国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

茶樹根際土壤物質(zhì)的自毒潛力及其對(duì)土壤微生物多樣性的影響

2019-10-22 01:18:59王海斌陳曉婷趙虎王裕華張清旭汪鵬葉江華丁力
熱帶作物學(xué)報(bào) 2019年9期
關(guān)鍵詞:樹根極性年限

王海斌 陳曉婷 趙虎 王裕華 張清旭 汪鵬 葉江華 丁力

摘 ?要??為了分析茶樹根際土壤物質(zhì)對(duì)茶樹根際土壤微生物多樣性的影響,本研究以植茶年限0、3、9、25?a的鐵觀音茶樹根際土壤為材料,采用不同極性樹脂吸附茶樹根際土壤物質(zhì)并洗脫,探討不同植茶年限茶樹根際土壤物質(zhì)的自毒潛力及其對(duì)土壤微生物多樣性的影響。結(jié)果表明,不同極性樹脂吸附洗脫液以ADS-7樹脂洗脫液對(duì)受體根長(zhǎng)的抑制作用最強(qiáng)。ADS-7樹脂吸附洗脫液處理重新種植的茶樹后,隨著土壤植茶年限的增加,茶樹根際土壤細(xì)菌數(shù)量呈現(xiàn)下降趨勢(shì)。相關(guān)性分析結(jié)果表明,與土壤年限呈正相關(guān)的細(xì)菌T-RFs片段15個(gè),涉及8個(gè)綱,31種細(xì)菌,按照其功能可分為4類,其中病原菌19種,占比61.29%;負(fù)相關(guān)細(xì)菌T-RFs片段18個(gè),涉及11個(gè)綱,31種細(xì)菌,按照其功能可分為6類,其中與抑制病原菌、碳素循環(huán)、氮素循環(huán)、硫素循環(huán)、土壤質(zhì)地改善相關(guān)的細(xì)菌總占比達(dá)到83.87%。綜上表明,ADS-7樹脂洗脫液處理重新種植的茶樹后,隨著土壤植茶年限的增加,茶樹根際土壤病原菌數(shù)量大幅上升,益生菌與土壤養(yǎng)分循環(huán)相關(guān)的細(xì)菌數(shù)量顯著下降,土壤微生物生態(tài)系統(tǒng)平衡失調(diào)。

關(guān)鍵詞 ?茶樹根際土壤;自毒作用;物質(zhì);微生物多樣性中圖分類號(hào)??S571.1; S154.3??????文獻(xiàn)標(biāo)識(shí)碼??A

The Autotoxicity?ofTea Tree Rhizosphere Soil Chemicals and the Effect of Soil MicrobialDiversity

WANG?Haibin12,?CHEN?Xiaoting12, ZHAO Hu13, WANG Yuhua1, ZHANG Qingxu2, WANG Peng2,YE?Jianghua2,4, DING Li1

1. College of Life Sciences, Longyan University, Longyan, Fujian 364012, China; 2. Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou, Fujian?350002, China; 3.?College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu 730070, China; 4. College of Tea and Food Science, Wuyi University, Wuyishan, Fujian?354300, China

Abstract ?In order to analyze the effect?of tea tree rhizosphere soil chemicals on the soil microbial?diversity, the rhizosphere soils from Tieguanyin tea plantations of 0, 3, 9 and 25 years old were extracted and eluted through different polar resins to discuss the autotoxicity?of resins?eluted?and the effect of soil microbial?diversity. The results showed that the inhibitory effect?of ADS-7 resin eluent?on the root length of receptor?was the strongest. After the replanted tea trees was treated by ADS-7 resin eluent, the number of bacteria in the tea trees rhizosphere?soil?decreased with the increase of planting soil age.?Correlation analysis result showed that 15 T-RFs from bacterial?community were significantly?and positively?correlated?with soil?age, which included 31 species of microbes belonging to?8?classes, respectively. Thirty-one microbes?could?be divided into?4 types according to the function, among them, 19 species of pathogenic bacteria accounted for 61.29%.?In addition, 18 T-RFs were significantly and negatively?correlated?with soil age, which included 31 species of bacteria belonging to?11?classes, respectively.?The thirty-one bacteria?could?be divided into?6 types according to the function, and total percentage of the bacteria to inhibit 83.87%. In brief, after the replanted tea trees was treated by ADS-7 resin eluent, the number of pathogenic bacteria?in tea tree?pathogenic bacteria, carbon cycle, nitrogen cycle, sulphur cycle and the bacteria?to?improve the soil quality accounted for?rhizosphere soil?was great enhanced and the number of probiotics and?soil nutrient cycling?bacteria?decreased significantly?as planting soil age increased, which led to the imbalance of soil microbial ecosystem.

Keywords ?rhizosphere soil of tea tree; autotoxicity; chemical; microbial diversity

DOI10.3969/j.issn.1000-2561.2019.09.025

茶樹[Camellia sinensis(L.)?O.?Kuntze]屬于山茶科、山茶屬灌木或小喬木茶種,為多年生常綠木本植物。鐵觀音茶園的開墾、種植到采摘需要2~3年,正常經(jīng)濟(jì)效益旺期在7年左右。21世紀(jì)初,安溪鐵觀音進(jìn)入飛速發(fā)展時(shí)期。大型茶葉企業(yè)紛紛在安溪縣及周邊縣市大量開墾新茶園,種植鐵觀音茶樹,并按公司化方式統(tǒng)一管理,安溪縣周圍的山地已形成以茶樹為主要植物種群的單一群落結(jié)構(gòu)。為此,茶園“土壤病”形成,茶園逐漸退化,茶樹病蟲害加劇,茶葉單產(chǎn)水平及品質(zhì)也逐年下降。茶園退化一方面是茶樹本身自然衰老,另一方面茶樹連年種植后,土壤環(huán)境發(fā)生變化,不利于茶樹生長(zhǎng)的因素積累,土壤自毒作用加劇。

