李祎瑩 易西南 許環(huán)軍
摘 ?????要: 木質(zhì)素是綠色可持續(xù)的再生資源,但結(jié)構(gòu)復(fù)雜,是通過C-O和C-C鍵交織相連的大分子化合物,通過化學(xué)轉(zhuǎn)化可以得到系列的高附加值的化學(xué)品。通過將轉(zhuǎn)化中的催化劑類型分類,對(duì)木質(zhì)素及其模型化合物氧化裂解催化劑的研究進(jìn)展進(jìn)行綜述。
關(guān) ?鍵 ?詞:木質(zhì)素;木質(zhì)素模型化合物;氧化裂解
中圖分類號(hào):TQ 351 ??????文獻(xiàn)標(biāo)識(shí)碼: A ??????文章編號(hào): 1671-0460(2019)01-0115-04
Abstract: Lignin is a green, sustainable and renewable resource, but its structure is very complex. It is macromolecular compounds intertwined by C-O and C-C bonds. However, a series of high value-added chemicals can be obtained through chemical conversion. In this paper, according to the types of catalysts, the research progress of oxidative cracking catalyst of lignin and its model compounds was reviewed.
Key words: Lignin; Lignin model compounds; Oxidative cracking
木質(zhì)素是一類天然芳香族高分子化合物,是通過C-O和C-C鍵交織相連的大分子化合物,通過各種手段可以將其斷裂或者化學(xué)轉(zhuǎn)化形成高附加值的化學(xué)品、能源和材料。本文擬對(duì)木質(zhì)素及常見木質(zhì)素模型化合物的氧化反應(yīng)相關(guān)的研究進(jìn)展進(jìn)行綜述,通過總結(jié)催化劑的類型,將相關(guān)反應(yīng)進(jìn)行綜述,為木質(zhì)素的研究轉(zhuǎn)化提供一定的基礎(chǔ)。
1 ?非均相催化劑催化的氧化斷鍵
最先使用的催化劑有光催化氧化催化劑,例如TiO2[1] 以及負(fù)載型的Pt/TiO2 [2]這些催化劑的加入使紙張變得更透明。在TiO2催化劑中添加一點(diǎn)Fe2+可以提高木質(zhì)素光催化氧化的效率[3],還有包括聚-乙烯基吡啶負(fù)載的三氧化甲基釕[4]后者對(duì)酚類、非酚類、單體和二聚體木質(zhì)素模型化合物都有效果[5]。Pd/Al2O3氧化堿性木質(zhì)素,得到不少香蘭素以及丁香醛[6]。氧化鋁負(fù)載的單金屬(Cu)、雙金屬(Cu-Ni、Cu-Co或Cu-Mn)或三金屬(Cu-Ni-Ce),高嶺土負(fù)載的Cu或Cu-Mn,多金屬氧化物(Cu-Co-Mn或Cu-Fe-Mn)這類催化劑對(duì)阿魏酸類木質(zhì)素模型化合物的氧化,研究發(fā)現(xiàn)Cu-Ni-Ce/Al2O3催化活性最高,但金屬顆粒容易脫落,Cu-Mn/Al2O3的穩(wěn)定性最好,其次是Cu-Ni-Ce/Al2O3[7]。
2 ?均相催化劑催化氧化裂解木質(zhì)素
均相催化劑是和反應(yīng)體系混溶的,可以很好的促進(jìn)反應(yīng),而且某些均相催化劑可以選擇性的氧化某個(gè)位置。均相催化劑可以通過調(diào)節(jié)配體來實(shí)現(xiàn)不同的反應(yīng)活性和特異性。
2.1 ?金屬卟啉類催化劑
Zhu 和 Ford報(bào)道了卟啉和酞菁的三價(jià)鐵和三價(jià)鎂配合物對(duì)木質(zhì)素模型化合物的氧化作用[8]。同時(shí)Artaud課題組也報(bào)道了卟啉鐵對(duì)木質(zhì)素二聚體模型化合物α,β-二芳基丙烷氧化[9]。這些研究發(fā)現(xiàn)金屬卟啉氧化α,β-二芳基丙烷是通過四種基本反應(yīng)進(jìn)行的:Cα-Cβ側(cè)鏈斷裂、苯-Cα鏈的斷裂、二甲氧基苯環(huán)氧化成醌和打開二甲氧基苯環(huán)形成粘康酸二甲酯。金屬卟啉很明顯的缺點(diǎn)就是在過量氧化劑存在下,尤其是在H2O2存在時(shí)不穩(wěn)定。為了增加卟啉的穩(wěn)定性,通常在卟啉環(huán)上引入取代基,可以增加催化劑溶解度[24]或者活性[10,11], 為了克服金屬卟啉的降解和損失,通常采用載體對(duì)卟啉進(jìn)行負(fù)載從而增加催化劑的穩(wěn)定性以及循環(huán)使用性。有研究將其負(fù)載到蒙脫土 [12],聚乙烯 [13],吡啶功能化的聚乙烯醇 [14],咪唑基團(tuán)的氧化硅等固體上 [15]。這些負(fù)載型的卟啉對(duì)于發(fā)展卟啉類催化劑的應(yīng)用起著很大的推動(dòng)作用。
