董子陽(yáng),胡佳杰,胡寶蘭
綜 述
胡寶蘭 博士,教授,九三社員,現(xiàn)任浙江大學(xué)環(huán)境與資源學(xué)院副院長(zhǎng)。浙江省九三農(nóng)村工作委員會(huì)副主任,浙江省納米毒理專委會(huì)副主任,中國(guó)環(huán)境微生物學(xué)會(huì)專委會(huì)委員。受聘浙江省“五水共治”專家,浙江省農(nóng)業(yè)生態(tài)與能源技術(shù)創(chuàng)新的與推廣服務(wù)專家。1998年至今在浙江大學(xué)環(huán)境工程系工作,曾訪問(wèn)荷蘭奈梅亨大學(xué)微生物學(xué)系、美國(guó)EPA、美國(guó)密西根大學(xué)、英國(guó)華威大學(xué)等。主要從事環(huán)境微生物學(xué)和環(huán)境生物技術(shù)方面的研究工作。主持國(guó)家級(jí)及省部級(jí)課題20多項(xiàng),在、、、《中國(guó)科學(xué)》等國(guó)內(nèi)外期刊發(fā)表論文100多篇,ESI高引論文4篇。參編著作2本,教材6本,已獲授權(quán)國(guó)家發(fā)明專利27項(xiàng),實(shí)用新型專利21項(xiàng),獲省部以上獎(jiǎng)項(xiàng)4項(xiàng)。
微生物鐵載體轉(zhuǎn)運(yùn)調(diào)控機(jī)制及其在環(huán)境污染修復(fù)中的應(yīng)用
董子陽(yáng),胡佳杰,胡寶蘭
浙江大學(xué) 環(huán)境與資源學(xué)院環(huán)境生態(tài)研究所,浙江 杭州 310058
鐵載體是微生物在胞內(nèi)低鐵濃度下分泌的螯合鐵的物質(zhì),可分為兒茶酚鹽類、氧肟酸鹽類、羧酸鹽類三大類。鐵載體的轉(zhuǎn)運(yùn)分別受Fur、σ因子、群體感應(yīng)信號(hào)這3種機(jī)制調(diào)控。近年來(lái)鐵載體在石油污染修復(fù)、重金屬污染修復(fù)和紙漿生物漂白等領(lǐng)域得到了應(yīng)用,受到廣泛關(guān)注。文中綜述了鐵載體的分類及其轉(zhuǎn)運(yùn)調(diào)控機(jī)制,以及鐵載體在環(huán)境污染治理與修復(fù)中的應(yīng)用,并展望了鐵載體今后的應(yīng)用前景。
鐵,鐵載體,調(diào)控,環(huán)境應(yīng)用
鐵(Fe) 是幾乎所有微生物生長(zhǎng)所必需的元素,在氧代謝、電子轉(zhuǎn)移以及DNA和RNA合成等過(guò)程中起著催化劑的作用[1]。鐵對(duì)生物膜的形成也是必不可少的,它起著調(diào)節(jié)表面運(yùn)動(dòng)和穩(wěn)定多糖基質(zhì)的作用[2-3];在缺鐵的生長(zhǎng)條件下,微生物表面疏水性降低,導(dǎo)致生物膜的形成受到限制[4]。盡管鐵是地殼中第四大元素,但由于鐵大多以氧化態(tài)或氫氧化態(tài)的形式存在,其溶解度極低。環(huán)境中的游離鐵離子濃度為皮摩爾級(jí)別,而微生物生長(zhǎng)需要毫摩爾級(jí)別濃度的鐵[5]。因此,微生物進(jìn)化出了多種吸收鐵的途徑,其中最主要的途徑是鐵載體依賴的鐵吸收途徑。鐵載體是由微生物產(chǎn)生的高親和力低分子量的金屬螯合劑(200–2 000 Da)[6]。鐵載體的作用主要是螯合鐵,但它也與環(huán)境中的其他金屬元素(例如Mo、Mn、Co和Ni)螯合[7-8],研究表明,鐵載體不僅在微生物營(yíng)養(yǎng)方面起著重要作用,而且在環(huán)境應(yīng)用中也起著重要的作用。比如,鐵載體對(duì)一些金屬離子在環(huán)境中的遷移性有影 響[9-11],因此其能夠用來(lái)修復(fù)重金屬污染。在這篇綜述中,我們將討論微生物鐵載體的轉(zhuǎn)運(yùn)調(diào)控機(jī)制及其在環(huán)境污染修復(fù)領(lǐng)域中的應(yīng)用進(jìn)展。
鐵載體根據(jù)化學(xué)性質(zhì)的差異可分為氧肟酸鹽、兒茶酚鹽和羧酸鹽三類。除上述類型外,某些鐵載體也可歸為混合型(表1)。
氧肟酸鹽型鐵載體是自然界中最常見(jiàn)的鐵載體,這些鐵載體由細(xì)菌和真菌產(chǎn)生。在細(xì)菌中,這些親水性的鐵載體是由?;土u化的烷胺組成的,比如由熒光假單胞菌產(chǎn)生的鐵載體熒光嗜鐵素pyoverdine;而在真菌中,它們是由羥基化和烷基化鳥(niǎo)氨酸組成的[12],比如由木霉菌spp.產(chǎn)生的糞生素coprogens。除了由煙曲霉菌產(chǎn)生的含有酯鍵的鐵載體鐮菌素fusarinine C,其他的氧肟酸鹽鐵載體都含有肽鏈[13]。氧肟酸鹽鐵載體上的羥甲酸基團(tuán)的2個(gè)氧分子和鐵之間形成一個(gè)雙齒配體,每種氧肟酸鹽鐵載體都能與鐵離子形成六齒八面體配合物,其結(jié)合常數(shù)在1022–1032L/mol之間[14]。
兒茶酚鹽型鐵載體只存在于細(xì)菌中,如由大腸桿菌產(chǎn)生的腸桿菌素enterobactin、由肺炎克雷伯菌分泌的salmochelin[15]。這種類型的鐵載體由兒茶酚酸酯和羥基組成,具有與氨基酸偶聯(lián)的二羥基苯甲酸(DHBA),相鄰的羥基或鄰苯二酚末端可以與Fe3+結(jié)合[16]。這種鐵載體具有親脂性、與鐵親和力極高、對(duì)環(huán)境pH變化抵抗力強(qiáng)等特點(diǎn)[17]。兒茶酚酸鹽鐵載體基團(tuán)通過(guò)提供2個(gè)氧原子與鐵螯合形成六齒八面體配合物,腸桿菌素enterobactin與鐵的結(jié)合常數(shù)高達(dá)1052L/mol。
