国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

植物脫落酸受體PYR/PYL/RCAR的研究進(jìn)展

2019-11-12 08:27趙雷
湖北農(nóng)業(yè)科學(xué) 2019年18期
關(guān)鍵詞:信號(hào)轉(zhuǎn)導(dǎo)擬南芥受體

趙雷

摘要:脫落酸(Abscisic acid,ABA)是一種重要的植物抗脅迫激素,其受體的篩選和鑒定為植物中ABA信號(hào)轉(zhuǎn)導(dǎo)通路的闡明奠定了重要基礎(chǔ)。目前發(fā)現(xiàn)了幾種ABA受體,大多數(shù)都受到質(zhì)疑,但PYR/PYL/RCAR被普遍認(rèn)為是真正的ABA受體蛋白。簡(jiǎn)略介紹了發(fā)現(xiàn)PYR/PYL/RCAR之前ABA受體的研究概況,重點(diǎn)介紹了目前國(guó)內(nèi)外對(duì)于PYR/PYL/RCAR蛋白的研究進(jìn)展。

關(guān)鍵詞:脫落酸(Abscisic acid,ABA)受體;PYR/PYL/RCAR;信號(hào)轉(zhuǎn)導(dǎo);生理功能

中圖分類(lèi)號(hào):S184 ? ? ? ? 文獻(xiàn)標(biāo)識(shí)碼:A

文章編號(hào):0439-8114(2019)18-0014-05

DOI:10.14088/j.cnki.issn0439-8114.2019.18.003 ? ? ? ? ? 開(kāi)放科學(xué)(資源服務(wù))標(biāo)識(shí)碼(OSID):

Advances in plant abscisic acid receptor PYR/PYL/RCAR

ZHAO Lei

(College of Bioengineering and Biotechnology,Tianshui Normal University,Tianshui 741000,Gansu,China)

Abstract: Abscisic acid (ABA) is an important plant stress-resistant hormone. The screening and identification of ABA receptors lay an important foundation for elucidating ABA signal transduction pathways in plants. Several kinds of ABA receptors have been found, most of which are questioned, but PYR/PYL/RCAR is generally considered to be the true ABA receptor protein. The research progress of ABA receptors before the discovery of PYR/PYL/RCAR was briefly introduced,and the research progress of PYR/PYL/RCAR protein at home and abroad were detailed introduced.

Key words: abscisic acid receptors; PYR/PYL/RCAR; signal transduction; physiological function

脫落酸(Abscisic acid,ABA)可以調(diào)節(jié)植物生長(zhǎng)發(fā)育過(guò)程中的許多方面,包括胚的成熟、種子的休眠及萌發(fā),細(xì)胞的分裂和伸長(zhǎng),成花誘導(dǎo)等。除此之外,還能響應(yīng)逆境脅迫,例如干旱脅迫、低溫脅迫、鹽脅迫、病菌侵害、紫外輻射等[1,2]。ABA在逆境脅迫的應(yīng)答中起著重要作用,研究ABA對(duì)提高植物抗逆性、促進(jìn)現(xiàn)代農(nóng)業(yè)發(fā)展具有重要意義。近些年來(lái)ABA信號(hào)轉(zhuǎn)導(dǎo)途徑成為研究的熱點(diǎn),ABA信號(hào)轉(zhuǎn)導(dǎo)途徑源于ABA受體與信號(hào)轉(zhuǎn)導(dǎo)途徑中關(guān)鍵成分的相互作用,所以ABA受體的研究是信號(hào)轉(zhuǎn)導(dǎo)途徑研究的重點(diǎn)和關(guān)鍵點(diǎn)。

截至目前,已經(jīng)有幾種ABA結(jié)合蛋白被報(bào)道。例如,G蛋白偶聯(lián)受體[3]和鎂離子螯合酶H亞基[4]。盡管這些蛋白一度被認(rèn)為在響應(yīng)ABA過(guò)程中起重要作用,但是它們和目前公認(rèn)的信號(hào)因子(如PP2C和SnRK2)之間的聯(lián)系仍然不清楚。之后,一種新的可溶性的ABA受體PYR/PYL/RCAR被兩個(gè)不同的研究組運(yùn)用兩種不同的方法(分別為遺傳學(xué)和生物化學(xué)的方法)鑒別出來(lái)[5,6]。這一發(fā)現(xiàn)是ABA信號(hào)轉(zhuǎn)導(dǎo)研究進(jìn)程中的一個(gè)突破。本文就目前PYR/PYL/RCAR的研究進(jìn)展做一綜述。

