殷 勇,王燕芳,葛 飛,于慧春
基于空載數(shù)據(jù)的鑒別食醋電子鼻信號漂移校正方法
殷 勇,王燕芳,葛 飛,于慧春
(河南科技大學(xué)食品與生物工程學(xué)院,洛陽 471023)
由于傳感器老化,環(huán)境溫度等因素,電子鼻信號的漂移是不可避免的,且嚴(yán)重降低電子鼻的長期穩(wěn)健檢測能力。為了實現(xiàn)電子鼻對6種食醋樣品的長期穩(wěn)健檢測,該文提出了一種基于空載數(shù)據(jù)的小波包分解系數(shù)的漂移遞歸校正方法。通過小波包對電子鼻空載數(shù)據(jù)的分解,給出空載閾值函數(shù)(no-load threshold function,NLTF),然后將NLTF轉(zhuǎn)換為適合樣本數(shù)據(jù)的樣本閾值函數(shù)(sample threshold function,STF)。在獲得的STF基礎(chǔ)上,構(gòu)建樣本檢測數(shù)據(jù)小波包分解系數(shù)的校正函數(shù)。借助于所構(gòu)建的樣本測試數(shù)據(jù)的校正函數(shù),對6種食醋樣品的電子鼻數(shù)據(jù)進行漂移校正。同時,運用“樣本測量時間窗口(sample measurement time window,SMTW)”的概念,實現(xiàn)電子鼻數(shù)據(jù)的遞歸校正,進而建立了可實現(xiàn)長期穩(wěn)健檢測的遞歸鑒別模型。針對6種食醋樣品,進行了為期16個月的間歇式測試。當(dāng)SMTW選為4個月的測試樣本及每次遞推前移1個月樣本數(shù)據(jù)時,建立的基于遞歸校正的Fisher判別分析(Fisher discriminant analysis,F(xiàn)DA)模型可完全實現(xiàn)6種食醋樣品的長期穩(wěn)健鑒別,正確鑒別率達到100%,使緊隨SMTW后1個月內(nèi)的測試樣本能得到準(zhǔn)確鑒別。該校正方法能夠有效的去除漂移并且實現(xiàn)了電子鼻的長期穩(wěn)健檢測。
農(nóng)產(chǎn)品;模型;電子鼻;漂移;檢測;小波包分解;食醋;遞歸建模
電子鼻是一種對多組分揮發(fā)性樣品非常有前景的鑒別工具[1-2],已廣泛應(yīng)用于農(nóng)業(yè)[3]、醫(yī)藥[4]、環(huán)境監(jiān)測[5-6]和食品(包括稻谷[7]、堅果[8]、魚蝦[9]、水果[10-11])等領(lǐng)域。特別是近年來,電子鼻在食品、農(nóng)產(chǎn)品質(zhì)量檢測領(lǐng)域的應(yīng)用最受關(guān)注,其應(yīng)用研究成果不斷涌現(xiàn)[12-16]。然而,氣敏傳感器的漂移嚴(yán)重制約了電子鼻長期檢測的穩(wěn)健性,并且會在一段時間后破壞原來已構(gòu)建的模式識別系統(tǒng),降低了系統(tǒng)的鑒別能力[17-19]。因此,漂移是影響電子鼻長期穩(wěn)健檢測的關(guān)鍵因素。并且它被認(rèn)為是電子鼻發(fā)展中最具有挑戰(zhàn)性的問題[20]。在6種食醋的鑒別實踐中,電子鼻鑒別過程中漂移現(xiàn)象非常明顯,并且由先期測試樣本數(shù)據(jù)建立的鑒別模型不能準(zhǔn)確地預(yù)測后期的測試樣本。因此,如何通過校正電子鼻漂移來實現(xiàn)長期穩(wěn)健檢測是電子鼻檢測應(yīng)用中的一項重要任務(wù)。在現(xiàn)有的研究中,漂移問題的解決方案主要分為2類。一種是漂移成分校正法[21-23],如主成分分析[21],獨立分量分析[22]等。另一種是模型校正方法[24-26],如概率神經(jīng)網(wǎng)絡(luò)模型[24],深度信念網(wǎng)絡(luò)模型[25],偏最小二乘模型[26]等。對于漂移成分校正法,已有成果沒有確立漂移信號與有用氣敏信號的界限,且后期數(shù)據(jù)和前期數(shù)據(jù)不具有相同的基向量,因此不能保證成分校正方法的有效性。如選擇其中的某些主成分作為漂移偏差的補償[23],而未選擇的主成分中是否包含檢測對象的有用信息也未明確,使其應(yīng)用存在一定的局限性。對于模型校正方法,已有的成果往往不考慮漂移變化趨勢或漂移規(guī)律,只是讓模型中自帶漂移修正的功能,這不能算是真正的漂移校正方法。如通過對測試對象不斷分解重構(gòu),增強特征間的相關(guān)性,起到對漂移的抑制作用[25],但沒有從漂移變化規(guī)律入手來消除漂移影響。
