施雙飛 孫立望 李洪
摘 ?要: 高分子鏈在表面吸附過程已經(jīng)成為了物理、生物、醫(yī)學等領(lǐng)域的重要課題。通過研究高分子鏈在表面上的吸附作用,可以指導改善物理化學器件性能,改變生物領(lǐng)域某些如蛋白質(zhì)吸附、藥物合成等相關(guān)過程。高分子鏈在表面上的吸附構(gòu)象性質(zhì)與高分子鏈鏈內(nèi)作用力以及表面吸附作用強度有關(guān)。本論文采用非格點Monte Carlo模擬方法研究其在不同作用力下的吸附過程以及構(gòu)象性質(zhì)。模型采用軟排斥表面,研究了高分子單鏈在均質(zhì)表面上的吸附行為,及其臨界吸附點。
關(guān)鍵詞: Monte Carlo模擬; 非格點; 構(gòu)象; 吸附
中圖分類號:TP391 ? ? ? ? ?文獻標志碼:A ? ? 文章編號:1006-8228(2019)11-01-03
Abstract: The research on the adsorption process of polymer chains on the surface plays an important role in the fields of physics, biology and medicine. The study on the adsorption of polymer chains on the surface, can lead to the improvement of physical and chemical device performance, and change some processes in the biological field such as protein adsorption and drug synthesis. The adsorption conformation properties of the polymer chain on the surface are related to the unit force of the polymer chain and the adsorption strength of the outer surface of the chain. In this thesis, the adsorption process and conformational properties under different forces are studied by off-lattices Monte Carlo simulation. With the soft repellent surface model, the adsorption behavior of the polymer single chain on the homogeneous surface is studied, and its critical adsorption point is discussed.
Key words: Monte Carlo simulation; off-lattice; conformation; adsorption
0 引言
高分子鏈可以以化學吸附或物理吸附兩種方式吸附在表面上,并隨著幾何限制、表面吸引力、溶液質(zhì)量的不同,其最終穩(wěn)定后的高分子鏈的構(gòu)象也會不同。在化工界,對高分子吸附行為的研究有著重要應用,例如電子器件的保護涂層、高分子納米材料[1]、工業(yè)使用的潤滑劑[2]、膠體懸浮液的穩(wěn)定性[3-4]和粘附性。因此研究高分子在臨近表面時表現(xiàn)的吸附行為具有重要意義[5-8]。
1 模型
本文用Lx*Ly*Lz的三維連續(xù)空間模擬均質(zhì)單鏈高分子的運動環(huán)境,其中x和y方向為周期性邊界,在z方向z=0處存在一個無限大的不可穿透軟排斥表面,該表面對高分子存在吸附作用。本文將單體直徑歸一化設(shè)置為[σ],開爾文溫度T=1,玻爾茲曼常數(shù)[kB=1]。
1.1 模型建模
3 結(jié)論
在本篇論文中,我們采用了非格點Monte Carlo模擬方法,通過相鄰單體之間使用FENE勢能,非相鄰單體之間使用LJ 12-6勢能,單體和表面之間使用LJ 9-3勢能,構(gòu)建了比較符合實際情況的真實鏈。得到結(jié)論如下:因為論文使用的是連續(xù)性吸附能,和格點吸附鏈相比,稍有不同,在吸附作用很小時,高分子鏈先發(fā)生位置的改變,此時形狀變化小,其表現(xiàn)為均方回轉(zhuǎn)半徑和均方末端距變化不大,z軸質(zhì)心下降,隨著吸附作用增加,高分子單鏈在Eps=2.0位置發(fā)生了垮塌吸附。
參考文獻(References):
[1] Liu J,Wu Y,Shen J,et al.Polymer–nanoparticle interfacial behavior revisited: A molecular dynamics study[J]. Physical Chemistry Chemical Physics,2011.13(28):13058
[2] Teraoka I.Polymer solutions in confining geometries. Progress in Polymer Science[J].1996.21(1):89-149
[3] Meredith J C,Johnston K P.Theory of Polymer Adsorption and Colloid Stabilization in Supercritical Fluids. 2.Copolymer and End-Grafted Stabilizers[J].Macromolecules,1998.31(16):5518-5528
[4] Neyret S,Ouali L,Candau F,et al.Adsorption of Polyampholytes on Polystyrene Latex: Effect on Colloid Stability[J].Journal of Colloid and Interface Science,1995.176(1):86-94
[5] Cerda J J,Sintes T,Sumithra K.Adsorption of semiflexible block copolymers on homogeneous surfaces[J].The Journal of Chemical Physics,2005.123(20):204703.
[6] Luo M B.The critical adsorption point of self-avoiding walks:a finite-size scaling approach[J].Journal of Chemical Physics,2008.128(4):905.
[7] Sumithra K,Straube E.Adsorption of diblock copolymers on stripe-patterned surfaces[J].Journal of Chemical Physics,2006.125(15):114703.
[8] Sebastian K L,Sumithra K.Adsorption of polymers on a random surface[J].Physical Review E,1993.47(1):32-35
[9] Li C Y,Qian C J,Yang Q H,et al.Study on the polymer diffusion in a media with periodically distributed nano-sized fillers[J].The Journal of Chemical Physics, 2014.140(10):104902.
[10] Abraham F F,Singh Y.Comment on the Structure of a Hard Sphere Fluid in Contact with a Soft Repulsive Wall[J]. Journal of Chemical Physics,1977.67(5):2384-2385