1 ?PYR/PYL/RCAR之前的ABA受體研究概況

ABA受體是處于ABA信號(hào)通路最上游的ABA信號(hào)調(diào)節(jié)因子,承擔(dān)著識(shí)別ABA信號(hào)和啟動(dòng)信號(hào)轉(zhuǎn)導(dǎo)原初過(guò)程的使命[7]。早在20世紀(jì)末的研究中表明,在種子萌發(fā)和基因表達(dá)試驗(yàn)中使用ABA類(lèi)似物,可以檢測(cè)到多種ABA受體的存在[8]。

2006年FCA被報(bào)道為ABA受體。它是一種RNA結(jié)合蛋白,參與擬南芥開(kāi)花時(shí)間和根部發(fā)育調(diào)控,通過(guò)與FLC mRNA的結(jié)合發(fā)揮作用[9]。但是Risk等[10]利用3H-ABA與FCA的體外結(jié)合試驗(yàn)證明,F(xiàn)CA并不能結(jié)合ABA,之前的試驗(yàn)結(jié)果不能重復(fù)出來(lái),所以FCA是ABA受體這一結(jié)論受到質(zhì)疑。

Shen等[4]利用放射性ABA的測(cè)定系統(tǒng)證明

ABAR/CHLH可以結(jié)合ABA,而且ABAR-ABA結(jié)合的動(dòng)力學(xué)符合受體-配體結(jié)合的所有特征。之后又用植物生理學(xué)試驗(yàn)證明了ABAR/CHLH可以正向調(diào)節(jié)ABA信號(hào)轉(zhuǎn)導(dǎo)。但是ABAR/CHLH是ABA的受體這一結(jié)論多次遭受質(zhì)疑[11,12]。盡管張大鵬課題組對(duì)該質(zhì)疑做出過(guò)回應(yīng),并提出ABAR-WRKY40相偶聯(lián)的ABA信號(hào)級(jí)聯(lián)通路模型[7,13],隨后的研究又對(duì)該模型做出了補(bǔ)充[14,15]。但是仍不能確定ABAR/CHLH一定為ABA的受體。

有研究發(fā)現(xiàn)擬南芥中的一種G蛋白偶聯(lián)受體GCR2能與ABA特異性結(jié)合,調(diào)控?cái)M南芥ABA信號(hào)應(yīng)答反應(yīng),被認(rèn)為是ABA受體[16]。但是對(duì)GCR2是ABA受體的爭(zhēng)論不斷[17-19],所以目前對(duì)于GCR2是否以ABA受體的形式行使功能還沒(méi)有定論。

2009年P(guān)andey 等[20]提出,GTGs(GPCR-type G proteins,一種具有G蛋白偶聯(lián)受體特征的G蛋白)是ABA受體,但該受體相關(guān)的研究同樣存在許多疑問(wèn)[21,22]。因此,GTG1/GTG2是否為ABA受體仍有待進(jìn)一步研究。

2 ?ABA受體PYR/PYL/RCAR的發(fā)現(xiàn)及分類(lèi)

2009年P(guān)ark等[6]利用Pyrabactin篩選到了

Pyrabactin resistance 1(PYR1)。試驗(yàn)結(jié)果表明,Pyrabactin小分子(一種人工合成的ABA選擇性激動(dòng)劑)通過(guò)PYR1起作用,繼而他們?cè)跀M南芥中鑒定出了 PYR/PYL 蛋白家族,這個(gè)蛋白家族成員對(duì)于體內(nèi) ABA、Pyrabactin 及其他植物激素分子的信號(hào)傳遞都起著重要作用。而另外一個(gè)研究組利用酵母雙雜交的方法分離得到了一個(gè)ABI2的互作蛋白并命名為Regulatory Component of ABA receptor1 (RCAR1)[5]。等溫量熱滴定的結(jié)果(Isothermal titration calorimetry,ITC)顯示,RCAR1可以在體外直接結(jié)合ABA,并抑制下游ABI1和ABI2的活性[5]。PYR1和RCAR1同屬START/Betv1超家族蛋白成員,具有保守的疏水性的配體口袋[23]。