殷勇等[27]提出了基于空載條件下小波包分解的漂移校正方法。該方法是在空載條件并依據(jù)漂移是傳感器的固有行為所提出的,具有普遍適用性,使后期樣本的檢測中基本實現(xiàn)了電子鼻的長期穩(wěn)健檢測。但是該方法忽略了閾值范圍外的分解系數(shù)可能包含有真實信號,直接用閾值邊界取代可能包含漂移信號,會造成信號失真。
為此,在空載數(shù)據(jù)基礎(chǔ)上本文提出了基于小波包分解系數(shù)的一種新的漂移校正方法。這種方法不需要專門的校正處理,僅根據(jù)傳感器的空載響應(yīng)數(shù)據(jù)和樣本響應(yīng)數(shù)據(jù)就可以實現(xiàn)傳感器漂移的校正。主要內(nèi)容包括樣本測試數(shù)據(jù)小波分解系數(shù)校正函數(shù)的構(gòu)建和樣本測量時間窗口(sample measurement time window,SMTW)的確定。這種校正函數(shù)是對一個時期的小波包分解系數(shù)全部進行校正,并且還保留了某個時期某個頻點下真實信號的原始特征,使校正后的系數(shù)趨勢相對平滑且不會造成校正失真。最后,為了檢驗上述方法的有效性,把4個月SMTW中的樣本數(shù)據(jù)作為訓(xùn)練集,緊隨其后1個月的樣本數(shù)據(jù)作為測試集;通過校正函數(shù)處理訓(xùn)練集與測試集中的樣本數(shù)據(jù)之后,借助于Fisher判別分析(Fisher discriminant analysis,F(xiàn)DA)嘗試了遞歸鑒別模型的構(gòu)建,并進行了有效性分析。
試驗材料為6種食醋樣品,分別為東湖3年(DH3N)、東湖5年(DH5N)、水塔3年(ST3N)、水塔6年(ST6N)、紫林4號(ZL4H)、紫林5號(ZL5H)。這6種樣品分屬3個品牌,每個品牌又包含2個質(zhì)量等級相近的樣品,增加了鑒別工作的難度,更適宜于檢驗漂移校正方法的有效性以及電子鼻的長期穩(wěn)健性。6種食醋基本信息見表1。
表1 食醋樣品的基本信息
電子鼻系統(tǒng)為實驗室自行研制的,主要由3部分組成,即氣敏傳感器陣列、數(shù)據(jù)采集裝置和計算機數(shù)據(jù)處理軟件。氣敏傳感器陣列由14個SnO2型氣敏傳感器組成,它們分別是TGS813,TGS800,TGS821,TGS822,TGS824,TGS816,TGS812,TGS825,TGS826,TGS831,TGS832,TGS830,TGS880和TGS842。該14個氣敏傳感器的典型敏感氣體見文獻[28]。此14個傳感器安放在不銹鋼測量室內(nèi)的環(huán)形板上;考慮到測量室內(nèi)溫度和濕度會對氣敏傳感器產(chǎn)生影響以及為了補償這種影響,環(huán)形板上還安裝了溫度傳感器和濕度傳感器,這是個集成部件,型號為DHT11。溫度測量范圍為0~50℃,濕度測量范圍為20%~90%RH。選用16通道和12位高精度數(shù)據(jù)采集系統(tǒng)(data acquisition system,DAS)用于管理14個氣敏傳感器和溫、濕度傳感器。每個氣敏傳感器的加熱電壓均為(5.0 ± 0.05)V,測量回路電壓為(10.0 ± 0.01) V。數(shù)據(jù)處理是在MATLAB R2014a平臺上實現(xiàn)所需數(shù)據(jù)處理方法。
空載樣本數(shù)據(jù)是指電子鼻對無樣品條件下的測量室內(nèi)空氣的響應(yīng)結(jié)果。空載測試與樣本測試隔日進行,均為動態(tài)采集,每個空載樣本和食醋樣本均采集1 500 s,相鄰2個采集點的間隔為1 s。因此,每個空載樣本和每個食醋樣本都采集1 500個數(shù)據(jù)。由于電子鼻漂移是緩變信號,故整個試驗從2017年10月開始到2019年1月結(jié)束,共計16個月,共測量了235個空載樣本數(shù)據(jù), 6種食醋樣品的測試與空載測試隔天交替進行,6種食醋共測量6×234=1404個樣本。
需要指出的是,在6種食醋樣本測量時,樣本種類是隨機選擇的,沒有固定順序。每個食醋樣本測量前先對傳感器陣列進行20 s的空采,以獲得各個氣敏傳感器的基線值,然后再對樣本進行1 500 s的動態(tài)測量。測量結(jié)束時對傳感器陣列進行960 s的恢復(fù),使各傳感器恢復(fù)到基線值狀態(tài),以便后續(xù)樣本的測量。每個傳感器對1個樣本的測試數(shù)據(jù)減去對應(yīng)的基準(zhǔn)值被稱為這個傳感器對這個樣本的測試結(jié)果,這種處理稱為去基準(zhǔn)處理[29]。隨后的數(shù)據(jù)分析均是基于這種測試結(jié)果進行的。
