牛 聰,陳浩天,李 鑫,王樂宜,王 勇,張寶莉
基于磷去除效果的人工濕地中含活性氧化鋁復(fù)合基質(zhì)配比優(yōu)化
牛 聰1,陳浩天1,李 鑫1,王樂宜1,王 勇2,張寶莉1※
(1. 中國(guó)農(nóng)業(yè)大學(xué)資源與環(huán)境學(xué)院,北京 100193;2. 北京市碧圣聯(lián)合水務(wù)有限公司,北京 102400)
為探究北方寒冷地區(qū)人工濕地中含活性氧化鋁基質(zhì)的除磷效果,研究選用活性氧化鋁與常用的鋼渣、石灰石和沸石作為基質(zhì)材料,在同等條件下通過(guò)等溫吸附和吸附動(dòng)力學(xué)試驗(yàn)選擇吸附能力最強(qiáng)的活性氧化鋁。考慮基質(zhì)的孔隙度及對(duì)水力停留時(shí)間的影響,將活性氧化鋁與砂和石灰石按不同粒徑及不同體積比例混合構(gòu)建9種組合基質(zhì),以生活污水(平均磷質(zhì)量濃度為2.89 mg/L)為處理對(duì)象,模擬單級(jí)垂直流人工濕地系統(tǒng)進(jìn)行小試試驗(yàn),并選取除磷效果較好的同粒徑且含活性氧化鋁組合基質(zhì)以探索其在高質(zhì)量濃度磷(15.96、38.13和68.22 mg/L)下出水水質(zhì)達(dá)標(biāo)情況。最后篩選出磷吸附效果最優(yōu)的含活性氧化鋁的組合基質(zhì),在多級(jí)垂直流人工濕地系統(tǒng)進(jìn)行中試試驗(yàn)以評(píng)價(jià)其對(duì)污水中高濃度磷(20 mg/L)的去除效果。研究結(jié)果表明:1)活性氧化鋁對(duì)磷的吸附能力最佳,依次為鋼渣、石灰石、沸石;2)9種組合基質(zhì)中75%的活性氧化鋁和25%的石灰石組合基質(zhì)對(duì)磷的去除率最高,達(dá)93.48%,粒徑為3~5 mm且含不同比例活性氧化鋁的4種組合基質(zhì)對(duì)磷去除效果較好,將其應(yīng)用于高濃度磷的污水處理后,出水磷濃度可以達(dá)到《北京市水污染物綜合排放標(biāo)準(zhǔn)》(DB11/307-2013)中總磷A標(biāo)準(zhǔn)排放限值(0.2 mg/L);3)以75%的活性氧化鋁和25%的石灰石構(gòu)建的組合基質(zhì)在多級(jí)垂直流人工濕地中出水磷濃度均達(dá)到A標(biāo)準(zhǔn)排放限值,去除率在94%以上。因此,研究建議以75%的活性氧化鋁和25%的石灰石構(gòu)建組合基質(zhì),該含活性氧化鋁的基質(zhì)組合在人工濕地中具有良好的除磷效果和應(yīng)用價(jià)值。
基質(zhì);磷;污水;活性氧化鋁;去除率;垂直流人工濕地
水中磷含量過(guò)高是導(dǎo)致水體富營(yíng)養(yǎng)化的主要原因之一,有效去除水體中的磷污染物已成為防治水體富營(yíng)養(yǎng)化的主要途徑[1-2]。在污水處理中,人工濕地系統(tǒng)因其處理效果好,建造和運(yùn)行費(fèi)用低等優(yōu)點(diǎn),尤其在農(nóng)村地區(qū)得到廣泛應(yīng)用[3-7];人工濕地對(duì)污染物的去除是利用系統(tǒng)中濕地植物、填料和微生物通過(guò)物理、化學(xué)及生物的協(xié)同作用的結(jié)果,對(duì)氮、磷的去除效果尤為明顯[8-11];基質(zhì)和植物除磷被認(rèn)為是除磷最主要的途徑。北方地區(qū)冬季氣溫低,植物的枯萎和微生物的活性降低[12-13],基質(zhì)除磷是人工濕地主要的除磷方式。
人工濕地中基質(zhì)的沉淀與吸附被認(rèn)為是重要的除磷機(jī)制[14-15],可以去除系統(tǒng)中70%~87%的磷[16-17],而基質(zhì)的吸附是除磷的關(guān)鍵[18-19]?;|(zhì)對(duì)磷的吸附取決于基質(zhì)中鋁、鐵和鈣的含量、比表面積、孔隙率、粒度分布和水力傳導(dǎo)等物理化學(xué)特性[20]??捎糜谌斯竦氐幕|(zhì)眾多,大致有人造產(chǎn)品、天然礦物、工業(yè)副產(chǎn)物三大類[21-22]?;|(zhì)對(duì)磷的吸附研究表明,可以作為吸附磷的基質(zhì)有鋼渣、生物炭、高嶺土、無(wú)煙煤、砂礫、大理石和沸石等,其中鋼渣的吸附量高[23-24];近年來(lái)有研究顯示活性氧化鋁對(duì)含磷廢水的去除效果較好,其對(duì)水中磷的去除效果優(yōu)于沸石、陶粒、無(wú)煙煤和石英砂等基質(zhì)[25]?;钚匝趸X,是一種單金屬氧化物,比表面積大,微孔表面具有強(qiáng)吸附能力[26]。
活性氧化鋁對(duì)磷的吸附研究中,最大吸附量為0.0738~32.15 mg/g,球狀活性氧化鋁的固磷量(5.37 mg/g)明顯低于粉末狀活性氧化鋁(16.19 mg/g)[27-30]。這些研究結(jié)果表明:不同的試驗(yàn)條件下,得到的吸附量相差很大,可比性低;為了解活性氧化鋁與其他的基質(zhì)對(duì)磷的吸附量差異與大小,需要在同等條件下進(jìn)行吸附特性的對(duì)比?;钚匝趸X的粒徑也是影響吸附量的重要因子,粒徑越小其比表面積越大,吸附量也隨之增加;而粉狀相比球狀活性氧化鋁,雖然具有很高的吸附量,但在處理污水時(shí),粉狀活性氧化鋁一旦與水一起排出,會(huì)增加污水中鋁的含量,且一旦解吸,磷會(huì)重新回到水體中;此外,粉狀基質(zhì)在人工濕地中應(yīng)用困難,它可能與水一起排出或沉積造成人工濕地的堵塞;由此,基質(zhì)宜選擇球狀活性氧化鋁。