在擬南芥中,START/Betv1基因家族具有14個(gè)成員,分別命名為PYR1、PYR1-like(PYL)1-13或者RCAR1-14,這其中的13個(gè)成員(PYL13除外)的序列和結(jié)構(gòu)具有高度保守性,并能與ABA相結(jié)合抑制蛋白磷酸酶PP2Cs的活性[24]。PYL13是比較特殊的START/Betv1家族成員,其他成員均具有保守的ABA結(jié)合結(jié)構(gòu)域,但是PYL13在此結(jié)構(gòu)域上發(fā)生了3個(gè)氨基酸殘基的突變,并且不能與HAB1(一種PP2C)結(jié)合[25],但又有研究表明,在ABA存在時(shí),PYL13可與A類(lèi)PP2C相結(jié)合,再結(jié)合其他研究最終確定PYL13具有作為ABA受體的功能[26]。

根據(jù)序列相似性,擬南芥的14個(gè)受體蛋白分為3個(gè)亞類(lèi)。I類(lèi)包括PYL7/8/9/10,II類(lèi)包括PYL4/5/6/11/12/13,III類(lèi)包括PYR1和PYL1/2/3[5]。在擬南芥中,PYR1、PYL1、PYL2、PYL4、PYL5和PYL8在調(diào)控種子萌發(fā)、氣孔關(guān)閉以及ABA信號(hào)途徑相關(guān)基因的表達(dá)方面均起著重要的作用[27]。但PYL8還可以增強(qiáng)生長(zhǎng)素響應(yīng)基因的轉(zhuǎn)錄,調(diào)控側(cè)根的生長(zhǎng),而其他受體蛋白不具有此功能[28]。這說(shuō)明該家族的受體在功能方面既有重疊又有差異。

3 ?ABA受體PYR/PYL/RCAR的結(jié)構(gòu)及構(gòu)象變化

ABA 受體 PYR/PYL/RCAR 蛋白的4個(gè)α螺旋和7個(gè)β折疊共同形成Gate-Latch-Lock結(jié)構(gòu)。當(dāng)ABA與其受體結(jié)合時(shí),ABA進(jìn)入受體蛋白的空腔,誘導(dǎo)受體構(gòu)象改變,空腔關(guān)閉,ABA被固定在空腔內(nèi),受體與ABA相互作用的表面可以招募PP2C,然后受體蛋白上關(guān)閉的門(mén)環(huán)(gate loop)將PP2C的催化位點(diǎn)封閉,使PP2C的蛋白磷酸酶活性喪失。具體的構(gòu)型變化見(jiàn)圖1。

該受體家族蛋白上的保守氨基酸對(duì)于受體與ABA的結(jié)合至關(guān)重要。有試驗(yàn)證明,擬南芥PYL13受體蛋白中的幾個(gè)關(guān)鍵氨基酸殘基發(fā)生變異后,導(dǎo)致PYL13不能結(jié)合ABA[29]。還有研究證明該受體家族和ABA的結(jié)合有兩種形式:一種在沒(méi)有結(jié)合ABA時(shí)以同源二聚體形式存在,結(jié)合后以單體形式存在,PYR1和 PYL1/2/3屬于該類(lèi),對(duì)于PP2C活性的抑制依賴于ABA的結(jié)合;另一種無(wú)論是否結(jié)合ABA均以單體的形式存在,對(duì)于PP2C活性的抑制不依賴于ABA的結(jié)合,PYL4/5/6/8/9/10屬于該類(lèi)[30]。

2014年,He等[31]利用計(jì)算機(jī)比較基因組學(xué)鑒別了水稻(Oryza sativa)12種OsPYLs ABA受體,發(fā)現(xiàn)這些受體抑制PP2Cs時(shí)呈現(xiàn)不同的結(jié)合狀態(tài)和寡聚狀態(tài),通過(guò)研究ABA-OsPYL2-OsPP2C06三元復(fù)合物揭示了OsPYLs的分子作用機(jī)制,即當(dāng)ABA與OsPYL2 相互結(jié)合后,OsPYL2的CL2環(huán)與OsPP2C06 相互作用并且占據(jù)了OsPP2C06部分的催化位點(diǎn),與此同時(shí),OsPP2C06 也與OsPYL2和ABA產(chǎn)生了相互作用,OsPP2C06磷酸酶作用就被抑制了。2016年,F(xiàn)an等[32]研究了玉米(Zea mays L.)在ABA作用或脫水脅迫下ZmPYL家族的表達(dá)情況,發(fā)現(xiàn)在根和葉片基因表達(dá)是有區(qū)別的,推測(cè)單體形式的ABA受體主要參與了根部ABA信號(hào)的轉(zhuǎn)導(dǎo),而二聚體形式的ABA受體主要在葉片中行使功能。