為了描述空載和食醋樣本在測試期間的漂移現(xiàn)象,圖1a給出了TGS800在16個月內(nèi)對DH3N樣品測量結(jié)果的變化趨勢;圖1b給出了TGS800在16個月內(nèi)對空載樣本測量的變化趨勢。圖1a和圖1b中,縱坐標(biāo)表示測試結(jié)果(電壓值),橫坐標(biāo)表示測試時間(年-月)。圖1中的每1個離散符號表征1個食醋樣本或1個空載樣本的第1 500個測試值。
a. DH3N
b. 空載樣品
b. No-load samples
圖1 TGS800對DH3N樣品和空載樣品測試結(jié)果的變化描述
Fig. 1 Changing representation of TGS800 to DH3N samples and no-load samples
由圖1看出,漂移不僅是明顯的,而且空載條件下的漂移趨勢與樣本條件下的漂移趨勢基本一致,只是信號強度不同而已。這表明漂移是傳感器的固有行為。該現(xiàn)象為空載條件下的開展漂移去除方法研究提供了有力的支持。因此,基于空載測試數(shù)據(jù)的漂移校正方法的研究不僅是合適的,而且也是必要的。
1.4.1小波包分解
當(dāng)用小波基函數(shù)對電子鼻數(shù)據(jù)進行第1尺度分解時,可獲得低頻系數(shù)集和相同頻寬的高頻系數(shù)集;進行第2尺度分解時,上述低頻系數(shù)集也被分成相同頻寬的低頻系數(shù)集和高頻系數(shù)集,同樣上述高頻系數(shù)集也被分成低頻和高頻部分;以此類推,可以生成小波包分解的二叉樹[30]。小波基函數(shù)的選擇是小波包分解的關(guān)鍵環(huán)節(jié),Symlet小波是在Daubechies(dbN)小波基礎(chǔ)上提出的近似對稱的小波基函數(shù),可以較好避免信號分解或重建過程中的失真現(xiàn)象。通過試算,選擇四階Symlet小波作為分解用的基函數(shù)。另外,當(dāng)小波包分解的尺度較大時,可能會丟失一些有用的信息。根據(jù)試算,選擇了3尺度實施小波包分解。
圖2a描述了TGS800對1個DH3N樣本的響應(yīng)結(jié)果曲線,圖2b給出了TGS800對1個DH3N樣本在不同頻點下小波包分解系數(shù)的變化趨勢。從圖2b可以看出,測試結(jié)果的信息主要集中在低頻段,其他頻段幾乎為零。因此,后續(xù)對分解系數(shù)的分析選定為低頻系數(shù)集。
a. 響應(yīng)結(jié)果曲線
a. Response result curve
b. 不同頻點下小波包分解系數(shù)的變化曲線
1.4.2 空載閾值函數(shù)構(gòu)建
考慮到漂移是氣敏傳感器的固有現(xiàn)象,因此可用空載樣本數(shù)據(jù)揭示漂移規(guī)律。空載閾值函數(shù)(no-load threshold function,NLTF)是基于空載樣本數(shù)據(jù)構(gòu)建的,它的思想來自標(biāo)準(zhǔn)偏差的概念,根據(jù)小波包分解系數(shù)的偏差范圍,可以得到下限和上限閾值的簡單表達式。具體計算見式 (1)~式(2)。
空載樣本數(shù)據(jù)下限閾值函數(shù)
空載樣本數(shù)據(jù)上限閾值函數(shù)
1.4.3 樣本閾值函數(shù)構(gòu)建
公式(1)和式(2)解釋了氣敏傳感器在空載條件下的測試結(jié)果的限定范圍。當(dāng)一個氣敏傳感器的測試結(jié)果小于或大于這個限定范圍,測試結(jié)果將被認(rèn)為是偏離氣敏傳感器測試真值的漂移數(shù)據(jù),應(yīng)該被消除。當(dāng)測試樣品時,測試結(jié)果主要受樣品揮發(fā)性強度影響,導(dǎo)致下限和上限閾值強度的變化。根據(jù)圖1a和圖1b中漂移規(guī)律的一致性(相似性),可以修正NLTF以獲得樣本閾值函數(shù)(sample threshold function,STF)。則
樣本數(shù)據(jù)下限閾值函數(shù)
樣本數(shù)據(jù)上限閾值函數(shù)
1.4.4 小波包系數(shù)校正與重構(gòu)
根據(jù)大量的計算嘗試與分析,提出了一種小波包分解系數(shù)校正方法,稱此校正方法為“閾值范圍內(nèi)縮放”校正法,校正公式為
根據(jù)公式(6),可以看出校正思路主要體現(xiàn)在兩個方面:1)在同一測量時間段內(nèi),通過放大空載閾值可得到樣本閾值,體現(xiàn)了氣敏傳感器的漂移規(guī)律;2)校正后的系數(shù)不僅保證了數(shù)據(jù)的平滑性,并且保留了數(shù)據(jù)的完整性而不導(dǎo)致信號失真。
