侯才生,劉 濤
(蘭州理工大學(xué) 機(jī)電工程學(xué)院,蘭州 730050)
與往復(fù)式壓縮機(jī)相比,渦旋壓縮機(jī)具有結(jié)構(gòu)簡單、微振低噪、機(jī)械效率高、變頻性能好等優(yōu)點(diǎn),已廣泛應(yīng)用于制冷、空調(diào)、渦旋增壓器、渦旋膨脹機(jī)、渦旋泵等領(lǐng)域[1-3]. 渦旋型線是渦旋壓縮機(jī)設(shè)計和研究的基礎(chǔ).
目前,渦旋壓縮機(jī)常用型線主要有兩大類:① 等截面型線,即渦旋齒為等壁厚的型線;② 變截面型線,即渦旋齒為非等壁厚的型線.等截面型線具有數(shù)學(xué)描述簡單和易加工的優(yōu)點(diǎn),但不能充分利用毛坯材料并且壓縮比較小.若增大等截面的壓縮比,則需增加渦旋齒的圈數(shù),使得渦旋齒的軸向泄漏線長度加大并導(dǎo)致渦旋壓縮機(jī)的整體尺寸過大.雖然變截面型線的數(shù)學(xué)表述較為復(fù)雜,但可以用較少的渦旋齒圈數(shù)實(shí)現(xiàn)較大的壓縮比,且縮短了工質(zhì)在工作腔內(nèi)的停留時間,從而有助于減少由軸向間隙引起的徑向泄漏,提高效率,所以變截面型線成為國內(nèi)外學(xué)者的研究熱點(diǎn).Liu等[4-5]建立了變徑基圓渦旋壓縮機(jī)的幾何模型并采用有限元分析方法對其進(jìn)行了優(yōu)化.Shaffer等[6]運(yùn)用控制容積的方法建立了變截面渦旋幾何模型.王君等[7]利用圓漸開線與變徑基圓漸開線的組合,得到了一種新型全嚙合漸變壁厚的渦旋型線.彭斌等[8]提出了一種由圓漸開線-高次曲線-圓弧組合而成的變截面型線并建立了該變截面渦旋壓縮機(jī)的數(shù)學(xué)模型.
雖然針對變截面渦旋壓縮機(jī)數(shù)學(xué)模型的研究較多,但這些研究所使用的型線通常是由變徑基圓漸開線、圓漸開線-變徑基圓漸開線以及圓漸開線-高次曲線-圓弧組合而成,未能充分利用圓漸開線易于加工且性能較為穩(wěn)定這一優(yōu)勢.針對上述問題,本文以圓漸開線為基礎(chǔ),利用Frenet標(biāo)架,構(gòu)建了一種新型的變截面渦旋型線,其特點(diǎn)為首末兩段均選用圓漸開線,而中間用一段三次曲線來過渡,以達(dá)到減少渦旋齒圈數(shù)的目的.將新型的變截面渦旋型線與傳統(tǒng)的由圓漸開線所組成的等截面型線進(jìn)行對比,所得結(jié)論可為新型高效變截面渦旋壓縮機(jī)的開發(fā)提供一定的理論依據(jù).
圖1所示為任意渦旋型線的微分幾何關(guān)系示意圖. 圖中:M為型線切點(diǎn);φ為型線切向角;a為基圓半徑;α為單位切向量;β為單位法向量;Rn為切點(diǎn)處的法向分量,稱為展弦;Rt為與Rn垂直的切向分量,稱為任意漸開線基圓半徑,且滿足
(1)
圖1 型線的微分幾何關(guān)系示意圖Fig.1 Schematic diagram of differential geometry relation for scroll profile
在平面直角坐標(biāo)系中,曲線r可表示為
r=r(s)=(x(s),y(s))
(2)
式中:s為弧長.由微分幾何理論,記型線在切點(diǎn)的切線與x軸正向的夾角為φ=φ(s),則在切點(diǎn)處的單位切向量為
α(s)=(x′(s),y′(s))=
(cosφ(s),sinφ(s))
(3)
單位法向量為
β(s)=(-y′(s),x′(s))=
(-sinφ(s),cosφ(s))
(4)
由于α(s)為單位向量場,故有α(s)⊥α′(s),所以α′(s)與β(s)存在如下關(guān)系:
α′(s)=κrβ(s)
(5)
式中:κr為平面曲線的相對曲率.