4 ?PYR/PYL/RCAR介導(dǎo)的ABA信號(hào)通路

根據(jù)有關(guān)PYR/PYL/RCAR參與的ABA信號(hào)通路的試驗(yàn)結(jié)論[33,34],建立了PYR/PYL/RCAR為受體的ABA信號(hào)轉(zhuǎn)導(dǎo)通路模型:當(dāng)植物所處環(huán)境正常時(shí),ABA的含量很低,從而使得ABA不能和其受體PYR/PYL/RCAR相結(jié)合;這時(shí)PP2C發(fā)揮其磷酸酶的作用使得SnRK2去磷酸化,去磷酸化之后的SnRK2無(wú)法發(fā)揮其作用。這就使得下游轉(zhuǎn)錄因子(ABA-responsive Element Binding Pro teins/ABA-responsive ?Element ?Binding ?Factors) ABF/AREB無(wú)法被激活。當(dāng)植物處于逆境中時(shí),細(xì)胞內(nèi)ABA的含量就會(huì)增加,ABA與其受體PYR/PYL/RCAR相結(jié)合。ABA-PYR/PYL/RCAR復(fù)合體與PP2C相結(jié)合,抑制其磷酸酶的作用。SnRK2處于磷酸化的活性狀態(tài),從而發(fā)揮激酶活性激活下游轉(zhuǎn)錄因子ABF/AREB,如AREB1/ABF2、AREB2/ABF4和ABF3,正向調(diào)控ABA信號(hào)應(yīng)答基因的表達(dá)[35-37]。

此外,PYR /PYL/RCAR還可與細(xì)胞內(nèi)其他蛋白互相作用,調(diào)控ABA信號(hào)通路或參與植物的生長(zhǎng)發(fā)育及脅迫應(yīng)答。研究表明,PYL9能夠與MYB44蛋白相互作用,可以減弱PYL9對(duì)ABI1的抑制作用[38]。而PYR1和PYL4能夠與E3泛素連接酶RSL1相互作用,從而減弱ABA的信號(hào)轉(zhuǎn)導(dǎo)[39]。

近幾年的研究對(duì)于PYR/PYL/RCAR介導(dǎo)的ABA信號(hào)通路又有所補(bǔ)充。2012年,Li等[40]研究證明,一種小G蛋白R(shí)OP11可直接結(jié)合ABI1,從而保護(hù)ABI1的磷酸酶活性不被RCAR1/PYL9所抑制。又有研究顯示,ABI1和其他PP2Cs反過(guò)來(lái)可以保護(hù)RopGEF1,避免其遭受ABA引發(fā)的降解,從而形成Rop GEF-ROP-PP2C控制回路,有效地避免了ABA信號(hào)轉(zhuǎn)導(dǎo)的部分泄露[41]。有酵母雙雜交試驗(yàn)顯示PYL6與JA應(yīng)答的關(guān)鍵轉(zhuǎn)錄因子MYC2存在相互作用,并且這種相互作用會(huì)在ABA存在時(shí)加強(qiáng),正是兩者之間的相互作用連接了ABA和JA信號(hào)途徑[42]。一個(gè)由MAP3Ks MAP3K17/18、MAP2K MKK3和MAPKs MPK1/2/7/14組成的MAPK級(jí)聯(lián)可能與PYR/PYL/RCAR介導(dǎo)的ABA信號(hào)通路激活相關(guān),MPK1和MPK2也可能磷酸化許多ABA的效應(yīng)蛋白[43]。

另有報(bào)道稱,NO可能抑制ABA信號(hào)轉(zhuǎn)導(dǎo),因?yàn)镹O缺乏的植株對(duì)ABA超敏感,而經(jīng)NO處理后,有些受體活性減弱。原因可能是NO處理后植物PYR/PYL/RCAR蛋白受體酪氨酸殘基硝基化,引發(fā)受體泛素化,從而導(dǎo)致這些受體被蛋白酶降解所致[44]。