被分析樣本小波包分解系數(shù)校正后,通過重構(gòu)可得校正后的電子鼻數(shù)據(jù)。值得注意的是,由于該方法是在SMTW的測量時間段內(nèi)構(gòu)造校正函數(shù),因此確定SMTW的大小非常重要,SMTW的大小會影響閾值的上限和下限的確定。隨著SMTW的前移,就生成新的校正函數(shù),進而實現(xiàn)遞歸校正。
1.4.5 Fisher判別分析
Fisher判別分析(Fisher discriminant analysis,F(xiàn)DA)方法通常是基于交叉驗證法來構(gòu)建FDA模型,此方法不具備用先驗信息構(gòu)建的鑒別模型來預(yù)測后驗樣本數(shù)據(jù)的功能,不符合實際工程應(yīng)用。只有按時間順序來構(gòu)造建模用的訓(xùn)練集和檢驗集,才具有實用價值。因此,將SMTW中的樣本數(shù)據(jù)作為構(gòu)建模型用的訓(xùn)練集,以隨后1個月或2個月樣本數(shù)據(jù)作為測試集來構(gòu)建FDA遞歸模型。實驗室依據(jù)FDA原理[31]在MATLAB R2014a平臺上構(gòu)建了滿足上述要求的FDA程序,以滿足基于先驗訓(xùn)練集的FDA模型來實現(xiàn)對后驗測試集樣本的預(yù)測。
電子鼻信號特征值的選取在鑒別分析中是必不可少的,對判別的結(jié)果起著至關(guān)重要的作用。因為積分值(integral value,INV)可以反映傳感器陣列對樣本的總體響應(yīng)[32],選擇“積分值”作為特征,其計算公式見式(7)。用式(7)對校正前后的樣本數(shù)據(jù)提取積分值。為了進一步補償對應(yīng)于每個測試樣品的溫度和濕度的影響,測量室中的溫度和濕度測量值的積分值也分別用作模式識別系統(tǒng)的輸入值。
SMTW太長,會包含更多的樣本數(shù)據(jù),增加數(shù)據(jù)處理的復(fù)雜性和構(gòu)建檢測模型的難度,但若SMTW太短,則不能充分反應(yīng)漂移信息,難以獲得有效的漂移校正方法[33]。為了確定合適的SMTW,分別考察了SMTW為6、5、4、3個月時所構(gòu)建FDA模型的鑒別結(jié)果;同時,將隨后2個月或1個月內(nèi)的測量樣本用作測試集進行模型校驗。因為FDA模型的訓(xùn)練集應(yīng)該占樣本總數(shù)的2/3及以上[34],所以,當(dāng)1個月的樣本數(shù)據(jù)作為測試集時,SMTW至少需要2個月的測試數(shù)據(jù),當(dāng)2個月的樣本數(shù)據(jù)用作測試集時,SMTW至少有4個月的數(shù)據(jù)。但實踐發(fā)現(xiàn),當(dāng)測試集超過2個月的測試樣本時,基于訓(xùn)練集的鑒別模型很難滿足后期測試集的鑒別。這可能是超過2個月的測試樣本占據(jù)較長的時間跨度,包含的漂移信息也較多,不利于所構(gòu)造的漂移校正函數(shù)有效處理這些測試樣本。因此,在以下分析中,在選擇不同的SMTW后,只考察隨后2個月或1個月中的測試樣本作為測試集。
當(dāng)SMTW為4個月時(空載樣本數(shù)據(jù)也對應(yīng)于4個月以構(gòu)建NLTF),選擇隨后1個月樣本作為測試集,這時可以形成12組的遞歸數(shù)據(jù)集,如表2所示。
表2 測試集為1個月的時間窗口
以SMTW為4個月為例,分別研究了校正前和校正后的小波包分解系數(shù)變化情況,圖3給出了TGS813對DH3N樣本去漂移前后的小波包分解第193頻點下分解系數(shù)的變化情況。
圖3 TGS813對DH3N樣本在第193個頻點下去漂移前/后小波包分解系數(shù)的變化趨勢
Figure 3 Changes of wavelet packet coefficients based on TGS813 to DH3N samples before/after correction at 193 th frequency point
從圖3中可以看出,校正前DH3N樣本在測試窗口的漂移趨勢是明顯的,校正后,漂移得到了控制。為了檢驗該漂移校正方法的有效性和可靠性,使用FDA處理校正前后的數(shù)據(jù)。圖4給出了漂移校正前的第1組訓(xùn)練集的鑒別結(jié)果,很容易看出6種食醋樣品混合嚴(yán)重、難以區(qū)分,F(xiàn)DA的正確鑒別率僅為62.43%。
圖4 基于4個月的樣本測量時間窗口(SMTW)去漂移前訓(xùn)練集的FDA鑒別結(jié)果