已有的研究中,多是對(duì)磷的吸附小試試驗(yàn),采用下進(jìn)水、上出水的浸泡的厭氧的裝置[27, 31-32],通過(guò)控制污水與活性氧化鋁接觸時(shí)間達(dá)到去除磷的效果,以及磷的解吸研究[23, 29];還未有對(duì)其應(yīng)用于人工濕地作為基質(zhì)處理污水的研究。在適用于北方的垂直流人工濕地中,有表面進(jìn)水下部出水好氧單元,也有厭氧單元;厭氧裝置雖然可以控制水體與基質(zhì)的接觸時(shí)間,增加吸附量,磷的去除率會(huì)增加;但是基質(zhì)容易達(dá)到吸附飽和,為延長(zhǎng)基質(zhì)的壽命,本研究選擇把活性氧化鋁基質(zhì)放在好氧的裝置中研究其除磷效果,以期達(dá)到適當(dāng)延長(zhǎng)基質(zhì)的飽和時(shí)間。在人工濕地的好氧單元中,水力停留時(shí)間主要取決于基質(zhì)的粒徑組合,單獨(dú)的球狀活性氧化鋁基質(zhì)可能會(huì)造成水力停留時(shí)間短,影響吸附效果,由此在基質(zhì)中加入形狀不規(guī)則的砂與石灰石進(jìn)行基質(zhì)組合以增加水力停留時(shí)間,研究其應(yīng)用于人工濕地基質(zhì)對(duì)污水中磷的去除效果。
試驗(yàn)選擇球狀活性氧化鋁及常用的鋼渣、石灰石和沸石作為基質(zhì)材料。材料用水進(jìn)行沖洗,烘干備用。基質(zhì)孔隙率采用人工濕地先用水飽和、而后放空水量的方法來(lái)計(jì)算[33]。
1.2.1 不同基質(zhì)材料對(duì)磷的吸附特性試驗(yàn)
將1.1節(jié)中4種基質(zhì)在同等條件下進(jìn)行對(duì)磷的等溫吸附和吸附動(dòng)力學(xué)試驗(yàn),并將這4種基質(zhì)對(duì)磷的吸附能力大小相比較。
1)基質(zhì)材料的等溫吸附試驗(yàn)
在實(shí)驗(yàn)室內(nèi),稱取1 g活性氧化鋁、鋼渣、石灰石和沸石于50 mL的離心管中,分別加入25 mL濃度為2、5、10、25、50、80、120及200 mg/L的KH2PO4溶液。在轉(zhuǎn)速200 r/min,25 ℃恒溫振蕩24 h后,于8 000 r/min下離心2 min,測(cè)定上清液中磷的含量。
2)基質(zhì)材料的吸附動(dòng)力學(xué)試驗(yàn)
在實(shí)驗(yàn)室內(nèi),同樣稱取1 g各基質(zhì)于50 mL的離心管中,分別加入25 mL濃度為50 mg/L的KH2PO4溶液,在轉(zhuǎn)速200 r/min,25 ℃條件下恒溫振蕩,分別振蕩30 min、1、2、4、8、12、24和36 h,于8 000 r/min下離心2 min,測(cè)定上清液中磷的含量。
1.2.2 不同組合基質(zhì)對(duì)磷的去除效果試驗(yàn)
選取等溫吸附和吸附動(dòng)力學(xué)試驗(yàn)中對(duì)磷吸附能力最強(qiáng)的基質(zhì),同時(shí)考慮基質(zhì)的孔隙度對(duì)水力停留時(shí)間的影響,并結(jié)合常用的人工濕地基質(zhì)砂子,對(duì)基質(zhì)進(jìn)行不同比例的組合,考慮到實(shí)際工程中的應(yīng)用,試驗(yàn)設(shè)置9種不同粒徑及不同體積配比的組合基質(zhì),進(jìn)行污水除磷試驗(yàn)?;|(zhì)配比處理及其物理性質(zhì)見表1。
試驗(yàn)?zāi)M單級(jí)垂直流人工濕地的水流方式的試驗(yàn)柱進(jìn)行小試試驗(yàn),試驗(yàn)柱如圖1。試驗(yàn)于2017年4—8月和2018年6—7月進(jìn)行,地點(diǎn)設(shè)在中國(guó)農(nóng)業(yè)大學(xué)新教實(shí)驗(yàn)室和北京市房山區(qū)碧圣聯(lián)合水務(wù)有限公司。試驗(yàn)所用污水為廠區(qū)工作人員的生活污水,高濃度磷污水為人為在低濃度生活污水中添加KH2PO4。進(jìn)水由蠕動(dòng)泵驅(qū)動(dòng),按照前期工作[1]獲得的最佳水力負(fù)荷0.3 m3/(m2×d)進(jìn)水,運(yùn)行方式為30 min/h(間歇式給水,1 h進(jìn)水30 min)方式控制,均勻不飽和給水,監(jiān)測(cè)進(jìn)、出水磷的濃度。
表1 基質(zhì)配比處理及其物理性質(zhì)
注:圖1中數(shù)值單位均為mm;DN160為管道型號(hào)。
1.2.3 優(yōu)化組合基質(zhì)在濕地系統(tǒng)中的除磷效果試驗(yàn)