5 ?PYR/PYL/RCAR在植物體內(nèi)發(fā)揮的生理功能

有關(guān)于PYR/PYL蛋白的功能是通過(guò)研究突變體以及過(guò)表達(dá)試驗(yàn)來(lái)證明的。Park等[6]2009年已經(jīng)構(gòu)建了pyr1pyl1pyl4三突變體和pyr1pyl1pyl2pyl4四突變體。上述兩種突變體均在根的生長(zhǎng)和種子萌發(fā)方面表現(xiàn)出對(duì)ABA的不敏感。四突變體甚至表現(xiàn)出了對(duì)于ABA誘導(dǎo)的氣孔關(guān)閉功能的損壞[45]。對(duì)于ABA誘導(dǎo)的RD29a、NCED3和P5CS1的轉(zhuǎn)錄功能,四突變體也表現(xiàn)出敏感度下降。更重要的是,ABA對(duì)于SNF1-related protein ki-nases(SnRK2s)的激活能力在四突變體中也減弱了[6]。而過(guò)表達(dá)PYL9以及對(duì)PYL9進(jìn)行RNAi處理則分別表現(xiàn)出ABA超敏和ABA不敏感[5]。過(guò)表達(dá)PYL5則使得擬南芥對(duì)于干旱的耐受性增強(qiáng)[49],這個(gè)結(jié)論將該受體家族與植物抗脅迫生理功能聯(lián)系起來(lái)。

將RCAR6在擬南芥中過(guò)表達(dá),發(fā)現(xiàn)該過(guò)表達(dá)體的WUE(水分利用效率)有所提高。同時(shí)與正常水分條件下生長(zhǎng)的植株相比,RCAR6過(guò)表達(dá)體生長(zhǎng)狀況并未受到顯著影響,氣孔的大小和密度也和野生型沒(méi)有差別,推測(cè)其過(guò)表達(dá)體蒸騰作用會(huì)減小,與ABA信號(hào)通路引發(fā)的氣孔開(kāi)合度變化有關(guān)[46]。

將棉花GhPYL10、 GhPYL12和 GhPYL26基因?qū)霐M南芥中進(jìn)行過(guò)表達(dá),發(fā)現(xiàn)這些植株在幼苗生長(zhǎng)和種子萌發(fā)中均表現(xiàn)為ABA超敏感。過(guò)表達(dá)轉(zhuǎn)基因植株比對(duì)照植株耐旱能力更高[47]。從木薯栽培種KU50中克隆得到MePYL8基因,利用熒光定量PCR對(duì)MePYL8進(jìn)行多種處理下的表達(dá)分析,結(jié)果表明MePYL8在轉(zhuǎn)錄水平受到ABA、 高鹽脅迫和干旱脅迫的誘導(dǎo)作用, 同時(shí)受到氧化脅迫的抑制作用,表明MePYL8在多種非生物脅迫下的信號(hào)轉(zhuǎn)導(dǎo)通路中可能具有重要的功能[48]。克隆得到葡萄的6個(gè)PYL基因,并對(duì)其進(jìn)行生物信息學(xué)及非生物脅迫下的響應(yīng)分析,發(fā)現(xiàn)它們高度保守,可分為3個(gè)亞組,能夠響應(yīng)不同非生物脅迫[49]。不僅如此,研究還表明PYL家族基因可以調(diào)節(jié)植物果實(shí)成熟,隨著草莓果實(shí)的成熟,F(xiàn)aPYL9基因的表達(dá)量會(huì)隨之升高; 若干擾草莓果實(shí)中的FaPYL9基因,則草莓果實(shí)成熟期會(huì)延遲3~5d,同時(shí)與草莓果實(shí)著色相關(guān)的FaCHS 和FaUFGT基因的表達(dá)量也會(huì)降低,并且果實(shí)中的蔗糖含量以及花青素含量也隨之降低,ABA含量和果實(shí)硬度增加。所以FaPYL9基因在草莓果實(shí)成熟發(fā)育過(guò)程中起重要作用[50]。

綜合生理學(xué)、遺傳學(xué)以及結(jié)構(gòu)學(xué)方面的研究,PYR/PYL/RCARs是ABA受體,并且控制ABA信號(hào)轉(zhuǎn)導(dǎo)和植物生理表現(xiàn)的很多方面。

6 ?小結(jié)