圖5a和圖5b分別給出了第1組和第2組訓(xùn)練集和對應(yīng)的測試集樣本數(shù)據(jù)漂移校正后的FDA鑒別結(jié)果。從圖 5可以看出,SMTW為4個月時,訓(xùn)練集和測試集的鑒別效果明顯高于漂移校正前,其鑒別正確率均為100%。同樣,對于第3組到第12組的樣本數(shù)據(jù)集,每個訓(xùn)練集和對應(yīng)的測試集的鑒別正確率也是100%。當(dāng)SMTW分別為6、5、3個月,并且構(gòu)建隨后1個或2個月的樣本測試集時,所能構(gòu)建的訓(xùn)練集和相應(yīng)的測試集的最差FDA結(jié)果顯示在表3中。當(dāng)SMTW為3個月時,相應(yīng)的測試集僅由隨后1個月的樣本數(shù)據(jù)構(gòu)建。
表3 不同大小的SMTW所構(gòu)建模型的鑒別結(jié)果
圖5 去漂移后第1組和第2組訓(xùn)練集及測試集的 FDA 鑒別結(jié)果
從表3可以看出,基于2個月數(shù)據(jù)的測試集的鑒別正確率不如基于1個月的鑒別正確率。原因可能是基于1個月的測試集包含的樣本量少,其漂移比基于2個月的測試集更容易校正。同時,隨著SMTW的改變,訓(xùn)練集和測試集的正確鑒別率也隨之變化。當(dāng)SMTW為4個月時,鑒別正確率達到最高(100%)。隨著SMTW增加,鑒別正確率逐漸減少,如SMTW為6個月、5個月,校正后續(xù)1個月樣本時,鑒別正確率分別為96.67%、97.78%,這是因為SMTW越大,數(shù)據(jù)量越大,需要校正的數(shù)據(jù)越多,引入的校正誤差也會越多,不利于模型的構(gòu)建,所以模型的精度降低。隨著SMTW的減少,如SMTW為3個月時,訓(xùn)練集與測試集的鑒別正確率降低,分別為93.28%,92.22%,這是因為SMTW包含的數(shù)據(jù)量減少了,不足以體現(xiàn)數(shù)據(jù)的變化規(guī)律,進而使模型的精度降低。另外,也考察了SMTW為2個月時的情況,它們的訓(xùn)練集與測試集的鑒別正確率比3個月的SMTW還要低。因此,4個月的SMTW是最佳選擇?;?個月SMTW所構(gòu)建的檢測模型能夠準(zhǔn)確鑒別隨后1個月內(nèi)的測試樣本。值得注意的是,基于3個月SMTW的模型不能預(yù)測未來2個月的樣本,因為訓(xùn)練集的樣本少于總樣本的2/3,不能滿足樣本的建模比例要求。
氣敏傳感器的漂移導(dǎo)致電子鼻缺乏長期穩(wěn)健檢測能力。為了準(zhǔn)確鑒別長期的電子鼻數(shù)據(jù),提出了一種基于空載數(shù)據(jù)的小波包分解系數(shù)漂移遞歸校正方法,即樣本數(shù)據(jù)的小波包分解系數(shù)可以通過建立在空載閾值函數(shù)(no-load threshold function,NLTF)上的樣本閾值函數(shù)(sample threshold function,STF)來校正。同時,借助樣本測量時間窗口(sample measurement time window,SMTW)思想,可以有效地實現(xiàn)遞歸校正。當(dāng)SMTW為4個月時,建立的遞歸Fisher判別分析(Fisher discriminant analysis,F(xiàn)DA)模型可以準(zhǔn)確鑒別隨后1個月的樣本數(shù)據(jù),鑒別正確率為100%,實現(xiàn)了6種食醋樣品的長期穩(wěn)健鑒別。本文提出的基于空載數(shù)據(jù)的漂移校正方法因不受檢測對象的限制,使得該方法更加具有普遍性,為實現(xiàn)電子鼻的長期穩(wěn)健檢測奠定了基礎(chǔ)。
[1] 張婷婷,孫群,楊磊,等. 基于電子鼻傳感器陣列優(yōu)化的甜玉米種子活力檢測[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(21):275-281. Zhang Tingting, Sun Qun, Yang Lei, et al. Vigor detection of sweet corn seeds by optimal sensor array based on electronic nose[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(21): 275-281. (in Chinese with English abstract)
[2] Sanaeifar A, Mohtasebi S S, Ghasemi-Varnamkhasti M, et al. Application of MOS based electronic nose for the prediction of banana quality properties[J]. Measurement, 2016, 82: 105–114.