2.2 ?金屬salen類催化劑
Co-salen 絡(luò)合物的研究最為廣泛。Gupta對(duì)聚合物負(fù)載席夫堿(包括Co-salen)氧化木質(zhì)素模型化合物的研究進(jìn)行了綜述[16]。Co-salen絡(luò)合物的強(qiáng)大氧化性主要來源于Co的超氧復(fù)合物或者二聚體過氧化物的形成。芳香酚類化合物被氧化成苯醌,產(chǎn)率超過90%[17]。和金屬卟啉一樣,研究發(fā)現(xiàn)通過調(diào)節(jié)salen配體如引入其它的基團(tuán)可以改變整個(gè)催化劑的溶解性和活性[18]。Co(salen)負(fù)載到SBA-15,通過微波的輔助,可以有效地將β-O-4模型化合物轉(zhuǎn)化為酚類化合物[19]。電子順磁共振研究發(fā)現(xiàn)Co-酚羥基自由基參與了整個(gè)酚類化合物的氧化過程[20]。
2.3 ?金屬-TAML, -DTNE 和 -TACN類催化劑
Collins報(bào)道了鐵-TAML這類的氧化劑,TAML 是一種四氨基大環(huán)配體,這類氧化劑具有高活性、高選擇性的特點(diǎn)[21]。研究發(fā)現(xiàn)Fe(TAML)Li/二乙酰碘苯絡(luò)合物可以選擇性地氧化一級(jí)和二級(jí)醇變成醛,氧化過程中斷裂C-C和C-O鍵[22]。二鐵-TAML絡(luò)合物可以選擇性地氧化芳香醇變成芳香醛,這些醇包括芐醇、4-氯芐醇、4-硝基芐醇等[23]。
2.4 ?雜多酸類催化劑
[4]Crestini C, Caponi M C, Argyropoulos D S, et al. Immobilized methyltrioxo rhenium (MTO)/H2O2 systems for the oxidation of lignin and lignin model compounds [J]. Bioorganic & medicinal chemistry, 2006, 14(15): 5292-5302.
[5]Crestini C, Pro P, Neri V, et al. Methyltrioxorhenium: a new catalyst for the activation of hydrogen peroxide to the oxidation of lignin and lignin model compounds [J]. Bioorganic & medicinal chemistry, 2005, 13(7): 2569-2578.
[6]Herrmann W A, Kratzer R M, Fischer R W. Alkylrhenium oxides from perrhenates: a new, economical access to organometallic oxide catalysts [J]. Angewandte Chemie International Edition in English, 1997, 36(23): 2652-2654.
[7]Murahashi S I, Naota T, Komiya N. Metalloporphyrin-catalyzed oxidation of alkanes with molecular oxygen in the presence of acetaldehyde [J]. Tetrahedron letters, 1995, 36(44): 8059-8062.
[8]Sales F G, Maranh?o L C A, Lima Filho N M, et al. Experimental evaluation and continuous catalytic process for fine aldehyde production from lignin [J]. Chemical Engineering Science, 2007, 62(18): 5386-5391
[9]Zhu W, Ford W T. Oxidation of lignin model compounds in water with dioxygen and hydrogen peroxide catalysed by metallophthalocyanines [J]. Journal of molecular catalysis, 1993, 78(3): 367-378.
[10]Cui F, Dolphin D. Metallophthalocyanines as possible lignin peroxidase models [J]. Bioorganic & medicinal chemistry, 1995, 3(5): 471-477.