當(dāng)植物面對(duì)各種非生物脅迫時(shí),其自身可通過(guò)ABA信號(hào)通路誘發(fā)一系列生理效應(yīng)從而有效抵抗干旱、高鹽等脅迫環(huán)境。而通過(guò)調(diào)控植物ABA信號(hào)通路來(lái)提高植物抗脅迫能力,成為近年來(lái)培育抗脅迫植物的新思路[51]。從PYR/PYL/RCAR受體著手培育抗脅迫植物主要有兩個(gè)思路:①構(gòu)建PYR/PYL/RCAR過(guò)表達(dá)體,如前所述,很多研究都表明在植物體內(nèi)過(guò)表達(dá)PYR/PYL/RCAR可以提高植物抗旱能力;②多研究以單體形式存在,不依賴ABA就能抑制PP2C活性的受體,提高該類(lèi)受體與PP2C結(jié)合的活性,從而提高植株ABA信號(hào)通路本底表達(dá)能力,進(jìn)而提高抗旱能力。

參考文獻(xiàn):

[1] FINKELSTEIN R. Abscisic acid synthesis and response[J].The arabidopsis book/American society of plant biologists,2013,11.

[2] CUTLER S R,RODRIGUEZ P L,F(xiàn)INKELSTEIN R R,et al. Abscisic acid:Emergence of a core signaling network[J].Annual review of plant biology,2010,61:651-679.

[3] LIU X,YUE Y,LI B,et al. AG protein-coupled receptor is a plasma membrane receptor for the plant hormone abscisic acid[J].Science,2007,315(5819):1712-1716.

[4] SHEN Y Y,WANG X F,WU F Q,et al. The Mg-chelatase H subunit is an abscisic acid receptor[J].Nature,2006,443(7113):823-826.

[5] MA Y,SZOSTKIEWICZ I,KORTE A,et al. Regulators of PP2C phosphatase activity function as abscisic acid sensors[J].Science,2009,324(5930):1064-1068.

[6] PARK S Y,F(xiàn)UNG P,NISHIMURA N,et al. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins[J].Science,2009,324(5930):1068-1071.

[7] 張大鵬.始于質(zhì)體/葉綠體的ABA信號(hào)通路[J].植物學(xué)報(bào),2011, 46(4):361-369.

[8] WALKER-SIMMONS M K,HOLAPPA L D,ABRAMS G D,et al. ABA metabolites induce group 3 LEA mRNA and inhibit germination in wheat[J].Physiologia plantarum,1997,100(3): 474-480.

[9] RAZEM F A,EL-KEREAMY A,ABRAMS S R,et al. The RNA-binding protein FCA is an abscisic acid receptor[J].Nature,2006,439(7074):290-294.

[10] RISK J M,MACKNIGHT R C,DAY C L. FCA does not bind abscisic acid[J].Nature,2008,456(7223):E5-6.

[11] M?譈LLER A H,HANSSON M. The barley magnesium chelatase 150-kD subunit is not an abscisic acid receptor[J].Plant physiology,2009,150(1):157-166.

[12] TSUZUKI T,TAKAHASHI K,INOUE S,et al. Mg-chelatase H subunit affects ABA signaling in stomatal guard cells,but is not an ABA receptor in Arabidopsis thaliana[J].Journal of plant research,2011,124(4):527-538.

[13] SHANG Y,YAN L,LIU Z Q,et al. The Mg-chelatase H subunit of Arabidopsis antagonizes a group of WRKY transcription repressors to relieve ABA-responsive genes of inhibition[J].The plant cell,2010:1909-1935.

[14] ZHANG X F,JIANG T,WU Z,et al. Cochaperonin CPN20 negatively regulates abscisic acid signaling in Arabidopsis[J].Plant molecular biology,2013,83(3):205-218.

[15] ZHANG X F,JIANG T,YU Y T,et al. Arabidopsis co-chaperonin CPN20 antagonizes Mg-chelatase H subunit to derepress ABA-responsive WRKY40 transcription repressor[J].Science China life sciences,2014,57(1):11-21.

[16] LIU X,YUE Y,LI B,et al. A G protein-coupled receptor is a plasma membrane receptor for the plant hormone abscisic acid[J].Science,2007,315:1712-1716.

[17] GAO Y,ZENG Q,GUO J,et al. Genetic characterization reveals no role for the reported ABA receptor,GCR2,in ABA control of seed germination and early seedling development in Arabidopsis[J].The plant journal,2007,52(6):1001-1013.

[18] JOHNSTON C A,TEMPLE B R,CHEN J G,et al. Comment on" AG protein-coupled receptor is a plasma membrane receptor for the plant hormone abscisic acid"[J].Science,2007, 318(5852):914-914.