利用小試試驗(yàn)中除磷效果最優(yōu)的組合基質(zhì),在構(gòu)建的小型的多級(jí)垂直流人工濕地系統(tǒng)進(jìn)行中試試驗(yàn),垂直流人工濕地試驗(yàn)裝置如圖2所示[11]。試驗(yàn)設(shè)計(jì)長(zhǎng)×寬×高為90 cm×70 cm×70 cm的箱體作為濕地處理單元,箱體由不銹鋼制成,并做防銹層,箱底裝有打孔的PVC隔板,隔板與底層之間有15 cm的集水層,設(shè)排水口。進(jìn)水控制與試驗(yàn)柱相同。前期預(yù)運(yùn)行,使系統(tǒng)內(nèi)的微生物得到馴化后正式運(yùn)行。監(jiān)測(cè)進(jìn)、出水磷濃度。
圖2 多級(jí)垂直流人工濕地系統(tǒng)示意圖
總磷(total phosphorus, TP):鉬酸銨分光光度法(GB11893-1989)
數(shù)據(jù)和圖表采用基于Windows的WPS 2019軟件處理分析,利用SPSS 20.0軟件進(jìn)行單因素方差分析,多重比較采用Duncan法,圖形采用Origin Pro 9.1軟件繪制。
本研究選取1.1節(jié)中4種基質(zhì)材料,在相同的條件下進(jìn)行磷的等溫吸附試驗(yàn)和吸附動(dòng)力學(xué)試驗(yàn),對(duì)比活性氧化鋁與另外3種基質(zhì)對(duì)磷的吸附性能。
2.1.1 基質(zhì)材料對(duì)磷的等溫吸附特性
4種基質(zhì)材料對(duì)磷的等溫吸附曲線如圖3所示。
圖3 不同基質(zhì)材料在2種模型下對(duì)磷的等溫吸附曲線擬合
從圖3可以看出各基質(zhì)對(duì)磷的吸附在40 mg/L時(shí)基本達(dá)到平衡,此時(shí)活性氧化鋁的吸磷量最高為3.90 mg/g?;|(zhì)吸附磷的效果依次為活性氧化鋁>鋼渣>石灰石>沸石。采用等溫模型Freundlich和Langmuir對(duì)各基質(zhì)的磷酸鹽等溫吸附曲線進(jìn)行擬合后的參數(shù)見表2。
表2 基質(zhì)對(duì)磷的等溫吸附模型及其相關(guān)參數(shù)
注:反映基質(zhì)磷吸附能力的大小,表示基質(zhì)的吸附強(qiáng)度0表示磷理論飽和吸附量,表示吸附平衡時(shí)吸附質(zhì)液相濃度。
Note:reflects the phosphorus adsorption capacity of substrates,means adsorption strength of substrates,0means the theoretical saturation adsorption of P,means the liquid phase concentration of adsorbates at adsorption equilibrium.
由表2中可以看出,F(xiàn)reundlich模型與Langmuir模型均能很好地描述試驗(yàn)基質(zhì)對(duì)磷的等溫吸附特征,決定系數(shù)2均大于0.9。從Langmuir模型結(jié)果可以看出活性氧化鋁的飽和吸附量最大,為4.852 mg/g,比鋼渣、石灰石、沸石分別高出4.71倍、8.27倍、32.13倍。從Freundlich模擬結(jié)果中的值可以看出,活性氧化鋁的吸附能力強(qiáng)于其他3種基質(zhì);從1/可以看出活性氧化鋁和鋼渣對(duì)磷的吸附更容易進(jìn)行。
2.1.2 基質(zhì)材料對(duì)磷的吸附動(dòng)力學(xué)特性
4種基質(zhì)材料對(duì)磷的吸附動(dòng)力學(xué)曲線模擬見圖4。
圖4 不同基質(zhì)材料對(duì)磷的吸附動(dòng)力學(xué)特征
由圖4中可以看出36 h時(shí)活性氧化鋁的對(duì)磷的吸附量最高達(dá)到1.15 mg/g,4種基質(zhì)材料對(duì)磷酸鹽的吸附效果為活性氧化鋁>鋼渣>石灰石>沸石。采用一級(jí)動(dòng)力學(xué)方程和準(zhǔn)二級(jí)動(dòng)力學(xué)方程對(duì)各基質(zhì)對(duì)磷酸鹽吸附動(dòng)力學(xué)曲線進(jìn)行模擬,試驗(yàn)結(jié)果模擬的參數(shù)見表3。
表3 基質(zhì)材料對(duì)磷的吸附動(dòng)力學(xué)參數(shù)
注:1和2分別為一級(jí)動(dòng)力學(xué)和準(zhǔn)二級(jí)動(dòng)力學(xué)吸附速率常數(shù),q1和q2分別為一級(jí)動(dòng)力學(xué)和準(zhǔn)二級(jí)動(dòng)力學(xué)平衡時(shí)最大吸附量。
Note:1and2are the kinetic adsorption rate constants of first order and quasi second order, respectively;q1andq2are the maximum adsorption at the equilibrium of first order kinetics and quasi second order kinetics, respectively.