[3] Andrzej B, Katarzyna J G, Ukasz G, et al. Evaluating soil moisture status using an E-nose[J]. Sensors, 2016, 16(6): 886-899.
[4] van de Goor R M G E, Leunis N, Van Hooren M R A, et al. Feasibility of electronic nose technology for discriminating between head and neck, bladder, and colon carcinomas[J]. European Archives of Oto-Rhino-Laryngology, 2017, 274(2): 1053-1060.
[5] Romero-Flores A, Mcconnell L L, Hapeman C J, et al. Evaluation of an electronic nose for odorant and process monitoring of alkaline-stabilized biosolids production[J]. Chemosphere, 2017, 186: 151-159.
[6] 路鵬,吳世新,戴志鋒,等等. 基于電子鼻和GIS的大型生活垃圾堆肥廠惡臭污染源測定[J]. 農(nóng)業(yè)工程學(xué)報,2014,30(17): 235-242. Lu Peng, Wu Shixin, Dai Zhifeng, et al. Determination of odor pollution sources in large domestic waste composting plants based on electronic nose and GIS[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(17): 235-242. (in Chinese with English abstract)
[7] Gao L, Liu T, An X. Analysis of volatile flavor compounds influencing Chinese-type soy sauces using GC–MS combined with HS-SPME and discrimination with electronic nose[J]. Journal of Food Science and Technology, 2017, 54(1): 130-143.
[8] 徐克明,王俊,鄧凡霏,等. 用于山核桃陳化時間檢測的電子鼻傳感器陣列優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(3):281-287. Xu Keming, Wang Jun, Deng Fanfei, et al. Optimization of electronic nose sensor array for pecan aging time detection[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(3): 281-287. (in Chinese with English abstract)
[9] 傅潤澤,沈建,王錫昌,等. 基于神經(jīng)網(wǎng)絡(luò)及電子鼻的蝦夷扇貝鮮活品質(zhì)評價及傳感器的篩選[J]. 農(nóng)業(yè)工程學(xué)報,2016,32(6):268-275. Fu Runze, Shen Jian, Wang Xichang, et al. Quality evaluation of live yesso scallop and sensor selection based on artificial neural network and electronic nose[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(6): 268-275. (in Chinese with English abstract)
[10] 徐賽,陸華忠,周志艷,等. 基于電子鼻的果園荔枝成熟階段檢測[J]. 農(nóng)業(yè)工程學(xué)報,2015,31(18):240-246. Xu Sai, Lu Huazhong, Zhou Zhiyan, et al. Electronic nose monitoring mature stage of litchi in orchard[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(18): 240-246. (in Chinese with English abstract)
[11] 李靜,宋飛虎,浦宏杰,等. 基于電子鼻氣味檢測的蘋果微波干燥方案優(yōu)選[J]. 農(nóng)業(yè)工程學(xué)報,2015,31(3):312-318. Li Jing, Song Feihu, Pu Hongjie, et al. Optimization of apple microwave drying scheme based on electronic nose odor detection[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(3): 312-318. (in Chinese with English abstract)
[12] 殷勇,趙玉珍,于慧春. 基于多種變量分析方法鑒別食醋種類電子鼻信號特征篩選[J]. 農(nóng)業(yè)工程學(xué)報,2018,34(15):290-297. Yin Yong, Zhao Yuzhen, Yu Huichun. Identification of electronic nose signal characteristics of vinegar species based on multiple variable analysis methods[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(15): 290-297. (in Chinese with English abstract)
[13] 何金鑫,郜海燕,穆宏磊,等. 山核桃氧化過程中品質(zhì)指標(biāo)變化的電子鼻快速檢測[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(14):284-291. He Jinxin, Gao Haiyan, Mu Honglei, et al. Rapid detection of quality parameters change in hickory oxidation process by electronic nose[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(14): 284-291. (in Chinese with English abstract)
[14] 沈飛,劉鵬,蔣雪松,等. 基于電子鼻的花生有毒霉菌種類識別及侵染程度定量檢測[J]. 農(nóng)業(yè)工程學(xué)報,2016,32(24):297-302. Shen Fei, Liu Peng, Jiang Xuesong, et al. Identification and infective degree detection of peanut toxic mold based on electronic nose[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(24): 297-302. (in Chinese with English abstract)
[15] 劉寧晶,史波林,趙鐳,等. 基于獨立成分分析結(jié)合遺傳算法的電子鼻蜜源檢測特征信號挖掘[J]. 農(nóng)業(yè)工程學(xué)報,2015,31(增刊1):315-324. Liu Ningjing, Shi Bolin, Zhao Lei, et al. Feature signal mining based on independent component analysis combined with genetic algorithm for electronic nose honey source detection[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(supp 1): 315-324. (in Chinese with English abstract)
[16] 何余勤,胡榮鎖,張海德,等. 基于電子鼻技術(shù)檢測不同焙烤程度咖啡的特征性香氣[J]. 農(nóng)業(yè)工程學(xué)報,2015,31(18):247-255. He Yuqin, Hu Rongsuo, Zhang Haide, et al. Detection of characteristic aroma of coffee with different baking degrees based on electronic nose technology[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(18): 247-255. (in Chinese with English abstract)
[17] Yan K, Zhang D. Calibration transfer and drift compensation of e-noses via coupled task learning[J]. Sensors & Actuators B: Chemical, 2016, 225: 288-29.