對式(3)求導(dǎo),可得
α′(s)=φ′(s)(-sinφ(s),cosφ(s))=
φ′(s)β(s)
(6)
結(jié)合式(5)與(6),得到
κr=φ′(s)
(7)
由平面曲線的基本公式可知,型線在切點(diǎn)處的曲率半徑為
(8)
綜合式(2)~(5),得到平面曲線的Frenet標(biāo)架{r(s),α(s),β(s)}沿曲線運(yùn)動的公式為
(9)
利用Frenet標(biāo)架的運(yùn)動公式、初值(x(φ0),y(φ0))和式(8),可以唯一確定渦旋型線的母線方程為
(10)
變截面渦旋型線的母線選用三段曲線來構(gòu)建,如圖2所示.其中,首末兩段采用傳統(tǒng)的圓漸開線,而中間引入一段三次曲線替換圓漸開線,以達(dá)到減少渦旋齒圈數(shù)的目的.
圖2 變截面渦旋型線的母線Fig.2 Generating line of the variable cross-section scroll profiles
根據(jù)式(10),首段圓漸開線的母線方程為
(11)
φ∈[0,φ1)
中間段三次曲線的母線方程為
(12)
φ∈[φ1,φ2)
末段圓漸開線的母線方程為
(13)
φ∈[φ3,φmax]
式中:φmax為型線的最大切向角.
φ1、φ2(φ3)滿足構(gòu)型曲線連續(xù)性和光滑性條件,則各段曲線的曲率半徑函數(shù)可表示為
(14)
式中:a為首末兩段圓漸開線的基圓半徑;c0,c1,c2和c3為待定系數(shù),其數(shù)值可通過
(15)
計算而得,計算過程中取初值
x0(φ0)=a,y0(φ0)=0
圖3所示為根據(jù)法向等距線法[9]所生成的變截面渦旋型線.圖中,AC為修正大圓??;AB為修正小圓?。籅G為外壁型線的首段圓漸開線;CD為內(nèi)壁型線的首段圓漸開線;GH為外壁型線的中間段三次曲線;DE為內(nèi)壁型線的中間段三次曲線;HI為外壁型線的末段圓漸開線;EF為內(nèi)壁型線的末段圓漸開線. 圖中虛線部分是由1條圓漸開線構(gòu)成的等截面渦旋型線. 可以看出,任意等截面的渦旋型線可以用較少圈數(shù)的變截面渦旋型線來代替,從而減少工作腔內(nèi)壓縮介質(zhì)的泄漏量,增大渦旋壓縮機(jī)的壓縮比并提高整機(jī)效率.
圖3 變截面渦旋型線Fig.3 Variable cross-section scroll profiles
渦旋壓縮機(jī)工作腔的容積是按照單個月牙形腔體從吸氣開始,經(jīng)過壓縮,到最終排氣結(jié)束這一整個過程進(jìn)行計算的.令θ為曲軸轉(zhuǎn)角,θ*為開始排氣角,則吸氣階段定義為從θ=0至θ=2π的階段;壓縮階段定義為從θ=2π至θ=θ*的階段;排氣階段定義為從θ=θ*至排氣結(jié)束的階段.
2.2.1變截面渦旋壓縮機(jī)容積計算 動、靜渦旋相互嚙合,構(gòu)成一系列封閉的月牙形腔體,由內(nèi)向外依次稱為第1壓縮腔(又稱排氣腔)、第2壓縮腔和第3壓縮腔,分別用①、②和③表示,如圖4所示,圖中Dmin為動、靜渦旋嚙合時的最小外徑.氣體工作腔從渦旋型線最外側(cè)向內(nèi)嚙合的過程中型線會發(fā)生變化,使計算腔體容積的解析表達(dá)式不同,因此需分段計算壓縮腔容積.