由表3中可以看出,一級(jí)動(dòng)力學(xué)模型與準(zhǔn)二級(jí)動(dòng)力學(xué)模型也能很好地描述人工濕地基質(zhì)對(duì)磷的吸附動(dòng)力學(xué)特征,決定系數(shù)2均大于0.99,活性氧化鋁的吸附速率最快,且活性氧化鋁的平衡吸附量(q1、q2)最大,分別達(dá)到1.26和1.21 mg/g,其q1比鋼渣、石灰石和沸石分別高出1.26倍、4.85倍和21倍,q2分別高出1.23倍、4.03倍和24.2倍。
文獻(xiàn)[34]中活性氧化鋁的飽和吸附量(0)比本研究高出7.06倍,文獻(xiàn)[28]中活性氧化鋁的平衡吸附量比本研究分別高出252倍(q1)和3.3倍(q2),說(shuō)明不同的試驗(yàn)設(shè)計(jì)取樣方法等都會(huì)造成平衡吸附量的不同,由此,基質(zhì)的吸附量只有在同等條件下的試驗(yàn)才具有可比性。
2.2.1 基質(zhì)的配比比例及其物理性質(zhì)
將2.1節(jié)中吸附能力最好的活性氧化鋁與石灰石及人工濕地砂子進(jìn)行9種不同的配比的基質(zhì)混合處理。
基質(zhì)自身的特性如粒徑、孔隙率等直接影響污水處理的效果[35],一般來(lái)說(shuō),同一類型基質(zhì)粒徑、孔隙度越小,可以使污水在基質(zhì)中的停留時(shí)間增加,污水與基質(zhì)接觸時(shí)間長(zhǎng),使吸附作用增加,基質(zhì)對(duì)磷的去除效果增加[11,36]。由表1可知,S8的孔隙度最大,S2最小。不同粒徑和不同的組合配置會(huì)表現(xiàn)出不同的孔隙度,與基質(zhì)的粒徑不完全相關(guān),這主要是由于活性氧化鋁是球狀,而其他基質(zhì)都是不規(guī)則的塊狀,基質(zhì)之間的接觸與形狀有關(guān)。
2.2.2 不同配比的組合基質(zhì)對(duì)磷的去除效果
將9組不同配比基質(zhì)填充于單級(jí)垂直流人工濕地試驗(yàn)柱中,上端進(jìn)水,下端出水,探究該9種組合基質(zhì)對(duì)生活污水中磷的去除效果,其中試驗(yàn)用的生活污水總磷質(zhì)量濃度平均為2.89 mg/L(1.18~4.39 mg/L)。9種不同配比基質(zhì)對(duì)磷的去除率的結(jié)果見圖5。
注:不同小寫字母代表同一指標(biāo)具有顯著性差異(P<0.05)。
從圖5結(jié)果可以看出,S8基質(zhì)對(duì)磷的去除率比同為石灰石的S9處理顯著降低17.74%(<0.05),可能是因?yàn)镾8處理的粒徑和孔隙度均大于S9,因?yàn)榱郊翱紫抖仍酱螅瑫?huì)導(dǎo)致水流速度增快,減小了基質(zhì)與污水的接觸時(shí)間,會(huì)導(dǎo)致對(duì)磷的去除效果降低[11, 36]。在相同比例的活性氧化鋁與砂的基質(zhì)組合S2,S3,S4中,孔隙率最大的S3處理去除率為83.54%,S4組合為89.25%,而孔隙率最小的S2去除率為90.70%,但3種處理間并無(wú)顯著性差異(>0.05),統(tǒng)計(jì)發(fā)現(xiàn)去除率與孔隙度呈顯著負(fù)相關(guān)關(guān)系(=-0.365,<0.01)。除孔隙度外,基質(zhì)中活性氧化鋁含量也對(duì)磷的去除效果存在影響,含活性氧化鋁的組合基質(zhì)(S2~S7)對(duì)磷的去除效果較好,去除率在83.54%~93.48%之間,統(tǒng)計(jì)發(fā)現(xiàn)磷去除率與基質(zhì)中鋁的含量呈極顯著正相關(guān)關(guān)系(=0.325,<0.01),這可能是因?yàn)樵黾愉X的含量相當(dāng)于增大了活性氧化鋁與磷酸鹽的接觸面積,有利于吸附除磷的進(jìn)行[26]。而同粒徑(3~5 mm)活性氧化鋁分別與砂和石灰石形成的組合(S4~S7)的去除率更高,范圍為87.36%~93.48%,平均去除率為89.6%。然而,單一的活性氧化鋁基質(zhì)S1處理對(duì)磷的去除率低于活性氧化鋁與石灰石的組合基質(zhì)S7和活性氧化鋁與砂石的組合基質(zhì)S2(<0.05),這可能是由于不同基質(zhì)的形狀不同,其混合后造成孔隙度的改變,進(jìn)而影響了磷去除率。9種組合基質(zhì)中S7(活性氧化鋁與石灰石)對(duì)磷的去除率(93.48%)最高,在含活性氧化鋁的組合基質(zhì)中,S7含活性氧化鋁的量最高(75%),與同樣比例的活性氧化鋁與砂子的組合基質(zhì)S5高,說(shuō)明石灰石比砂子對(duì)磷的吸附要好。
結(jié)果表明,對(duì)磷吸附性能好的基質(zhì),混合后對(duì)污水中的磷的去除效果也好,但是組合基質(zhì)的除磷效果也與混合后基質(zhì)的孔隙度相關(guān)?;|(zhì)的粒徑越小,組合的基質(zhì)孔隙度越小,效果也是越好,但是孔隙度小的基質(zhì)在濕地的運(yùn)行中,污水中懸浮物的沉淀更容易造成濕地的堵塞而使系統(tǒng)不能運(yùn)行。由此,合適的粒徑選擇與基質(zhì)混合后的孔隙度在濕地的基質(zhì)設(shè)計(jì)中起到了很重要的作用。
2.2.3 活性氧化鋁的組合基質(zhì)處理污水中磷的出水效果
農(nóng)村生活污水中磷的濃度范圍是4~15 mg/L,而試驗(yàn)所用污水的磷質(zhì)量濃度平均僅為2.89 mg/L。為了探究組合基質(zhì)對(duì)高濃度磷的抗沖擊及緩和能力,測(cè)定組合基質(zhì)對(duì)磷的去除效果及出水水質(zhì)達(dá)標(biāo)情況,選取2.2.2節(jié)中除磷效果較好的4種同粒徑含活性氧化鋁的組合基質(zhì)(S4~S7),在污水中加入不同量的KH2PO4,使模擬污水中總磷質(zhì)量濃度達(dá)到15.96、38.13和68.22 mg/L,試驗(yàn)柱同2.2.2節(jié),4種組合基質(zhì)對(duì)磷的去除率見圖6。