羧酸鹽型鐵載體由少數(shù)細(xì)菌產(chǎn)生,如由苜蓿根瘤菌產(chǎn)生的根瘤菌素rhizobactin。這些鐵載體由檸檬酸或β-羥基天冬氨酸組成,例如由金黃色葡萄球菌產(chǎn)生的staphyloferrin A中含有1個(gè)D-鳥(niǎo)氨酸和2個(gè)由2個(gè)酰胺鍵連接的檸檬酸殘基。這些鐵載體可以通過(guò)羧基和羥基與鐵原子結(jié)合。
有些生物能夠產(chǎn)生既含有兒茶酚鹽又含有氧肟酸鹽的混合型鐵載體,例如由硫紅球菌產(chǎn)生的heterobactin[16],由大腸桿菌.產(chǎn)生的氣桿菌素aerobactin[15]。
在革蘭氏陰性細(xì)菌中,每個(gè)鐵-鐵載體復(fù)合物都被一個(gè)特定的外膜受體(OMR) 識(shí)別,雖然OMR極其多樣,不同的細(xì)菌種類和不同的鐵載體類別有不同的受體,但普遍模式是,OMR與內(nèi)膜蛋白TonB相互作用,以促進(jìn)鐵-鐵載體復(fù)合體的吸收。目前的模型表明,TonB將內(nèi)膜蛋白ExbB和ExbD以及正常細(xì)胞呼吸時(shí)在周質(zhì)中產(chǎn)生的電化學(xué)質(zhì)子動(dòng)力勢(shì)產(chǎn)生的能量傳遞給OMR,從而導(dǎo)致OMR的構(gòu)象變化。OMR的構(gòu)象變化促進(jìn)鐵-鐵載體復(fù)合物向細(xì)胞內(nèi)轉(zhuǎn)運(yùn)(圖1)[18]。在大腸桿菌.中,鐵載體腸桿菌素enterobactin被外膜受體FepA識(shí)別,一旦腸桿菌素enterobactin穿過(guò)外膜,周質(zhì)結(jié)合蛋白(PBP) FepB就會(huì)將其運(yùn)送到內(nèi)膜,在內(nèi)膜上,由FepC、FepD和FepG組成的復(fù)合物將腸桿菌素enterobactin運(yùn)輸?shù)郊?xì)胞質(zhì)中。其他鐵載體的吸收機(jī)制略有不同,例如銅綠假單胞菌的鐵-pyoverdine被OMR吸收后,在周質(zhì)結(jié)合蛋白FpvC和FpvF的作用下,熒光嗜鐵素pyoverdine在周質(zhì)內(nèi)被水解。鐵被ABC轉(zhuǎn)運(yùn)體復(fù)合體FpvDE泵入細(xì)胞質(zhì),而沒(méi)有鐵結(jié)合的熒光嗜鐵素pyoverdine被分泌回環(huán)境中以收集更多的鐵[19]。
革蘭氏陽(yáng)性菌,如金黃色葡萄球菌.,只有一層細(xì)胞膜,因此具有更簡(jiǎn)單的鐵載體吸收系統(tǒng)。一般來(lái)說(shuō),革蘭氏陽(yáng)性菌表達(dá)鐵載體結(jié)合蛋白(SBP) 及其相應(yīng)的通透酶。SBP與胞外鐵載體的結(jié)合導(dǎo)致SBP-通透酶復(fù)合物的構(gòu)象改變,從而使鐵載體跨膜進(jìn)入細(xì)胞質(zhì)。在金黃色葡萄球菌.中,羧酸鹽型鐵載體staphyloferrin A和staphyloferrin B分別被膜結(jié)合蛋白HtsA和SirA識(shí)別。當(dāng)staphyloferrin與SBP結(jié)合時(shí),這些蛋白質(zhì)發(fā)生構(gòu)象變化,激活通透酶HtsBC或SirBC,使staphyloferrin穿過(guò)細(xì)胞膜[15]。
表1 鐵載體的種類及其來(lái)源
圖1 鐵載體的吸收機(jī)制[15]
在生物合成之后,鐵載體被分泌到培養(yǎng)基中以獲取鐵[15]。鐵載體的分泌是微生物鐵獲取過(guò)程中研究較少的一個(gè)步驟。有幾種不同的分泌系統(tǒng)參與了這一過(guò)程,包括主要協(xié)同轉(zhuǎn)運(yùn)超家族轉(zhuǎn)運(yùn)蛋白MFS (Major facilitator superfamily) 和耐藥、結(jié)瘤和細(xì)胞分裂超家族RND (Resistance- nodulation-division) 外排泵。許多依賴NRPS合成途徑的鐵載體基因簇都含有MFS轉(zhuǎn)運(yùn)蛋白編碼基因。MFS家族蛋白是最大的一類轉(zhuǎn)運(yùn)蛋白,大多數(shù)MFS蛋白含有12個(gè)跨膜α螺旋,有些MFS蛋白具有14個(gè)甚至更多的跨膜α螺旋[20]。MFS家族蛋白負(fù)責(zé)轉(zhuǎn)運(yùn)離子、碳水化合物、脂質(zhì)、肽、核苷和其他初級(jí)和次生代謝產(chǎn)物等,從細(xì)菌到人類其氨基酸序列都是保守的[21]。
在革蘭氏陰性菌大腸桿菌.中,apo-enterobactin是由受Fur蛋白調(diào)節(jié)的-基因簇編碼的43 kDa的MFS轉(zhuǎn)運(yùn)蛋白Ents轉(zhuǎn)運(yùn)的(圖2)[22]。Ents通過(guò)細(xì)胞質(zhì)膜外排腸桿菌素enterobactin,突變株ΔΔ顯著減少了腸桿菌素enterobactin的分泌。革蘭氏陽(yáng)性菌枯草芽孢桿菌的MFS蛋白YmfE參與了鐵載體bacillibactin的分泌[23]。YmfE突變株的bacillibactin分泌不足,不能在缺鐵培養(yǎng)基中生長(zhǎng)。