[19] RISK J M,DAY C L,MACKNIGHT R C. Reevaluation of abscisic acid-binding assays shows that G-protein-coupled receptor2 does not bind abscisic acid[J].Plant physiology,2009,150(1):6-11.

[20] PANDEY S,NELSON D C,ASSMANN S M. Two novel GP-CR-type G proteins are abscisic acid receptors in Arabidopsis[J].Cell,2009,136:136-148.

[21] PENNISI E. Stressed out over a stress hormone[J].Science,2009,324(5930):1012-1013.

[22] CHRISTMANN A,GRILL E. Are GTGs ABA's biggest fans?[J].Cell,2009,136(1):21-23.

[23] CUTLER S R,RODRIGUEZ P L,F(xiàn)INKELSTEIN R R,et al. Abscisic acid:emergence of a core signaling network[J].Annual review of plant biology,2010,61:651-679.

[24] YUAN X,YIN P,HAO Q,et al. Single amino acid alteration between valine and isoleucine determines the distinct pyrabactin selectivity by PYL1 and PYL2[J].Journal of biological chemistry,2010:jbc.M110.160192.

[25] BHASKARA G B,NGUYEN T T,VERSLUES P E. Unique drought resistance functions of the highly ABA-induced clade Aprotein phosphatase 2Cs[J].Plant physiol,2012,160:379-395.

[26] FUCHS S,TISCHER S V,WUNSCHEL C,et al. Abscisic acid sensor RCAR7/PYL13,specific regulator of protein phosphatase coreceptors[J].Proc Natl Acad Sci USA,2014,111:5741-5746.

[27] GONZALEZ-GUZMAN M,PIZZIO G A,ANTONI R,et al. Arabidopsis PYR/PYL/RCAR receptors play a major role in quantitative regulation of stomatal aperture and transcriptional response to abscisic acid[J].Plant cell,2012,24(6):2483-2496.

[28] ZHAO Y,XING L,WANg X,et al. The ABA receptor PYL8 promotes lateral root growth by enhancing MYB77-dependent transcription of auxin-responsive genes[J].Science signaling,2014,7(328):ra53.

[29] ZHAO Y,CHAN Z,XING L,et al. The unique mode of action of a divergent member of the ABA-receptor protein family in ABA and stress signaling[J].Cell research,2013,23(12):1380-1395.

[30] MIYAKAWA T,F(xiàn)UJITA Y,YAMAGUCHI S K,et al. Structure and function of abscisic acid receptors.[J].Trends in plant science,2013,18(5):259-266.

[31] HE Y,HAO Q,LI W,et al. Identification and characterization of ABA receptors in Oryza sativa[J].PloS One,2014,9(4):e95246.

[32] FAN W,ZHAO M,LI S,et al. Contrasting transcriptional responses of PYR1/PYL/RCAR ABA receptors to ABA or dehydration stress between maize seedling leaves and roots[J].Bmc plant biology,2016,16(1):99.

[33] UMEZAWA T,SUGIYAMA N,MIZOGUCHI M,et al. Type 2C protein phosphatases directly regulate abscisic acid-activated protein kinases in Arabidopsis[J].Proceedings of the national academy of sciences,2009,106(41):17588-17593.

[34] VLAD F,RUBIO S,RODRIGUES A,et al. Protein phosphatases 2C regulate the activation of the Snf1-related kinase OST1 by abscisic acid in Arabidopsis[J].The plant cell,2009, 21(10):3170-3184.

[35] FUJITA Y,NAKASHIMA K,YOSHIDA T,et al. Three SnRK2 protein kinases are the main positive regulators of abscisic acid signaling in response to water stress in Arabidopsis[J].Plant and cell physiology,2009,50(12):2123-2132.

[36] Sirichandra C,Davanture M,Turk B E,et al. The Arabidopsis ABA-activated kinase OST1 phosphorylates the bZIP transcription factor ABF3 and creates a 14-3-3 binding site involved in its turnover[J].PloS One,2010,5(11):e13935.

[37] YOSHIDA T,F(xiàn)UJITA Y,SAYAMA H,et al. AREB1,AREB2,and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation[J].The plant journal,2010,61(4):672-685.

[38] LI D,LI Y,ZHANG L,et al. Arabidopsis ABA receptor RCAR1/PYL9 interacts with an R2R3-type MYB transcription factor,AtMYB44[J].International journal of molecular sciences,2014, 15(5):8473-8490.