圖6 不同初始磷濃度的4種組合基質(zhì)對(duì)磷的去除率
從圖6可以看出,隨著進(jìn)水磷濃度的提高,4種基質(zhì)對(duì)磷的去除率有所增加,說(shuō)明基質(zhì)對(duì)磷的吸附量和磷的初始濃度成正比關(guān)系,與一些研究的結(jié)果相一致[37-38]。含活性氧化鋁的基質(zhì)對(duì)水中磷的抗沖擊能力較強(qiáng),在高濃度磷的條件下,每種組合基質(zhì)在不同初始磷濃度下對(duì)磷的去除率均在99.7%以上,依然可以保持很高的去除率,這也與添加的磷可溶性好有關(guān)。本研究的目的是為了滿足冬季無(wú)植物除磷時(shí),基質(zhì)除磷的效果要達(dá)到出水標(biāo)準(zhǔn)。標(biāo)準(zhǔn)選用《北京市水污染物綜合排放標(biāo)準(zhǔn)》(DB11/307—2013)中磷的排放標(biāo)準(zhǔn),總磷的A標(biāo)準(zhǔn)排放限值為0.2 mg/L,S4~S7的出水磷達(dá)標(biāo)情況如表4所示。
表4 基質(zhì)的出水總磷濃度達(dá)標(biāo)效果
由表4可知,含活性氧化鋁的組合基質(zhì)的出水總磷都可以達(dá)到《北京市水污染物綜合排放標(biāo)準(zhǔn)》(DB11/307—2013)中A標(biāo)準(zhǔn)排放限值,在高濃度磷的情況下達(dá)到了100%達(dá)標(biāo)率。試驗(yàn)結(jié)果表明,對(duì)人工濕地基質(zhì)進(jìn)行合理配制可以有效地提高人工濕地污水處理效果[39];應(yīng)用活性氧化鋁在人工濕地基質(zhì)處理生活污水中對(duì)磷的去除效果好,尤其是在北方冬季寒冷地區(qū),保證全年總磷達(dá)標(biāo)排放的人工濕地設(shè)計(jì)中,活性氧化鋁作為基質(zhì)材料具有很高的應(yīng)用價(jià)值和前景。
應(yīng)用研究2.2節(jié)中得到的除磷最優(yōu)的組合基質(zhì)(S7),在不同初始磷濃度下進(jìn)行多級(jí)垂直流人工濕地應(yīng)用的中試試驗(yàn),評(píng)價(jià)該組合基質(zhì)對(duì)污水中高濃度磷(20 mg/L)下的出水水質(zhì)達(dá)標(biāo)情況及對(duì)磷的去除效果。其中在圖2的第4級(jí)單元填充基質(zhì)S7,其余第1~3級(jí)單元分別填充大石子(直徑為5 cm)、砂子和62 kg木塊+砂子。
污水采用生活污水,由于原污水的總磷含量較低(3.14 mg/L),人為加入磷使總磷濃度達(dá)到20 mg/L(高濃度含磷廢水)左右2批總磷濃度的污水進(jìn)行試驗(yàn),人工濕地系統(tǒng)出水總磷濃度及磷的去除率如表5所示。
表5 系統(tǒng)進(jìn)出水總磷濃度及其去除率
由表5可知,S7組合基質(zhì)對(duì)磷的去除率均在94%以上,而相關(guān)研究發(fā)現(xiàn)[11]應(yīng)用石灰石作為磷的吸附劑時(shí),其總磷的去除率只有88.0%,出水總磷平均值在0.32 mg/L,波動(dòng)在《北京市水污染物綜合排放標(biāo)準(zhǔn)》(DB11/307—2013)中規(guī)定的總磷B標(biāo)準(zhǔn)排放限值(0.3 mg/L)上下,而應(yīng)用含活性氧化鋁基質(zhì)對(duì)高濃度磷進(jìn)行中試試驗(yàn)后,出水總磷均可以穩(wěn)定達(dá)到A標(biāo)準(zhǔn)。試驗(yàn)結(jié)果表明,在應(yīng)用人工濕地處理農(nóng)村生活污水中,可以應(yīng)用活性氧化鋁作為基質(zhì)組合到其他基質(zhì)中,可以有效地去除污水中的磷,使處理系統(tǒng)出水達(dá)到排放標(biāo)準(zhǔn)。
1)Freundlich模型、Langmuir模型和吸附動(dòng)力學(xué)模型均能很好地描述4種基質(zhì)對(duì)磷的等溫吸附特征,活性氧化鋁材料對(duì)磷的吸附能力最強(qiáng),飽和吸附量G0為4.852 mg/g,平衡吸附量q1和q2分別為1.26和1.21 mg/g。
2)對(duì)磷去除效果好的同粒徑(3~5 mm)活性氧化鋁分別與砂和石灰石形成的組合基質(zhì)(S4~S7)對(duì)磷的去除率在87.36%~93.48%之間,其中基質(zhì)S7即以75%的活性氧化鋁和25%的石灰石構(gòu)建的組合基質(zhì)對(duì)磷的去除率最高,達(dá)到93.48%,且將S4~S7應(yīng)用于高質(zhì)量濃度磷(15.96、38.13和68.22 mg/L)的污水處理后,出水磷的濃度可以達(dá)到《北京市水污染物綜合排放標(biāo)準(zhǔn)》(DB11/307—2013)中總磷A標(biāo)準(zhǔn)排放限值。
3)S7基質(zhì)在垂直流人工濕地的中試應(yīng)用試驗(yàn)中,在高質(zhì)量濃度磷(20 mg/L左右)污水處理中,濕地系統(tǒng)的出水磷的質(zhì)量濃度均小于0.2 mg/L的A標(biāo)準(zhǔn)排放限值,去除率均達(dá)到94%以上?;钚匝趸X作為人工濕地基質(zhì)材料具有很高的應(yīng)用價(jià)值。
[1] O’Neill A, Foy R H , Phillips D H. Phosphorus retention in a constructed wetland system used to treat dairy wastewater[J]. Bioresource Technology, 2011, 102(8): 5024-5031.