①—第1壓縮腔,②—第2壓縮腔,③—第3壓縮腔圖4 變截面渦旋壓縮機(jī)的壓縮腔Fig.4 Compression chamber of variable cross-section scroll compressor
(1) 當(dāng)θ∈[0,φ2-φ1)時,第3壓縮腔由末段的圓漸開線和中間段的三次曲線組成,此時腔體的面積為
A31(θ)=2Ror{L3+L2+[Rt(φ2)-a]}
(16)
式中:Ror為回轉(zhuǎn)半徑;L3為末段圓漸開線的母線長度;L2為中間段三次曲線的母線長度.
所以一對封閉月牙形腔體的容積為
V31(θ)=A31(θ)h
(17)
式中:h為渦旋體高度.
(2) 當(dāng)θ∈[φ2-φ1,2π]時,第3壓縮腔由首末兩段的圓漸開線和中間段的三次曲線構(gòu)成,這時腔體的面積為
A32(θ)=2Ror(L1+L2+L3)
(18)
式中:L1為首段圓漸開線的母線長度.
所以一對封閉月牙形腔體的容積為
V32(θ)=A32(θ)h
(19)
綜合以上計算,得到在θ∈[0,2π]時,第3壓縮腔的面積為
A3(θ)=A31(θ)+A32(θ)
(20)
第3壓縮腔的容積為
V3(θ)=V31(θ)+V32(θ)
(21)
(3) 當(dāng)工作腔由首段圓漸開線和修正圓弧組成時,排氣腔由首段的4條圓漸開線和4條修正圓弧圍成,如圖5所示.圖中,Am為修正齒頭的軸向投影面積,
根據(jù)幾何關(guān)系,其工作腔的面積為
a2(π-4δ)-2Am
(22)
式中:δ為漸開線發(fā)生角;φ為修正展角;λ為修正圓弧中心角;Rd為修正大圓弧半徑;Rx為修正小圓弧半徑.
工作腔的容積為
V11(θ)=A11(θ)h
(23)
圖5 由修正圓弧與圓漸開線組成的排氣腔Fig.5 The discharge chamber consisting of modified circular arcs and circle involutes
(4) 當(dāng)工作腔完全由修正圓弧組成,即排氣腔僅由4條修正圓弧圍成時,排氣腔如圖6所示.其工作腔面積為
(24)
式中:γ為修正角.
工作腔容積為
V12(θ)=A12(θ)h
(25)
圖6 僅由修正圓弧組成的排氣腔Fig.6 The discharge chamber consisting of modified circular arcs only
2.2.2等截面渦旋壓縮機(jī)容積計算 圖7所示為一對相互嚙合的等截面渦旋盤,形成3對封閉的腔體,從外到內(nèi)依次稱為第3壓縮腔、第2壓縮腔和第1壓縮腔(排氣腔).
①—第1壓縮腔,②—第2壓縮腔,③—第3壓縮腔圖7 等截面渦旋壓縮機(jī)的壓縮腔Fig.7 Compression chamber of constant cross-section scroll compressor
(1) 第i(i≥2)個壓縮腔的工作容積.對于由圓漸開線構(gòu)成的等截面渦旋型線,除第1壓縮腔外,其余壓縮腔的容積計算通式為
(26)
Vi(θ)=Ai(θ)h
(27)
i=2,3
式中:Pt為渦旋體節(jié)距;tb為渦旋體齒厚.
(2) 排氣腔的容積.排氣腔的容積與開始排氣角以及齒頭處的修正情況相關(guān),由于本文均采用了雙圓弧的修正方法,所以針對變截面渦旋壓縮機(jī)排氣腔的計算公式同樣適用于等截面渦旋壓縮機(jī)的排氣腔.