[39] BUESO E,RODRIGUEZ L,LORENZO-ORTS L,et al. The single-subunit RING-type E3 ubiquitin ligase RSL 1 targets PYL 4 and PYR 1 ABA receptors in plasma membrane to modulate abscisic acid signaling[J].The plant journal,2014,80(6):1057-1071.

[40] LI Z,LI Z,GAO X,et al. ROP11 GTPase negatively regulates ABA signaling by protecting ABI1 phosphatase activity from inhibition by the ABA receptor RCAR1/PYL9 in Arabidopsis[J].Journal of integrative plant biology,2012,54(3):180-188.

[41] LI Z,WAADT R,SCHROEDER J I. Release of GTP exchange factor mediated down-regulation of abscisic acid signal transduction through ABA-induced rapid degradation of RopGEFs[J].PLoS Biology,2016,14(5):e1002461.

[42] ALEMAN F,YAZAKI J,LEE M,et al. An ABA-increased interaction of the PYL6 ABA receptor with MYC2 transcription factor:A putative link of ABA and JA signaling[J].Scientific reports,2016,6:28941.

[43] AXEL DE Z,JEAN C,HERIBERT H.The role of MAPK modules and ABA during abiotic stress signaling[J].Trends in plant science,2016,21(8):677-685.

[44] CASTILLO M C,LOZANO-JUSTE J,GONZ?魣LEZ-GUZM?魣N M,et al. Inactivation of PYR/PYL/RCAR ABA receptors by tyrosine nitration may enable rapid inhibition of ABA signaling by nitric oxide in plants[J].Sci Signal,2015,8(392):ra89-ra89.

[45] NISHIMURA N,SARKESHIK A,NITO K,et al. PYR/PYL/RCAR family members are major in-vivo ABI1 protein phosphatase 2C-interacting proteins in Arabidopsis[J].The plant journal,2010,61(2):290-299.

[46] YANG Z,LIU J,TISCHER S V,et al. Leveraging abscisic acid receptors for efficient water use in Arabidopsis[J].Proceedings of the national academy of sciences,2016,113(24):6791-6796.

[47] CHEN Y,F(xiàn)ENG L,WEI N,et al. Overexpression of cotton PYL genes in Arabidopsis enhances the transgenic plant tolerance to drought stress[J].Plant physiology & biochemistry,2017,115:229-238.

[48] 顏 ?彥,鐵韋韋,丁澤紅,等.木薯mepyl8基因克隆及表達(dá)分析[J].分子植物育種,2018,16(14):4498-4504.

[49] 馬宗桓,陳佰鴻,李文芳,等.葡萄PYL基因家族的鑒定與表達(dá)分析[J].果樹(shù)學(xué)報(bào),2018,35(3):265-274.

[50] 顏志明,王全智,馮英娜,等.FaPYL9基因調(diào)控草莓果實(shí)成熟的分子機(jī)理[J].西北植物學(xué)報(bào),2015,35(12):2379-2384.

[51] PARK S Y,PETERSON F C,MOSQUNA A,et al. Agrochemical control of plant water use using engineered abscisic acid receptors[J].Nature,2015,520:545-548.

猜你喜歡
信號(hào)轉(zhuǎn)導(dǎo)擬南芥受體
Wnt/β-catenin信號(hào)轉(zhuǎn)導(dǎo)通路在瘢痕疙瘩形成中的作用機(jī)制研究
尿黑酸對(duì)擬南芥酪氨酸降解缺陷突變體sscd1的影響
益氣活血方對(duì)破裂型腰椎間盤(pán)突出大鼠p38MAPK 信號(hào)轉(zhuǎn)導(dǎo)通路的影響
兩種LED光源作為擬南芥生長(zhǎng)光源的應(yīng)用探究
擬南芥干旱敏感突變體篩選及其干旱脅迫響應(yīng)機(jī)制探究
Toll樣受體在胎膜早破新生兒宮內(nèi)感染中的臨床意義
2,2’,4,4’-四溴聯(lián)苯醚對(duì)視黃醛受體和雌激素受體的影響
從肺腸ERK信號(hào)轉(zhuǎn)導(dǎo)通路的變化探討“肺與大腸相表里”
Toll樣受體:免疫治療的新進(jìn)展
β受體阻斷藥的共同特性有哪些?