[2] Mccomas C, Mckinley D. Reduction of phosphorus and other pollutants from industrial dischargers using pollution prevention[J]. Journal of Cleaner Production, 2008, 16(6): 727-733.
[3] Wu H, Fan J, Zhang J, et al. Decentralized domestic wastewater treatment using intermittently aerated vertical flow constructed wetlands: Impact of influent strengths[J]. Bioresource Technology, 2015, 176: 163-168.
[4] Wu H, Zhang J, Wei R, et al. Nitrogen transformations and balance in constructed wetlands for slightly polluted river water treatment using different macrophytes[J]. Environmental Science and Pollution Research International, 2013, 20(1): 443-451.
[5] Zhang R, Zhou W, Field R, et al. Field test of best management practice pollutantremoval efficiencies in Shenzhen, China[J]. Frontiers of Environmental Science & Engineering, 2009, 3(3): 354-363.
[6] Singh R P, Fu D F, Fu D N, et al. Pollutant removal efficiency of vertical sub-surface upward flow constructed wetlands for highway runoff treatment[J]. Arabian Journal for Science and Engineering, 2014, 39(5): 3571-3578.
[7] 張克強(qiáng),李軍幸,楊莉,等. 復(fù)合厭氧折流板反應(yīng)器-廊道式人工濕地系統(tǒng)運(yùn)行效果[J]. 農(nóng)業(yè)工程學(xué)報(bào),2008,24(6):226-229. Zhang Keqiang, Li Junxing, Yang Li, et al. Operational efficiencies of combined anaerobic baffled reactor and corridor constructed wetland system for domestic wastewater treatment[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2008, 24(6): 226-229. (in Chinese with English abstract)
[8] 吳樹彪,董仁杰,翟旭,等. 組合家庭人工濕地系統(tǒng)處理北方農(nóng)村生活污水[J]. 農(nóng)業(yè)工程學(xué)報(bào),2009,25(11):282-287. Wu Shubiao, Dong Renjie, Zhai Xu. et al. Northern rural domestic sewage treatment by integrated household constructed wetlands[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(11): 282-287. (in Chinese with English abstract)
[9] 王勇,張寶莉,劉灝,等. 人工濕地外加碳源碳溶出及反硝化效果研究[J]. 中國(guó)農(nóng)業(yè)大學(xué)學(xué)報(bào),2017,22(5):137-143. Wang Yong, Zhang Baoli, Liu Hao, et al. Reaserch on the dissolution of extra carbon source and denitrification effect in the constructed wetland[J]. Journal of China Agricultural University, 2017, 22(5): 137-143. (in Chinese with English abstract)
[10] Wu J M, Xu D, He F, et al. Comprehensive evaluation of substrates in vertical-flow constructed wetlands for domestic wastewater treatment[J]. Water Practice and Technology, 2015, 10(3): 625-632.
[11] 王勇,張寶莉,湯燦,等. 寒冷地區(qū)多級(jí)垂直流人工濕地系統(tǒng)設(shè)計(jì)及氮磷去除效率[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(23):218-225. Wang Yong, Zhang Baoli, Tang Can, et al. Multistage vertical-flow constructed wetlands and removal efficiency of nitrogen and phosphorus in cold area[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(23): 218-225. (in Chinese with English abstract)
[12] 施永海,張根玉,劉建忠,等. 半咸水人工濕地凈化越冬養(yǎng)殖循環(huán)水的效果[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(24):179-187. Shi Yonghai, Zhang Genyu, Liu Jianzhong, et al. Effects of purification of recirculating water in over-winter aquaculture in brackish wastewater constructed wetland[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(24): 179-187. (in Chinese with English abstract)
[13] Liang W, Wu Z B, Cheng S P, et al. Roles of substrate microorganisms and urease activities in wastewater purification in a constructed wetland system[J]. Ecological Engineering, 2003, 21: 191-195.
[14] Mateus D M R, Vaz M M N, Pinho H J O. Fragmented limestone wastes as a constructed wetland substrate for phosphorus removal[J]. Ecological Engineering, 2012, 41(4): 65-69.
[15] Babatunde A O, Zhao Y Q, Burke A M, et al. Characterization of aluminum-based water treatment residual for potential phosphorus removal in engineered wetlands[J]. Environmental Pollution, 2009, 157(10): 2830-2836.
[16] White S A, Cousins M M. Floating treatment wetland aided remediation of nitrogen and phosphorus from simulated stormwater runoff[J]. Ecological Engineering, 2013, 61: 207-215.
[17] Vohla C, K?iv M, Bavor H J, et al. Filter materials for phosphorus removal from wastewater in treatment wetlands: A review[J]. Ecological Engineering, 2011, 37(1): 70-89.
[18] Dai H, Hu F. Phosphorus adsorption capacity evaluation for the substrates used in constructed wetland systems: A comparative study[J]. Polish Journal of Environmental Studies, 2017, 26(3): 1003-1010.
[19] 賀凱,盧少勇,金相燦,等. 五種填料對(duì)磷酸鹽的等溫吸附-解吸特性[J]. 農(nóng)業(yè)工程學(xué)報(bào),2008,24(8):232-235. He Kai, Lu Shaoyong, Jin Xiangcan. et al. Adsorption-desorption characteristics of phosphate by five kinds of substrates[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2008, 24(8): 232-235. (in Chinese with English abstract)
[20] Blanco I, Molle P, Sáenz de Miera, et al. Basic oxygen furnace steel slag aggregates for phosphorus treatment: Evaluation of its potential use as a substrate in constructed wetlands[J]. Water Research, 2016, 89: 355-365.