圖2 鐵載體的外排機(jī)制[15]
除了MFS家族蛋白外,RND超家族蛋白是一組普遍存在的質(zhì)子反轉(zhuǎn)運(yùn)蛋白,在革蘭氏陰性細(xì)菌中尤為常見(jiàn)。該家族蛋白促進(jìn)了重金屬、外源化合物和鐵載體的主動(dòng)外流[24]。銅綠假單胞菌鐵調(diào)節(jié)的MexAB-OprM系統(tǒng)是在鐵載體熒光嗜鐵素pyoverdin分泌中發(fā)現(xiàn)的第一個(gè)RND泵[25]。在大腸桿菌中,TolC與MFS轉(zhuǎn)運(yùn)蛋白互補(bǔ),負(fù)責(zé)將鐵載體腸桿菌素enterobactin流出外膜[26-27]。TolC是一種跨外膜蛋白,是RND泵AcrAB-TolC的重要組成部分,該復(fù)合物是一種細(xì)菌抗生素的通用轉(zhuǎn)運(yùn)體,并具有對(duì)有毒物質(zhì)的耐受性,該復(fù)合物的結(jié)構(gòu)已經(jīng)被解析清楚[28]。AcrAB-TolC泵由AcrB、AcrA、TolC 三種蛋白以3∶6∶3的比例組成。AcrA通過(guò)發(fā)夾結(jié)構(gòu)域與TolC相互作用,并通過(guò)β桶狀結(jié)構(gòu)域和膜近端結(jié)構(gòu)域與AcrB連接。AcrAB在大腸桿菌腸桿菌素enterobactin分泌中發(fā)揮的作用尚不完全清楚,三重突變株ΔΔΔ會(huì)導(dǎo)致腸桿菌素enterobactin分泌減少[29],說(shuō)明EntS在腸桿菌素enterobactin分泌過(guò)程中發(fā)揮著重要作用。AcrAD和MdtABC是另外兩個(gè)依賴于TolC的RND外排泵。此外,MmpS5-MmpL5 (或4)RND外排泵是AcrAB的同源物,已被確認(rèn)為是結(jié)核分枝桿菌中一個(gè)重要的鐵載體外排系統(tǒng)[30],MmpS5-MmpL5受轉(zhuǎn)錄調(diào)節(jié)因子Rv0678的調(diào)節(jié)[31]。缺少和基因的突變體不會(huì)影響鐵載體羧基分枝桿菌素carboxymycobactin[32]的吸收,但會(huì)在低鐵條件下使細(xì)胞生長(zhǎng)速度變慢[32]。
微生物通過(guò)鐵載體來(lái)獲得生長(zhǎng)所需要的鐵,然而過(guò)量的鐵對(duì)細(xì)胞是有毒的,因此微生物必須嚴(yán)格控制胞內(nèi)的鐵含量。在革蘭氏陰性和低GC含量革蘭氏陽(yáng)性菌中,調(diào)節(jié)胞內(nèi)鐵平衡和鐵載體利用的蛋白是Fur蛋白[33]。在GC含量較高的革蘭氏陽(yáng)性菌如鏈霉菌和分枝桿菌中,DtxR家族蛋白起著調(diào)控胞內(nèi)鐵平衡和鐵載體利用的作用[33]。而在真菌釀酒酵母目前研究得比較清楚的鐵吸收調(diào)控系統(tǒng)是大腸桿菌.中的Fur (Ferric uptake regulation) 系統(tǒng)[35]。在高濃度鐵的條件下,過(guò)量的鐵離子與Fur蛋白結(jié)合,F(xiàn)ur具有活性,與鐵載體合成基因和鐵轉(zhuǎn)運(yùn)基因上游的特異序列結(jié)合,從而抑制鐵載體合成和鐵轉(zhuǎn)運(yùn)基因的轉(zhuǎn)錄,同時(shí)Fur通過(guò)小RNA RyhB來(lái)間接促進(jìn)儲(chǔ)鐵蛋白的表達(dá),以防止胞內(nèi)過(guò)量的鐵發(fā)生芬頓反應(yīng)產(chǎn)生羥基自由基損傷細(xì)胞;而在低鐵濃度條件下,F(xiàn)ur蛋白上沒(méi)有鐵離子結(jié)合,F(xiàn)ur失去了活性,從而解除了對(duì)鐵載體合成基因和鐵轉(zhuǎn)運(yùn)基因轉(zhuǎn)錄的阻遏,間接抑制了儲(chǔ)鐵蛋白的表達(dá)[33](圖3)。
σ因子幾乎存在于所有的細(xì)菌中,調(diào)節(jié)許多基因的轉(zhuǎn)錄,包括周質(zhì)蛋白和外膜蛋白的基因轉(zhuǎn)錄[36],一個(gè)共同的特征是σ因子的活性受抗σ因子的調(diào)節(jié),σ因子和抗σ因子通常是共表達(dá)的。一般來(lái)說(shuō),在沒(méi)有外界刺激的情況下,抗σ因子通常抑制σ因子;而在外界特定的刺激下,該種抑制解除。σ因子參與了鐵載體的合成和吸收(圖4)[37],例如銅綠假單胞菌的PvdS、熒光假單胞菌的PbrA、惡臭假單胞菌的PfrI和PupI以及大腸桿菌K-12的FecI[38]。大腸桿菌K-12中σ因子調(diào)節(jié)鐵載體合成和吸收機(jī)制研究得比較清楚,F(xiàn)ecA是大腸桿菌K-12中轉(zhuǎn)運(yùn)citrate-Fe的受體,是屬于操縱子的,而的轉(zhuǎn)錄依賴于σ因子FecI。當(dāng)胞外鐵載體結(jié)合到受體FecA之后,F(xiàn)ecA將信號(hào)傳遞到內(nèi)膜蛋白FecR,F(xiàn)ecR將信號(hào)穿過(guò)內(nèi)膜傳遞到FecI,隨后FecI指導(dǎo)RNA聚合酶轉(zhuǎn)錄操縱子,F(xiàn)ecI的活性受抗σ因子FecR的調(diào)控, FecA與FecR和FecR與FecI之間的相互作用已經(jīng)在體內(nèi)被證明,其中FecA的N-末端和FecR的C-末端相互作用,而FecR的胞質(zhì)部分和FecI相互作用。