渦旋壓縮機(jī)的幾何性能與動力性能直接影響著渦旋壓縮機(jī)的容積效率、機(jī)械效率和壽命. 為了定量對比變截面渦旋型線和等截面渦旋型線的性能,引入行程容積、壓縮比和面積利用系數(shù)3個幾何性能指標(biāo)以及軸向氣體力和切向氣體力2個動力性能指標(biāo).
3.1.1行程容積 行程容積對整機(jī)容積效率的影響較大且能改善渦旋壓縮機(jī)的壓縮性能.規(guī)定當(dāng)θ=0時壓縮腔閉合,此時第3壓縮腔容積即為行程容積,用V3(0)表示.
3.1.2壓縮比 壓縮比ν可由下式計算:
(28)
式中:κ為氣體的等熵指數(shù),κ=1.19.
3.1.3面積利用系數(shù) 為定量表征渦旋盤的材料利用率,引入面積利用系數(shù)ε,
(29)
式中:A3(0)為θ=0時第3壓縮腔橫截面的面積.
3.2.1軸向氣體力 軸向氣體力(Fa)是渦旋盤上承受的最為重要的氣體作用力.在渦旋壓縮機(jī)的壓縮腔內(nèi),沿曲軸軸線方向作用在動渦旋盤上的軸向氣體力,會使動渦旋盤沿軸向脫離靜渦旋盤,從而增大了軸向的間隙,導(dǎo)致徑向泄漏量的增加.其計算公式為
Fa(θ)=
(30)
式中:pi(i=1,2,3)為第i壓縮腔的壓力,其計算公式為
(31)
ps為吸氣壓力,ps=101.3 kPa.
3.2.2切向氣體力 切向氣體力(Ft)是由于相鄰兩個壓縮腔氣體壓力不相等而對渦旋齒產(chǎn)生的作用力.由切向氣體力產(chǎn)生的自轉(zhuǎn)力矩不僅會阻止動渦旋的運(yùn)動,而且會增大徑向間隙,其受力分析如圖8所示.圖中:Lti(i=1,2,3)為第i壓縮腔切向氣體力的作用線長.
Ft的計算公式為
Ft(θ)=
(32)
圖9所示為變截面渦旋型線和等截面渦旋型線構(gòu)成的動渦旋所受氣體力的變化曲線.其中:Fa1和Ft1分別為變截面型線的軸向與切向氣體力;Fa2和Ft2分別為等截面型線的軸向和切向氣體力.由圖9可以看出,相比于等截面型線,雖然變截面型線所受的軸向和切向氣體力的大小有所增加,但其變化幅度較小.
表1所示為等截面型線與變截面型線的幾何性能指標(biāo)對比.可以看出,相比傳統(tǒng)的等截面型線,新構(gòu)建的變截面型線的幾何性能指標(biāo)均顯著提高,行程容積、壓縮比以及面積利用系數(shù)分別提高了8.80%、10.57%以及8.84%.由此可見,新構(gòu)建的變截面型線可提高渦旋壓縮機(jī)的壓縮比和整機(jī)容積效率.
圖8 作用在動渦旋上的切向氣體力Fig.8 Tangential gas force generated on the orbiting scroll
圖9 軸向和切向氣體力變化曲線Fig.9 Axial and tangential gas force variation curve
表1 兩種型線幾何性能指標(biāo)對比Tab.1 Comparison of geometric performance indexes between two kinds of profiles
采用微分幾何理論研究了機(jī)械工程有形實(shí)體的建模問題,用Frenet活動標(biāo)架構(gòu)建了一種新的變截面渦旋型線并建立了該型線的基本幾何理論,推導(dǎo)了工作腔容積計算公式,分析了該變截面型線的幾何性能和動力性能.與傳統(tǒng)的等截面渦旋型線相比,新構(gòu)建的變截面渦旋型線的軸向氣體力和切向氣體力的大小有所增加,但其變化幅度較?。恍谐倘莘e和面積利用系數(shù)分別提高了8.80%和8.84%,壓縮比提高了10.57%.新構(gòu)建的變截面型線可提高渦旋壓縮機(jī)的壓縮比和整機(jī)容積效率.