[21] Yang Y, Wang Z M, Liu C, et al. Enhanced P, N and C removal from domestic wastewater using constructed wetland employing construction solid waste (CSW) as main substrate[J]. Water Science & Technology, 2012, 66(5): 1022-1028.
[22] Barca C, Troesch Stéphane, Meyer D, et al. Steel slag filters to upgrade phosphorus removal in constructed wetlands: Two years of field experiments[J]. Environmental Science & Technology, 2013, 47(1): 549-556.
[23] 萬(wàn)正芬,張學(xué)慶,盧少勇. 19種人工濕地填料對(duì)磷吸附解吸效果研究[J]. 水處理技術(shù),2015,41(4):35-39+44. Wan Zhengfen, Zhang Xueqing, Lu Shaoyong. The adsorption and desorption of phosphorus by nineteeen constructed wetland substrates[J]. Technology of Water Treatment, 2015, 41(4): 35-39+44. (in Chinese with English abstract)
[24] Ayaz S ?, Akta? ?, Findik N, et al. Phosphorus removal and effect of adsorbent type in a constructed wetland system[J]. Desalination and Water Treatment, 2012, 37(1/2/3): 152-159.
[25] Wang J L, Zhang Y J, Feng C M, et al. Adsorption capacity for phosphorus comparison among activated alumina, silica sand and anthracite coal[J]. Journal of Water Resource and Protection, 2009, 1(4): 260-264.
[26] 繆佳,鄭重,丁春生,等. 氯化鐵改性活性氧化鋁的制備和表征及其除磷效果研究[J]. 非金屬礦,2012,35(3):61-63. Miao Jia, Zheng zhong, Ding Chunsheng, et al. Behavior of phosphorus adsorption from aqueous solutions on modified activated alumina[J]. Non-Metallic Mines, 2012, 35(3): 61-63. (in Chinese with English abstract)
[27] 楊亮亮,王怡. 海綿鐵和活性氧化鋁濾柱凈化城市景觀水的對(duì)比[J]. 中國(guó)給水排水,2017,33(19):11-15. Yang Liangliang, Wang Yi. Purification Effect of sponge iron filter and activated alumina filter on urban landscape water[J]. China Water&Wastewater, 2017, 33(19): 11-15. (in Chinese with English abstract)
[28] 李顯波,馬力,劉志紅,等. 活性氧化鋁對(duì)廢水中磷酸根離子的吸附特性研究[J]. 非金屬礦,2017,40(4):4-7. Li Xianbo, Ma Li, Liu Zhihong, et al. Adsorption characteristics of phosphate ion from wastewater onto activated alumina[J]. Non-Metallic Mines, 2017, 40(4): 4-7. (in Chinese with English abstract)
[29] 陳巧,李永梅. 五種物料對(duì)磷的吸附—解吸能力研究[J]. 山西農(nóng)業(yè)大學(xué)學(xué)報(bào):自然科學(xué)版,2014,34(1):39-43. Chen Qiao, Li Yongmei. Effect of five materials on the adsorption and desorption of phosphorus[J]. Journal of Shanxi Agricultural University: Natural Science Edition, 2014, 34(1): 39-43. (in Chinese with English abstract)
[30] 孟文娜,謝杰,吳德意,等. 活性氧化鋁對(duì)水中磷的去除與回收研究[J]. 環(huán)境科學(xué),2013,34(1):231-236. Meng Wenna, Xie Jie, Wu Deyi, et al. Study on phosphate removal and recovery by activated alumina[J]. Environmental Science, 2013, 34(1): 231-236. (in Chinese with English abstract)
[31] 常會(huì)慶,徐曉峰. 活性氧化鋁去除不同濃度污水中磷的研究[J]. 水土保持學(xué)報(bào),2013,4(4):181-185. Chang Huiqing, Xu Xiaofeng. Phosphate removal from different wastewater concentration by activate aluminum oxide[J]. Journal of Soil and Water Conservation, 2013, 4(4): 181-185. (in Chinese with English abstract)
[32] 郭佳楠,吳世軍,楊永強(qiáng),等. 活性氧化鋁除磷性能及機(jī)理研究[J]. 水處理技術(shù),2018,44(1):65-70,75. Guo Jianan, Wu Shijun, Yang Yongqiang, et al. Study on phosphorus removal performance by activated alumina and its mechanism[J]. Technology of Water Treatment, 2018, 44(1): 65-70, 75. (in Chinese with English abstract)
[33] 徐麗. 潛流型人工濕地系統(tǒng)污水處理效果及其基質(zhì)堵塞問(wèn)題解決方法的研究[D]. 長(zhǎng)沙:湖南農(nóng)業(yè)大學(xué),2014. Xu Li. Studies on Domestic Sewage Treatment Effect and the Solutions of Substrate Clogging of the Subsurface Flow Constructed Wetland[D]. Changsha: Hunan Agricultural University, 2014. (in Chinese with English abstract)
[34] 朱炫,潘楊,黃勇. 鋼渣和γ-Al2O3對(duì)水溶液中磷的吸附特性比較[J]. 蘇州科技大學(xué)學(xué)報(bào):工程技術(shù)版,2014,27(1):10-15. Zhu Xuan, Pan Yang, Huang Yong. Comparison of adsorption characteristics of phosphorus in aqueous solution between steel slag and γ-Al2O3[J]. Journal of Suzhou University of Science and Technology: Engineering and Technology, 2014, 27(1): 10-15. (in Chinese with English abstract)
[35] 趙慧敏,趙劍強(qiáng). 潛流人工濕地基質(zhì)堵塞的研究進(jìn)展[J]. 安全與環(huán)境學(xué)報(bào),2015,15(1):235-239. Zhao Huimin, Zhao Jianqiang. Research review on clogging in the subsurface flow constructed wetlands[J]. Journal of Safety and Environment, 2015, 15(1): 235-239. (in Chinese with English abstract)
[36] 劉灝. 垂直流人工濕地處理效果及模型模擬研究[D]. 北京:中國(guó)農(nóng)業(yè)大學(xué),2015. Liu Hao. The Research on the Treatment Effects of Vertical Constructed Wetland and the Model Simulation[D]. Beijing: China Agricultural University, 2015. (in Chinese with English abstract)
[37] 劉志寅,尤朝陽(yáng),肖曉強(qiáng),等. 人工濕地填料除磷影響因素研究[J]. 水處理技術(shù),2011,37(10):50-54. Liu Zhiyin, You Chaoyang, Xiao Xiaoqiang, et al. Current reaserch on influencing factors of phosphorus removal by substrates in constructed wetlands[J]. Technology of Water Treatment, 2011, 37(10): 50-54. (in Chinese with English abstract)
[38] Kadlec R H, Knight R L. Treatment Wetlands [M]. Bocton: Lewis Publishers, 1996.