圖3 鐵吸收蛋白調(diào)控示意圖
除了鐵吸收調(diào)控蛋白依賴的調(diào)節(jié)和σ因子依賴的調(diào)節(jié),一些細(xì)菌還根據(jù)群體感應(yīng)信號(hào)來(lái)調(diào)節(jié)鐵載體產(chǎn)生。細(xì)菌通過(guò)感應(yīng)群體信號(hào)來(lái)判斷菌群密度和周圍環(huán)境變化,來(lái)調(diào)節(jié)細(xì)胞內(nèi)不同的功能,
并產(chǎn)生相應(yīng)的表型,如生物膜形成[39-40]、群集運(yùn)動(dòng)[41]、生物發(fā)光[42]、抗生素的產(chǎn)生和抗藥性[43]、藥物[44]和毒素的生產(chǎn)[45]。
圖4 鐵載體受體的轉(zhuǎn)錄受σ/抗σ因子系統(tǒng)的調(diào)控[37]
群體感應(yīng)調(diào)節(jié)鐵載體產(chǎn)生的具體機(jī)制還不清楚,但鐵載體的產(chǎn)生明顯受某些細(xì)菌群體感應(yīng)的影響,特別是病原菌。在銅綠假單胞菌不能產(chǎn)生群體感應(yīng)信號(hào)的突變株Δ中,鐵載體熒光嗜鐵素pyoverdine的產(chǎn)生受到了影響,而銅綠假單胞菌產(chǎn)生的另一種鐵載體綠膿桿菌螯鐵蛋白pyochelin卻不受群體感應(yīng)信號(hào)的影響[46]。相比之下,將洋蔥伯克氏菌產(chǎn)生群體感應(yīng)信號(hào)的基因敲除后,能夠產(chǎn)生更多的鐵載體ornibactin[47],將群體感應(yīng)信號(hào)的基因回補(bǔ)后,細(xì)菌的鐵載體產(chǎn)生量又恢復(fù)到原來(lái)的水平。在哈維氏弧菌中,群體感應(yīng)信號(hào)抑制過(guò)量的鐵載體產(chǎn)生[48]。
鐵載體也可螯合除Fe3+以外的其他金屬,但親和力較低。例如,氧肟酸鹽型鐵載體去鐵胺desferrioxamine B與Ga3+、Al3+和In3+的形成常數(shù)在1020–1028L/mol之間,而與Fe3+的形成常數(shù)為1030L/mol。熒光嗜鐵素pyoverdine與Zn2+、Cu2+和Mn2+的形成常數(shù)在1017–1022L/mol之間,與Fe3+的形成常數(shù)為1032L/mol[49]。綠膿桿菌螯鐵蛋白pyochelin的外膜轉(zhuǎn)運(yùn)蛋白FptA只有當(dāng)綠膿桿菌螯鐵蛋白pyochelin與Fe3+結(jié)合時(shí)才能高效地轉(zhuǎn)運(yùn),盡管Co2+、Ga3+和Ni2+也被轉(zhuǎn)運(yùn),但它們的吸收速率比Fe3+低23–35倍。此外,熒光嗜鐵素pyoverdine外膜轉(zhuǎn)運(yùn)蛋白FpvA也能夠轉(zhuǎn)運(yùn)多種金屬,但只有Fe3+被高效轉(zhuǎn)運(yùn),轉(zhuǎn)運(yùn)Cu2+、Ga3+、Mn2+、Mn2+、Cu2+和Ni2+的轉(zhuǎn)運(yùn)效率比轉(zhuǎn)運(yùn)鐵低7–42倍[49]。因此,鐵載體的這種結(jié)合和轉(zhuǎn)運(yùn)的特異性可以保證在不妨礙細(xì)菌必需元素鐵吸收的同時(shí)還可以用來(lái)去除環(huán)境中的重金屬。此外,鐵載體還可以通過(guò)促進(jìn)微生物的鐵吸收,乳化污染物等方式來(lái)促進(jìn)微生物對(duì)污染物的降解(表2)。
表2 鐵載體在環(huán)境污染修復(fù)中的應(yīng)用
海洋生態(tài)系統(tǒng)中的石油碳?xì)浠衔镂廴臼侵饕沫h(huán)境問(wèn)題之一。微生物在修復(fù)海洋環(huán)境中的石油烴起著重要的作用[50]。微生物鐵載體通過(guò)間接機(jī)制參與了石油烴的生物降解,在鐵限制條件下促進(jìn)了降解微生物對(duì)鐵的獲取。Petrobactin是第一個(gè)鑒定出的由海洋石油降解菌產(chǎn)生的鐵載體[51]。Hickford等[52]從一種石油降解海洋細(xì)菌中分離出另一種磺化鐵載體petrobactin sulfonate,該鐵載體可促進(jìn)石油降解菌的鐵吸收,使用鐵載體可能是清除溢油污染的一種良好策略。2010年Gauglitz等[53]在深水地平線石油泄漏后的墨西哥灣分離出來(lái)一種海洋弧菌spp.,這種菌能夠產(chǎn)生一種既親水又親油的兩親性鐵載體ochrobactins,這種鐵載體可有效促進(jìn)石油碳?xì)浠衔锏慕到狻:Q蠡【鷖p. S2A和sp. S1B產(chǎn)生的另一種兩親性鐵載體amphibactin通過(guò)乳化石油來(lái)促進(jìn)對(duì)石油的降解[50]。Zhao等研究發(fā)現(xiàn)鐵載體綠膿桿菌螯鐵蛋白pyochelin能夠促進(jìn)銅綠假單胞菌NY3對(duì)石油烴的降解[54]。