[11]Leanord D R, Smith J R L. Model systems for cytochrome P450 dependent mono-oxygenases. Part 7. Alkene epoxidation by iodosylbenzene catalysed by ionic iron(III) tetraarylporphyrins supported on ion-exchange resins [J]. J. Chem. Soc., Perkin Trans. 2, 1990 (11): 1917-1923.
[12]Fleischer E B, Palmer J M, Srivastava T S, et al. Thermodyamic and kinetic properties of an iron-porphyrin system [J]. Journal of the American Chemical Society, 1971, 93(13): 3162-3167.
[13]Crestini C, Pastorini A, Tagliatesta P. Metalloporphyrins immobilized on motmorillonite as biomimetic catalysts in the oxidation of lignin model compounds [J]. Journal of Molecular Catalysis A: Chemical, 2004, 208(1): 195-202.
[14]Naik R, Joshi P, Deshpande R K. Polymer encapsulation of metallophthalocyanines: efficient catalysts for aerobic oxidation of alcohols [J]. Catalysis Communications, 2004, 5(4): 195-198.
[15]Kumar A, Jain N, Chauhan S M S. Biomimetic oxidation of veratryl alcohol with H2O2 catalyzed by iron(III) porphyrins and horseradish peroxidase in ionic liquid [J]. Synlett, 2007 (3): 411-414.
[16]Zucca P, Mocci G, Rescigno A, et al. 5, 10, 15, 20-Tetrakis (4-sulfonato-phenyl) porphine-Mn(III) immobilized on imidazole- activated silica as a novel lignin-peroxidase-like biomimetic catalyst [J]. Journal of Molecular Catalysis A: Chemical, 2007, 278(1): 220-227.
[17]Gupta K C, Sutar A K, Lin C C. Polymer-supported Schiff base complexes in oxidation reactions [J]. Coordination Chemistry Reviews, 2009, 253(13): 1926-1946.
[18]Biannic B, Bozell J J. Efficient cobalt-catalyzed oxidative conversion of lignin models to benzoquinones [J]. Organic letters, 2013, 15(11): 2730-2733.
[19]Sippola V, Krause O, Vuorinen T. Oxidation of Lignin Model Compounds with Cobalt-sulphosalen Catalyst in the Presence and Absence of Carbohydrate Model Compound [J]. Journal of wood chemistry and technology, 2004, 24(4): 323-340.
[20]Kervinen K, Korpi H, Gerbrand Mesu J, et al. Mechanistic Insights into the Oxidation of Veratryl Alcohol with Co(salen) and Oxygen in Aqueous Media: An in-situ Spectroscopic Study [J]. European journal of inorganic chemistry, 2005 (13): 2591-2599.
[21]Canevali C, Orlandi M, Pardi L, et al. Oxidative degradation of monomeric and dimeric phenylpropanoids: reactivity and mechanistic investigation [J]. Journal of the Chemical Society, Dalton Transactions, 2002 (15): 3007-3014.
[22]Collins T J. TAML oxidant activators: a new approach to the activation of hydrogen peroxide for environmentally significant problems [J]. Accounts of chemical research, 2002, 35(9): 782-790.
[23]Napoly F, Jean-Gérard L, Goux-Henry C, et al. Fe(TAML)Li/(diacetoxyiodo) benzene-Mediated Oxidation of Alcohols: Evidence for Mild and Selective C-O and C-C Oxidative Cleavage in Lignin Model Transformations [J]. European Journal of Organic Chemistry, 2014, 2014(4): 781-787.
[24]Cui Y, Chen C L, Gratzl J S, et al. A Mn(IV)-Me4DTNE complex catalyzed oxidation of lignin model compounds with hydrogen peroxide [J]. Journal of Molecular Catalysis A: Chemical, 1999, 144(3): 411-417.
[25]Evtuguin D V, Neto C P, Rocha J, et al. Oxidative delignification in the presence of molybdovanadophosphate heteropolyanions: mechanism and kinetic studies [J]. Applied Catalysis A: General, 1998, 167(1): 123-139.
[26]Gaspar A R, Gamelas J A F, Evtuguin D V, et al. Alternatives for lignocellulosic pulp delignification using polyoxometalates and oxygen: a review [J]. Green Chemistry, 2007, 9(7): 717-730.
[27]Gaspar A, Evtuguin D V, Neto C P. Oxygen bleaching of kraft pulp catalysed by Mn(III)-substituted polyoxometalates [J]. Applied Catalysis A: General, 2003, 239(1): 157-168.