[39] 張毓媛,曹晨亮,任麗君,等. 不同基質(zhì)組合及水力停留時(shí)間下垂直流人工濕地的除污效果[J]. 生態(tài)環(huán)境學(xué)報(bào),2016,25(2):292-299. Zhang Yuyuan, Cao Chenliang, Ren Lijun, et al. Research on pollutants removal effect of different combined substrate under different hydraulic retention time in vertical flow constructed wetlands[J]. Ecology and Environmental Sciences, 2016, 25(2): 292-299. (in Chinese with English abstract)
Proportional optimization of composite substrates with activated alumina in constructed wetlands considering phosphorus removal of sewage
Niu Cong1, Chen Haotian1, Li Xin1, Wang Leyi1, Wang Yong2, Zhang Baoli1※
(1.,,100193,; 2..,102400,)
Eeutrophication caused by excessive phosphorus (P) in sewage has attractedincreased attention andcconstructed wetland (CW) is one of common technologies to recover P from sewage, especially in rural areas. The aim of this study is to determine the capacity of different substrates to adsorb P in CW in cold areas in Northern China. We studied four substrates: activated alumina, steel slag, limestone and zeolite;the P adsorption kinetics and adsorption isotherm of each substrate wasmeasured under the same conditions. We then selected the substratesthat had the best adsorption and designed nine mixtures using these substrates with different particle sizes and volumetric ratios. In the design, we took the effect of substrate porosity on hydraulic residence time into account. Small-scale experiments were conductedby mimicking the single-stage, vertical-flow constructed wetland (VFCW) to studyP removalfrom domestic sewage at low P concentration (1.18-4.39 mg/L) using the nine mixtures.Four mixtures with the best P removal were selected to investigate ifthey could meet the effluent quality standard under high P concentration (15.96, 38.13 and 68.22 mg/L), from which the optimal mixture for P removal was foundand we tested its efficiencywhen P concentration was 20 mg/L ina pilot-scale multistage VFCW system. The adsorption isotherm and kinetic experimentwas conducted ina laboratory at China Agricultural University and the small-scale and pilot-scale experiments were conducted at Fangshan district in Beijing, both using the domestic sewage collected from a factory and keeping the designed hydraulic load at 0.3 m3/(m2?d). The results showed that the P adsorption of all four substrates can be described by the Freundlich and the Langmuir model; the activated alumina had the strongest adsorption capacity, followed by steel slag,limestone and zeolite. Among the nine mixtures used in the vertical-flow test, those containing activated alumina could remove 83.54%-93.48% of P. It was found that amending the mixtures consisting active alumina with particle size in 3-5 mm by sand and limestone could remove 87.36%-93.48% of P, with an average removal rate of 89.63%.Among them, the mixture comprising 75% activated alumina and 25%limestone was most efficient, removing up to 93.48% of P. When P concentration in the sewage increased, the P concentration in the effluent met the Grade A in the Sewage Effluent Discharge Standard (0.2 mg/L) in(DB11/307-2013). The results also showed that the mixing ratio of subtracts could affect P removal rate. Regardless of P concentration in the sewage, the mixture with 75% aluminum and 25% limestone can remove 94%-99% of P in the pilot-scale VFCW test with the P concentration in its effluent being less than 0.2 mg/L, reaching Grade A in the sewage effluent discharge standard.
substrates; phosphorus; sewage; activated alumina; removal rate; vertical-flow constructed wetland
2019-04-26
2019-09-09
國(guó)家國(guó)際科技合作專項(xiàng)項(xiàng)目“人工濕地在我國(guó)北方污水處理中的合作研究”(2011DFG93510)
牛聰,研究方向?yàn)槲廴究刂婆c修復(fù)。Email:1060689348@qq.com.
張寶莉,副教授,主要從事污水處理研究。Email:baoli@cau.edu.cn
10.11975/j.issn.1002-6819.2019.17.029
X52
A
1002-6819(2019)-17-0240-08
牛 聰,陳浩天,李 鑫,王樂宜,王 勇,張寶莉. 基于磷去除效果的人工濕地中含活性氧化鋁復(fù)合基質(zhì)配比優(yōu)化[J].農(nóng)業(yè)工程學(xué)報(bào),2019,35(17):240-247. doi:10.11975/j.issn.1002-6819.2019.17.029 http://www.tcsae.org
Niu Cong, Chen Haotian, Li Xin, Wang Leyi, Wang Yong, Zhang Baoli. Proportional optimization of composite substrates with activated alumina in constructed wetlands considering phosphorus removal of sewage[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(17): 240-247. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.17.029 http://www.tcsae.org