金屬在人類文明的發(fā)展中起著至關(guān)重要的作用[55]。但是,制造業(yè)、污泥應(yīng)用、核電站和采礦等導(dǎo)致了金屬污染[56]。鐵載體對(duì)多種金屬如Cr、Cu、Ni、Pb、Zn以及錒系元素Th4+、U4+和Pu4+具有極強(qiáng)的增溶作用[11],同時(shí)重金屬也可以影響鐵載體的產(chǎn)生量,在銅污染的場(chǎng)地中,土壤產(chǎn)鐵載體的微生物豐度及鐵載體總量增加[57]。鐵載體的這種螯合重金屬能力主要取決于鐵載體與金屬形成配合物的穩(wěn)定常數(shù)[58]。鐵載體修復(fù)重金屬污染具有成本低、效率高、無(wú)環(huán)境污染的優(yōu)點(diǎn)。近年來(lái),人們對(duì)鐵載體在金屬生物修復(fù)中的應(yīng)用越來(lái)越感興趣。Neubauer及其同事[59]指出,在高pH條件下,鐵載體去鐵胺desferrioxamine B螯合Co3+的能力比螯合Fe3+的能力更強(qiáng)。褐色固氮菌能夠產(chǎn)生兩種鐵載體,即azotochelin和azotobactin,這兩種鐵載體都能 夠用來(lái)獲得金屬M(fèi)o和V[8]。銅綠假單胞菌產(chǎn)生的鐵載體綠膿桿菌螯鐵蛋白pyochelin可與Ag+、Al3+、Cd2+、Co2+、Cr2+、Cu2+、Eu3+、Ga3+、Hg2+、Mn2+、Ni2+、Pb2+、Sn2+、Tb3+、Tl+、Zn2+等多種金屬離子發(fā)生螯合反應(yīng),然而除Fe3+以外其他金屬并不能被細(xì)胞所吸收[8],銅綠假單胞菌產(chǎn)生的另一種鐵載體熒光嗜鐵素pyoverdines能從鈾礦山廢渣中活化U6+、Np5+等金屬[60]。Hong等[61]報(bào)道了鐮刀菌產(chǎn)生的鐵載體在體外對(duì)銅和鋅的溶解作用。熒光假單胞菌產(chǎn)生的鐵載體能夠溶解鈾礦山廢料(酸浸礦石) 中的Fe、Ni和Co。鐵載體和重金屬螯合后,一種是被超積累植物吸收,例如唐德鏈霉菌F4通過(guò)分泌去鐵胺desferrioxamine B、desferrioxamine E、coelichelin來(lái)促進(jìn)向日葵對(duì)Cd的吸收[62],銅綠假單胞菌分泌的熒光嗜鐵素pyoverdine、綠膿桿菌螯鐵蛋白pyochelin能夠促進(jìn)玉米對(duì)Cr和Pb的吸收[63]。另一種是儲(chǔ)存在細(xì)菌體內(nèi),在被金屬污染的土壤中,由放射桿菌產(chǎn)生的鐵載體可以去除大約54%的砷[64]。腐皮鐮孢菌和紅樹(shù)林真菌通過(guò)分泌鐵載體在體內(nèi)富集銅和鋅[1]。
紙漿和造紙工業(yè)能夠引起很多環(huán)境問(wèn)題,例如全球變暖、人類毒性、生態(tài)毒性、光化學(xué)氧化、酸化、硝化和固廢等[65-66]。制漿造紙生產(chǎn)中主要產(chǎn)生環(huán)境問(wèn)題的工藝是漂白工藝,該工藝產(chǎn)生的污染物污染空氣和水。鐵載體被認(rèn)為是紙漿處理中的有效試劑,它可以使漂白硫酸鹽紙漿過(guò)程中化學(xué)試劑的使用量降低70%[67],這使得鐵載體成為造紙工業(yè)中環(huán)境友好型的試劑。褐腐菌是腐朽木材中主要的微生物類群,褐腐菌能夠產(chǎn)生兒茶酚酸鹽和羥肟酸鹽鐵載體[68-69]。例如,從褐腐菌中分離到的異羥肟酸鹽類鐵載體具有介導(dǎo)氧化還原循環(huán)過(guò)程中還原鐵的能力,還原后的鐵可以與過(guò)氧化氫反應(yīng)生成氧自由基,分解纖維素、半纖維素和木質(zhì)纖維素。這種解聚過(guò)程被認(rèn)為是鐵載體在紙漿生物漂白中的主要作用[70-71]。此外,Milagres等[72]報(bào)道了不同微生物種類產(chǎn)生的鐵載體在紙漿生物漂白過(guò)程中降低紙漿粘度的能力,他們發(fā)現(xiàn)褐腐菌產(chǎn)生的鐵載體能降低紙漿粘度,降低幅度為10.8%,而多年生孢子菌和花斑癬產(chǎn)生的鐵載體降解紙漿的降解率分別為13.6%和14.4%。研究還發(fā)現(xiàn),云芝產(chǎn)生的鐵載體可以改變木質(zhì)素的結(jié)構(gòu),使其更容易降解,從而降低木質(zhì)素的含量[73]。
近年來(lái),越來(lái)越多的研究表明,鐵載體在許多微生物鐵吸收過(guò)程中發(fā)揮著重要作用。人們?cè)诮馕霾煌F載體的化學(xué)結(jié)構(gòu)和鐵轉(zhuǎn)運(yùn)所涉及的膜蛋白方面取得了很大進(jìn)展。鐵載體的重要性是顯而易見(jiàn)的,它們?cè)诃h(huán)境應(yīng)用中起著重要的作用,然而還有許多問(wèn)題需要回答。在鐵載體對(duì)金屬選擇性吸收的過(guò)程中,微生物的具體作用是什么?為什么微生物會(huì)分泌不止一種類型的鐵載體來(lái)滿足它們的礦物質(zhì)營(yíng)養(yǎng)需求?在環(huán)境應(yīng)用中,不同鐵載體結(jié)構(gòu)的作用是什么?鐵是參與碳氮循環(huán)微生物生長(zhǎng)及發(fā)揮正常生理功能所必需的輔因子,關(guān)于參與碳氮循環(huán)微生物的鐵載體的種類及其轉(zhuǎn)運(yùn)過(guò)程的研究目前還很少,微生物的鐵載體受體多于它自身能夠合成的鐵載體種類,這是因?yàn)槎嘤嗟蔫F載體受體是用來(lái)吸收其他微生物合成的鐵載體,因此鐵載體的生態(tài)意義不容忽視。鐵載體是否可以通過(guò)影響碳氮循環(huán)微生物的活性、群落結(jié)構(gòu)及豐度來(lái)影響全球微生物的碳氮循環(huán)過(guò)程?目前已有在脫氮反應(yīng)器中加入鐵來(lái)提高脫氮效率的報(bào)道,是否可以通過(guò)加入鐵載體來(lái)特異性提高反應(yīng)器中功能微生物的鐵利用效率,在提高其活性的同時(shí)提高其豐度?