[28]Sik Kim Y, Chang H, Kadla J F. Polyoxometalate (POM) oxidation of milled wood lignin(MWL) [J]. Journal of wood chemistry and technology, 2007, 27(3-4): 225-241.
[29]Yokoyama T, Chang H, Reiner R S, et al. Polyoxometalate oxidation of non-phenolic lignin subunits in water: Effect of substrate structure on reaction kinetics [J]. Holzforschung, 2004, 58(2): 116-121.
[30]Voitl T, Rudolf von Rohr P. Oxidation of lignin using aqueous polyoxometalates in the presence of alcohols [J]. ChemSusChem, 2008, 1(8-9): 763-769.
[31]Kuznetsov B N, Tarabanko V E, Kuznetsova S A. New catalytic methods for obtaining cellulose and other chemical products from vegetable biomass [J]. Kinetics and Catalysis, 2008, 49(4): 517-526.
[32]Partenheimer W. Methodology and scope of metal/bromide autoxidation of hydrocarbons [J]. Catalysis Today, 1995, 23(2): 69-158.
[33]Crestini C, D'Auria M. Singlet oxygen in the photodegradation of lignin models [J]. Tetrahedron, 1997, 53(23): 7877-7888.
[34]DiCosimo R, Szabo H C. Oxidation of lignin model compounds using single-electron-transfer catalysts [J]. The Journal of Organic Chemistry, 1988, 53(8): 1673-1679.
[35]Gon?alves A R, Schuchardt U. Hydrogenolysis of lignins [J]. Applied biochemistry and biotechnology, 2002, 98(1-9): 1211-1219.
[36]Tarabanko V E, Fomova N A, Kuznetsov B N, et al. On the mechanism of vanillin formation in the catalytic oxidation of lignin with oxygen [J]. Reaction Kinetics and Catalysis Letters, 1995, 55(1): 161-170.
[37]Xiang Q, Lee Y Y. Production of oxychemicals from precipitated hardwood lignin [J]. Applied biochemistry and biotechnology, 2001, 91(1-9): 71-80.
[38]Okita Y, Saito T, Isogai A. TEMPO-mediated oxidation of softwood thermomechanical pulp [J]. Holzforschung, 2009, 63(5): 529-535.
[39]Liu X, Xu H, Ma Z, et al. Cu-catalyzed aerobic oxygenation of 2-phenoxyacetophenones to alkyloxy acetophenones[J]. RSC Advances, 2016, 6(32): 27126-27129.
[40]Zhang J, Liu Y, Chiba S, et al. Chemical conversion of β-O-4 lignin linkage models through Cu-catalyzed aerobic amide bond formation [J]. Chemical Communications, 2013, 49(97): 11439-11441.
[41]Rochefort D, Leech D, Bourbonnais R. Electron transfer mediator systems for bleaching of paper pulp [J]. Green Chemistry, 2004, 6(1): 14-24.
[42]Korpi H, Figiel P J, Lankinen E, et al. On in situ prepared Cu-phenanthroline complexes in aqueous alkaline solutions and their use in the catalytic oxidation of veratryl alcohol [J]. European journal of inorganic chemistry, 2007(17): 2465-2471.
[43]Son S, Toste F D. Non-Oxidative Vanadium-Catalyzed C-O Bond Cleavage: Application to Degradation of Lignin Model Compounds [J]. Angewandte Chemie International Edition, 2010, 49(22): 3791-3794.
[44]Hanson S K, Wu R, Silks L A. C-C or C-O Bond Cleavage in a Phenolic Lignin Model Compound: Selectivity Depends on Vanadium Catalyst [J]. Angewandte Chemie International Edition, 2012, 51(14): 3410-3413.
[45]Rahimi A, Azarpira A, Kim H, et al. Chemoselective metal-free aerobic alcohol oxidation in lignin [J]. Journal of the American Chemical Society, 2013, 135(17): 6415-6418.
[46]Nguyen J D, Matsuura B S, Stephenson C R J. A photochemical strategy for lignin degradation at room temperature [J]. Journal of the American Chemical Society, 2014, 136(4): 1218-1221.
[47]Jia S, Cox B J, Guo X, et al. Cleaving the β-O-4 Bonds of Lignin Model Compounds in an Acidic Ionic Liquid, 1-H-3-Methylimidazolium Chloride: An Optional Strategy for the Degradation of Lignin [J]. ChemSusChem, 2010, 3(9): 1078-1084.