[18] Zhang L, Liu Y, He Z, et al. Anti-drift in e-nose: A subspace projection approach with drift reduction[J]. Sensors and Actuators B: Chemical, 2017, 253: 407-417.
[19] Xu S, Sun X, Lü E, et al. A modified mean deviation threshold function based on fast Fourier transform and its application in litchi rest storage life recognition using an e-nose[J]. J Food Meas Charact, 2018, 12: 867-876.
[20] Liu H, Tang Z. Metal oxide gas sensor drift compensation using a dynamic classifier ensemble based on fitting[J]. Sensors, 2013, 13(7): 9160-9173.
[21] 裴高璞,史波林,趙鐳,等. 典型摻假蜂蜜的電子鼻信息變化特征及判別能力[J]. 農(nóng)業(yè)工程學(xué)報,2015,31(增刊1):325-331. Pei Gaopu, Shi Bolin, Zhao Lei, et al. Variation characteristics and discriminative ability of electronic nose information of typical adulterated honey[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(supp 1): 325-331. (in Chinese with English abstract)
[22] 曹小玲,劉開元,嚴(yán)良俊. 大地電磁的小波變換—獨立分量分析去噪[J]. 石油地球物理勘探,2018,53(1):206-213. Cao Xiaoling, Liu Kaiyuan, Yan Liangjun. Wavelet transform of magnetotelluric electromagnetics-independent component analysis denoising[J]. Petroleum Geophysical Prospecting, 2018, 53(1): 206—213. (in Chinese with English abstract)
[23] 陳英義,程倩倩,方曉敏,等等. 主成分分析和長短時記憶神經(jīng)網(wǎng)絡(luò)預(yù)測水產(chǎn)養(yǎng)殖水體溶解氧[J]. 農(nóng)業(yè)工程學(xué)報,2018,34(17):183-191. Chen Yingyi, Cheng Qianqian, Fang Xiaomin, et al. Principal component analysis and long-term short-term memory neural network for predicting dissolved oxygen in aquaculture waters[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(17): 183-191. (in Chinese with English abstract)
[24] Aleixandre M, Santos J P, Sayago I, et al. A wireless and portable electronic nose to differentiate musts of different ripeness degree and grape varieties[J]. Sensors, 2015, 15(4): 8429-8443.
[25] 羅宇. 基于深度信念網(wǎng)絡(luò)的氣體傳感器漂移補償[D]. 重慶: 重慶大學(xué),2017. Luo Yu. Gas Sensor Drift Compensation Based on Deep Belief Network[D]. Chongqing: Chongqing University, 2017. (in Chinese with English abstract)
[26] 尼加提·卡斯木,師慶東,王敬哲,等. 基于高光譜特征和偏最小二乘法的春小麥葉綠素含量估算[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(22):208-216. Nijat Kasim, Shi Qingdong, Wang Jingzhe, et al. Estimation of chlorophyll content of spring wheat based on hyperspectral features and partial least squares method[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(22): 208-216. (in Chinese with English abstract)
[27] 殷勇,葛飛,于慧春. 電子鼻漂移閾值構(gòu)建及其在白酒鑒別中的應(yīng)用[J]. 農(nóng)業(yè)機械學(xué)報,2018,49(1):322-328. Yin Yong, Ge Fei, Yu Huichun. Construction of electronic nasal drift threshold and its application in liquor identification[J]. Transactions of the Chinese Society of Agricultural Machinery, 2018, 49(1): 322-328. (in Chinese with English abstract)
[28] 殷勇,吳文凱,于慧春. 獨立分量分析融合小波能量閾值的電子鼻信號去漂移方法[J]. 農(nóng)業(yè)工程學(xué)報,2014,30(24):325-331. Yin Yong, Wu Wenkai, Yu Huichun. Drift elimination method of electronic nose signals based on independent component analysis coupled with wavelet energy threshold value[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(24): 325-331. (in Chinese with English abstract)
[29] 于慧春,褚冰,殷勇. 食醋電子鼻檢測中一種特征參量評價方法[J]. 農(nóng)業(yè)工程學(xué)報,2013,29(3):258-264. Yu Huichun, Chu Bing, Yin Yong. Evaluation method of feature vector in vinegar identification by electronic nose[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(3): 258-264. (in Chinese with English abstract)
[30] 王海江,王周龍,李麗宏,等等. 基于高平衡階多進制多小波包變換的遙感影像融合[J]. 農(nóng)業(yè)工程學(xué)報,2015,31(1):178-186. Wang Haijiang, Wang Zhoulong, Li Lihong, et al. Remote sensing image fusion based on high-equal multi-band multi-wavelet packet transform[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(1): 178-186. (in Chinese with English abstract)
[31] 高惠璇. 應(yīng)用多元統(tǒng)計分析[M]. 北京:北京大學(xué)出版社,2004.