更多的研究需要集中在尋找有效的方法來(lái)利用鐵載體進(jìn)行生物修復(fù),要根據(jù)不同污染場(chǎng)地中的污染物種類、微生物群落等因素應(yīng)用不同種類的鐵載體,做到因地制宜,以拓展其在環(huán)境中的應(yīng)用范圍并提高修復(fù)效率;研究鐵載體的結(jié)構(gòu)和含量與微生物的群落結(jié)構(gòu)和功能特征的相互影響,以促進(jìn)鐵載體在環(huán)境中的應(yīng)用。將宏基因組學(xué)與化學(xué)分析相結(jié)合可揭示重要的信息,這些信息可增強(qiáng)目前鐵載體環(huán)境應(yīng)用現(xiàn)狀,并開(kāi)發(fā)出鐵載體的新應(yīng)用。同時(shí),利用基因工程手段調(diào)控鐵載體的合成與轉(zhuǎn)運(yùn),提高微生物鐵載體的產(chǎn)量,降低其應(yīng)用成本,改造鐵載體的結(jié)構(gòu),使其更適用于環(huán)境領(lǐng)域。
[1] Ahmed E, Holmstrom SJM. Siderophores in environmental research: roles and applications. Microb Biotechnol, 2014, 7(3): 196–208.
[2] Oliveira F, Fran?a ?, Cerca N.is largely dependent on iron availability to form biofilms. Int J Med Microbiol, 2017, 307(8): 552–563.
[3] Chung PY. The emerging problems ofinfections: carbapenem resistance and biofilm formation. FEMS Microbiol Lett, 2016, 363(20): fnw219.
[4] Liu S, Gunawan C, Barraud N, et al. Understanding, monitoring, and controlling biofilm growth in drinking water distribution systems. Environ Sci Technol, 2016, 50(17): 8954–8976.
[5] de Serrano LO, Camper AK, Richards AM. An overview of siderophores for iron acquisition in microorganisms living in the extreme. BioMetals, 2016, 29(4): 551–571.
[6] Schwyn B, Neilands JB. Universal chemical assay for the detection and determination of siderophores. Anal Biochem, 1987, 160(1): 47–56.
[7] Bellenger JP, Wichard T, Kustka AB, et al. Uptake of molybdenum and vanadium by a nitrogen-fixing soil bacterium using siderophores. Nat Geosci, 2008, 1(4): 243–246.
[8] Braud A, Jézéquel K, Bazot S, et al. Enhanced phytoextraction of an agricultural Cr- and Pb-contaminated soil by bioaugmentation with siderophore-producing bacteria. Chemosphere, 2009, 74(2): 280–286.
[9] Renshaw JC, Robson GD, Trinci APJ, et al. Fungal siderophores: structures, functions and applications. Mycol Res, 2002, 106(10): 1123–1142.
[10] Dahlheimer SR, Neal CR, Fein JB. Potential mobilization of platinum-group elements by siderophores in surface environments. Environ Sci Technol, 2007, 41(3): 870–875.
[11] Schalk IJ, Hannauer M, Braud A. New roles for bacterial siderophores in metal transport and tolerance. Environ Microbiol, 2011, 13(11): 2844–2854.
[12] Baakza A, Vala AK, Dave BP, et al. A comparative study of siderophore production by fungi from marine and terrestrial habitats. J Exp Mar Biol Ecol, 2004, 311(1): 1–9.
[13] Oberegger H, Schoeser M, Zadra I, et al. SREA is involved in regulation of siderophore biosynthesis, utilization and uptake in. Mol Microbiol, 2001, 41(5): 1077–1089.
[14] Saha M, Sarkar S, Sarkar B, et al. Microbial siderophores and their potential applications: a review. Environ Sci Pollut Res, 2016, 23(5): 3984–3999.
[15] Wilson BR, Bogdan AR, Miyazawa M, et al. Siderophores in iron metabolism: from mechanism to therapy potential. Trends Mol Med, 2016, 22(12): 1077–1090.
[16] Paul A, Dubey R. Characterization of protein involved in nitrogen fixation and estimation of Co-factor. Int J Curr Res Biosci Plant Biol, 2015, 2(1): 89–97.
[17] Winkelmann G. Microbial siderophore-mediated transport. Biochem Soc Trans, 2002, 30(4): 691–696.
[18] Klebba PE. ROSET model of TonB action in Gram-negative bacterial iron acquisition. J Bacteriol, 2016, 198(7): 1013–1021.
[19] Schalk IJ, Guillon L. Fate of ferrisiderophores after import across bacterial outer membranes: different iron release strategies are observed in the cytoplasm or periplasm depending on the siderophore pathways. Amino Acids, 2013, 44(5): 1267–1277.
[20] Li K, Chen WH, Bruner SD. Microbial siderophore-based iron assimilation and therapeutic applications. Biometals, 2016, 29(3): 377–88.
[21] Miethke M, Marahiel MA. Siderophore-based iron acquisition and pathogen control. Microbiol Mol Biol Rev, 2007, 71(3): 413–451.
[22] Reddy VS, Shlykov MA, Castillo R, et al. The major facilitator superfamily (MFS) revisited. FEBS J, 2012, 279(11): 2022–2035.
[23] Furrer JL, Sanders DN, Hook-Barnard IG, et al. Export of the siderophore enterobactin in: involvement of a 43 kDa membrane exporter. Mol Microbiol, 2002, 44(5): 1225–1234.
