drag-reduction spike; aerodynamic heat; aerodynamic force; hypersonic; sounding rocket