[32] Yin Y, Hao Y, Yu H, et al. Detection potential of multi-features representation of E-nose data in classification of moldy maize samples[J]. Food & Bioprocess Technology, 2017, 10(12): 1-14.
[33] Yin Y, Bai Y, Ge F, et al. Long-term robust identification potential of a wavelet packet decomposition based recursive drift correction of E-nose data for Chinese spirits[J]. Measurement, 2019, 139: 284-292.
[34] Carmel L, Levy S, Lancet D, et al. A feature extraction method for chemical sensors in electronic noses[J]. Sensors, 2003, 93(1/2/3): 67-76.
E-nose information drift correction method for identifying vinegarbased on no-load data
Yin Yong, Wang Yanfang, Ge Fei, Yu Huichun
(,,471023,)
Electronic nose (E-nose) signal drift is inevitable due to sensor aging and fluctuation of ambient temperature and humidity, which could compromise its ability of robust long-term detection. To ensure long-term robust service of the E-nose for detecting vinegar samples, a drift recursive correction method is proposed in this paper using the wavelet packet decomposition coefficients based on no-load data. The method does not require special correction processing and the sensor drift can be corrected based only on the no-load response data and the sample response data of the E-nose. In the model, the Symlet wavelet function was first used to decompose the no-load data of the E-nose using a no-load threshold function (NLTF) given in the paper. The NLTF was then converted to sample threshold function (STF) suiting the samples data by a constructed adjustment coefficient. Using the STF, a correction function based on the wavelet packet decomposition coefficient of the samples of E-nose data was constructed. The E-nose data of six vinegars were subject to a drift correction by means of the correction function. We also introduced the concept of “sample measurement time window” (SMTW), and used the correction function to process the sample data within the SMTW. As the SMTW progresses recursively, the drift in all sample data at different times (or SMTW) could be used to recursively correct the samples of the vinegars. To validate the drift correction method and test the applicability of the SMTW, the sample data in the SMTW were used as a training set and the sample data between one month and two months after the SMTW were used as test set. A recursive Fisher discriminant analysis (FDA) model was built, which was proven capable of long-term robust detection of the vinegars. The samples of the vinegars were tested intermittently for 16 months, and the SMTW in which was 6, 5, 4 and 3 months, respectively. With the change in SMTW, the correct discrimination rate for the training set and the test set also changes. When the SMTW was more than 4 months or less than 4 months, the correction identification rate of FDA was less than 100%, and the correction identification rate was only 92.22% under certain circumstance. Therefore, when the SMTW was 6, 5 or 3 months, the samples of the vinegars cannot be identified robustly in long term. When SMTW was 4 months, the test samples in SMTW and the samples within one month after the SMTW were effectively identified by the established recursive FDA model, and the vinegar samples can be identified robustly in long term, with a correction identification rate of 100%. That is, the test samples within one month after the SMTW could be accurately identified using the FDA model built from the sample E-nose data when the SMTW was within 4 months. We believe that our results has implications as the proposed method is applicable to other E-nose data.
agricultural products; models; E-nose; drift; detection; wavelet packet decomposition; vinegar; recursive modeling
2019-03-30
2019-04-30
國家自然科學(xué)基金資助項目(31571923)
殷 勇,教授,博導(dǎo),主要研究方向為農(nóng)產(chǎn)品、食品品質(zhì)檢測技術(shù)。Email:yinyong@haust.edu.cn
10.11975/j.issn.1002-6819.2019.17.035
TP212.2;TS207.5
A
1002-6819(2019)-17-0293-08
殷 勇,王燕芳,葛 飛,于慧春. 基于空載數(shù)據(jù)的鑒別食醋電子鼻信號漂移校正方法[J]. 農(nóng)業(yè)工程學(xué)報,2019,35(17):293-300. doi:10.11975/j.issn.1002-6819.2019.17.035 http://www.tcsae.org
Yin Yong, Wang Yanfang, Ge Fei, Yu Huichun. E-nose information drift correction method for identifying vinegarbased on no-load data[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(17): 293-300. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.17.035 http://www.tcsae.org