[24] Miethke M, Schmidt S, Marahiel MA. The major facilitator superfamily-type transporter YmfE and the multidrug-efflux activator Mta mediate bacillibactin secretion in. J Bacteriol, 2008, 190(15): 5143–5152.
[25] Nikaido H, Pagès JM. Broad-specificity efflux pumps and their role in multidrug resistance of Gram-negative bacteria. FEMS Microbiol Rev, 2012, 36(2): 340–363.
[26] Li XZ, Nikaido H, Poole K. Role of MexA-MexB-OprM in antibiotic efflux in. Antimicrob Agents Chemother, 1995, 39(9): 1948–1953.
[27] Bleuel C, Gro?e C, Taudte N, et al. TolC is involved in enterobactin efflux across the outer membrane ofJ Bacteriol, 2005, 187(19): 6701–6707.
[28] Pei XY, Hinchliffe P, Symmons MF, et al. Structures of sequential open states in a symmetrical opening transition of the TolC exit duct. Proc Natl Acad Sci USA, 2011, 108(5): 2112–2117.
[29] Du DJ, Wang Z, James NR, et al. Structure of the AcrAB-TolC multidrug efflux pump. Nature, 2014, 509(7501): 512–515.
[30] Horiyama T, Nishino K. AcrB, AcrD, and MdtABC multidrug efflux systems are involved in enterobactin export in. PLoS ONE, 2014, 9(9): e108642.
[31] Wells RM, Jones CM, Xi Z, et al. Discovery of a siderophore export system essential for virulence of. PLoS Pathog, 2013, 9(1): e1003120.
[32] Radhakrishnan A, Kumar N, Wright CC, et al. Crystal structure of the transcriptional regulator Rv0678 of. J Biol Chem, 2014, 289(23): 16526–16540.
[33] Hantke K. Iron and metal regulation in bacteria. Curr Opin Microbiol, 2001, 4(2): 172–177.
[34] Matsuo R, Mizobuchi S, Nakashima M, et al. Central roles of iron in the regulation of oxidative stress in the yeast. Curr Genet, 2017, 63(5): 895–907.
[35] de Lorenzo V, Perez-Martin J, Escolar L, et al. Mode of binding of the fur protein to target DNA: negative regulation of iron-controlled gene expression//Crosa JH, Mey AR, Payne SM, Eds. Iron Transport in Bacteria. Washington: ASM Press, 2004, 1: 185–196.
[36] Staroń A, Sofia HJ, Dietrich S, et al. The third pillar of bacterial signal transduction: classification of the extracytoplasmic function (ECF) σ factor protein family. Mol Microbiol, 2009, 74(3): 557–581.
[37] Noinaj N, Guillier M, Barnard TJ, et al. TonB-dependent transporters: regulation, structure, and function. Annu Rev Microbiol, 2010, 64: 43–60.
[38] Bashyam MD, Hasnain SE. The extracytoplasmic function sigma factors: role in bacterial pathogenesis. Infect Genet Evol, 2004, 4(4): 301–308.
[39] Christiaen SEA, Matthijs N, Zhang XH, et al. Bacteria that inhibit quorum sensing decrease biofilm formation and virulence inPAO1. Pathog Dis, 2014, 70(3): 271–279.
[40] Kadirvel M, Fanimarvasti F, Forbes S, et al. Inhibition of quorum sensing and biofilm formation inby 4-fluoro-DPD; a novel potent inhibitor of Al-2 signalling. Chem Commun, 2014, 50(39): 5000–5002.
[41] Vasavi HS, Arun AB, Rekha PD. Anti-quorum sensing activity ofL. flavonoids againstandPAO1. Microbiol Immunol, 2014, 58(5): 286–293.
[42] Kalia VC, Patel SKS, Kang YC, et al. Quorum sensing inhibitors as antipathogens: biotechnological applications. Biotechnol Adv, 2019, 37(1): 68–90.
[43] Busetti A, Shaw G, Megaw J, et al. Marine-derived quorum-sensing inhibitory activities enhance the antibacterial efficacy of tobramycin against. Mar Drugs, 2015, 13(1): 1–28.
[44] Barriuso J, Hogan DA, Keshavarz T, et al. Role of quorum sensing and chemical communication in fungal biotechnology and pathogenesis. FEMS Microbiol Rev, 2018, 42(5): 627–638.
[45] Wen YC, Kim IH, Kim KS. Iron- and quorum-sensing signals converge on small quorum-regulatory RNAs for coordinated regulation of virulence factors in. J Biol Chem, 2016, 291(27): 14213–14230.
[46] Stintzi A, Evans K, Meyer JM, et al. Quorum-sensing and siderophore biosynthesis in:mutants exhibit reduced pyoverdine biosynthesis. FEMS Microbiol Lett, 1998, 166(2): 341–345.
[47] Lewenza S, Conway B, Greenberg EP, et al. Quorum sensing in: identification of the LuxRI homologs CepRI. J Bacteriol, 1999, 181(3): 748–756.
[48] McRose DL, Baars O, Seyedsayamdost MR, et al. Quorum sensing and iron regulate a two-for-one siderophore gene cluster in. Proc Natl Acad Sci USA, 2018, 115(29): 7581–7586.
[49] Braud A, Geoffroy V, Hoegy F, et al. Presence of the siderophores pyoverdine and pyochelin in the extracellular medium reduces toxic metal accumulation inand increases bacterial metal tolerance. Environ Microbiol Rep, 2010, 2(3): 419–425.
[50] Das N, Chandran P. Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol Res Int, 2011, 2011: 941810.
[51] Kurth C, Kage H, Nett M. Siderophores as molecular tools in medical and environmental applications. Org Biomol Chem, 2016, 14(35): 8212–8227.
[52] Hickford SJH, Küpper FC, Zhang GP, et al. Petrobactin sulfonate, a new siderophore produced by the marine bacterium. J Nat Prod, 2004, 67(11): 1897–1899.
[53] Gauglitz JM, Zhou HJ, Butler A. A suite of citrate-derived siderophores from a marinespecies isolated following the Deepwater Horizon oil spill. J Inorg Biochem, 2012, 107(1): 90–95.
[54] Zhao BJ, Nie MQ, Nie HY, et al. Secretion of pyochelin & its effects on alkanes degradation byNY3. J Microbiol, 2018, 38(1): 76–82 (in Chinese). 趙碧潔, 聶麥茜, 聶紅云, 等. 綠膿桿菌螯鐵蛋白分泌及其對(duì)銅綠假單胞菌NY3降解烴類的影響作用. 微生物學(xué)雜志, 2018, 38(1): 76–82.
[55] Johnson GV, Lopez A, Foster NLV. Reduction and transport of Fe from siderophores. Plant Soil, 2002, 241(1): 27–33.
[56] Wasi S, Tabrez S, Ahmad M. Toxicological effects of major environmental pollutants: an overview. Environ Monit Assess, 2013, 185(3): 2585–2593.
[57] Hesse E, O’Brien S, Tromas N, et al. Ecological selection of siderophore-producing microbial taxa in response to heavy metal contamination. Ecol Lett, 2018, 21(1): 117–127.
[58] Hernlem BJ, Vane LM, Sayles GD. The application of siderophores for metal recovery and waste remediation: examination of correlations for prediction of metal affinities. Water Res, 1999, 33(4): 951–960.
[59] Wichard T, Bellenger JP, Morel FMM, et al. Role of the siderophore azotobactin in the bacterial acquisition of nitrogenase metal cofactors. Environ Sci Technol, 2009, 43(19): 7218–7224.
[60] Behrends T, Krawczyk-B?rsch E, Arnold T. Implementation of microbial processes in the performance assessment of spent nuclear fuel repositories. Appl Geochem, 2012, 27(2): 453–462.
[61] Hong JW, Park JY, Gadd GM. Pyrene degradation and copper and zinc uptake byandisolated from petrol station soil. J Appl Microbiol, 2010, 108(6): 2030–2040.
[62] Dimkpa CO, Merten D, Svatos A, et al. Siderophores mediate reduced and increased uptake of cadmium byF4 and sunflower (), respectively. J Appl Microbiol. 2009, 107(5): 1687–96.
[63] Ullah A, Heng S, Munis MFH, et al. Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: a review. Environ Exp Bot, 2015, 117: 28–40.
[64] Wang Q, Xiong D, Zhao P, et al. Effect of applying an arsenic-resistant and plant growth-promoting rhizobacterium to enhance soil arsenic phytoremediation byLH05–17. J Appl Microbiol, 2011, 111(5): 1065–1074.
[65] Vashi H, Iorhemen OT, Tay JH. Aerobic granulation: a recent development on the biological treatment of pulp and paper wastewater. Environ Technol Innov, 2018, 9: 265–274.
[66] Patel A, Arora N, Pruthi V, et al. Biological treatment of pulp and paper industry effluent by oleaginous yeast integrated with production of biodiesel as sustainable transportation fuel. J Clean Prod, 2017, 142: 2858–2864.
[67] Bajpai P. Biological bleaching of chemical pulps. Crit Rev Biotechnol, 2004, 24(1): 1–58.
[68] Fekete FA, Chandhoke V, Jellison J. Iron-binding compounds produced by wood-decaying basidiomycetes. Appl Environ Microbiol, 1989, 55(10): 2720–2722.
[69] Fekete FA. Assays for microbial siderophores// Barton LL, Hemming BC, Eds. Iron Chelation in Plants and Soil Microorganisms. New York: Academic Press, 1993: 399–417.
[70] Xu G, Goodell B. Mechanisms of wood degradation by brown-rot fungi: chelator-mediated cellulose degradation and binding of iron by cellulose. J Biotechnol, 2001, 87(1): 43–57.
[71] Arantes V, Milagres AMF. The effect of a catecholate chelator as a redox agent in Fenton-based reactions on degradation of lignin-model substrates and on COD removal from effluent of an ECF kraft pulp mill. J Hazard Mater, 2007, 141(1): 273–279.
[72] Milagres AMF, Arantes V, Medeiros CL, et al. Production of metal chelating compounds by white and brown-rot fungi and their comparative abilities for pulp bleaching. Enzyme Microb Technol, 2002, 30(4): 562–565.
[73] Wang L, Yan WC, Chen JC, et al. Function of the iron-binding chelator produced byin lignin biodegradation. Sci China Ser C Life Sci, 2008, 51(3): 214–221.
Regulation of microbial siderophore transport and its application in environmental remediation
Ziyang Dong, Jiajie Hu, and Baolan Hu
College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
Siderophore is a chelating iron substance secreted by microorganisms at low intracellular iron concentration. Siderophore can be divided into three categories: catechol salts, hydroxamic salts and carboxylates. The transport of siderophore is regulated by Fur, σ factor and quorum sensing signal. In recent years, siderophore has been used in fields such as oil pollution remediation, heavy metal pollution remediation and pulp biological bleaching, and has received extensive attention. This paper reviews the classification of siderophores and their transport regulation mechanism, and the application of siderophore in environmental pollution control and remediation. Furthermore, we address the application of siderophore in the future.
iron, siderophore, regulation, environmental application
April 25, 2019;
June 25, 2019
Key Special subsidy Project for Causes and Control Technology of Contaminated Site Soils (No. 2018YFC1800702), National Natural Science Foundation of China (Nos. 31828001, 41773074).
Baolan Hu. Tel: +86-571-88982340; E-mail: blhu@zju.edu.cn
場(chǎng)地土壤污染成因與治理技術(shù)重點(diǎn)專項(xiàng)(No. 2018YFC1800702),國(guó)家自然科學(xué)基金 (Nos. 31828001,41773074) 資助。
2019-07-22
http://kns.cnki.net/kcms/detail/11.1998.Q.20190722.1001.002.html
董子陽(yáng), 胡佳杰, 胡寶蘭. 微生物鐵載體轉(zhuǎn)運(yùn)調(diào)控機(jī)制及其在環(huán)境污染修復(fù)中的應(yīng)用. 生物工程學(xué)報(bào), 2019, 35(11): 2189–2200.
Dong ZY, Hu JJ, Hu BL. Regulation of microbial siderophore transport and its application in environmental remediation. Chin J Biotech, 2019, 35(11): 2189–2200.
(本文責(zé)編 陳宏宇)