王海斌等[1]調(diào)查分析了安溪縣9個(gè)鄉(xiāng)鎮(zhèn)茶園土壤的酸化情況發(fā)現(xiàn),調(diào)查的茶園中37.67%的土壤已經(jīng)酸化,10.03%的土壤不適宜種植茶樹,茶樹樹齡與其根際土壤pH呈極顯著負(fù)相關(guān),茶葉的產(chǎn)量、品質(zhì)與茶樹根際土壤pH呈極顯著正相關(guān),該研究認(rèn)為,茶樹根際土壤酸度隨著茶樹樹齡的增加而加劇,茶葉產(chǎn)量降低、品質(zhì)呈現(xiàn)下降趨勢(shì)。Ye等[2-3]研究也發(fā)現(xiàn),隨著茶樹樹齡的增加,茶樹根際土壤酸度加劇,自毒作用潛力增強(qiáng),茶葉產(chǎn)量和品質(zhì)降低,這種現(xiàn)象的形成與土壤中酸類物質(zhì)的積累增加有關(guān)。本課題組前期對(duì)不同樹齡茶樹根際土壤物質(zhì)進(jìn)行HPLC分析發(fā)現(xiàn),隨著茶樹樹齡的增加,茶樹根際土壤中6種酸類物質(zhì)含量不斷上升。此外,進(jìn)一步采用不同極性樹脂吸附土壤物質(zhì)并進(jìn)行生物測(cè)試發(fā)現(xiàn),以ADS-7樹脂吸附后的洗脫液自毒作用能力最強(qiáng),GC-MS分析ADS-7樹脂洗脫液的物質(zhì)成分,發(fā)現(xiàn)13種物質(zhì)隨著茶樹樹齡的增加呈現(xiàn)上升趨勢(shì),其中9種是酸類物質(zhì)[4-5]??梢?,退化茶園“土壤病”的形成與茶樹根際土壤物質(zhì)種類與數(shù)量密切相關(guān)。

土壤是一個(gè)復(fù)雜生態(tài)系統(tǒng),存在著豐富的微生物種類,植物釋放和積累的物質(zhì)通過土壤載體進(jìn)行傳播,進(jìn)而影響土壤中的微生物區(qū)系與種類,土壤生態(tài)系統(tǒng)朝著專一化的趨勢(shì)發(fā)展[6-8]。綜上可見,隨著茶樹樹齡的增加,土壤自毒潛力加劇,茶樹根際土壤微生物發(fā)生顯著變化[9-10];而關(guān)于這種變化是否與土壤物質(zhì)有關(guān),土壤物質(zhì)對(duì)微生物多樣性變化是否會(huì)產(chǎn)生影響的研究還鮮有報(bào)道。據(jù)此,本研究以不同樹齡鐵觀音茶樹根際土壤為材料,采用不同極性樹脂進(jìn)行吸附并洗脫,土壤洗脫液一方面用于自毒潛力評(píng)價(jià),一方面用于處理新種植的茶樹并測(cè)定茶樹根際土壤微生物種類、群落結(jié)構(gòu)及其功能的變化,以期為茶園土壤退化的修復(fù)提供一定的理論依據(jù)。

1 ?材料與方法

1.1材料

以福建省泉州市安溪縣龍涓鄉(xiāng)鐵觀音茶園為研究地點(diǎn)(東經(jīng)117°93′、北緯24°97′),收集已種植0、3、9、25年的鐵觀音茶樹根際土壤,用于土壤物質(zhì)提取及不同極性樹脂的吸附與洗脫后的生物測(cè)試。土壤取樣方法:隨機(jī)選擇3、9、25?a樹齡的茶樹各100株,去除土壤表層雜質(zhì),連根挖出茶樹,收集茶樹根際土壤;以未種植過茶樹的土壤為對(duì)照(0?a),首先去除地表植被和雜質(zhì),收集15~25?cm范圍的土壤,多點(diǎn)隨機(jī)收集;各樣品的取樣量均為約15 kg。取樣點(diǎn)茶園土壤的基本理化指標(biāo):有機(jī)質(zhì)、全氮、全磷、全鉀、速效氮、速效磷、速效鉀含量,分別為8.34 g/kg、2.17 g/kg、1.05 g/kg、1.46 g/kg,25.3 mg/kg、56.7 mg/kg、264.6 mg/kg。

1.2方法

1.2.1 ?不同極性樹脂洗脫液對(duì)受體萵苣(Lactuca saliva)根長(zhǎng)的抑制率分析??土壤樣品置于陰涼處自然風(fēng)干,研磨過40目篩,稱取0、3、9、25?a茶樹根際土壤各5 kg,加入20 L蒸餾水,360 W超聲提取1 h(每隔10?min均勻攪拌1次),120?r/min振蕩1 h,重復(fù)5次,過濾,提取液于45?℃下旋轉(zhuǎn)蒸發(fā)濃縮至5 L;此時(shí),每毫升浸提液約含有1 g土壤物質(zhì)[11]。

先將不同極性的樹脂ADS-7、ADS-21、ADS-F8、ADS-17、ADS-8(天津南開合成科技有限公司)采用純乙醇浸泡活化24 h,蒸餾水浸泡清洗至沒有乙醇。取收集的不同樣品提取濃縮液各5 L,分成5組,每組1 L,采用5種不同極性樹脂分別進(jìn)行靜態(tài)吸附,方法為:每升提取濃縮液加入200 g樹脂,置于搖床上120 r/min振蕩吸附24 h,棄上清液,樹脂中加入600 mL甲醇,置于搖床上120 r/min洗脫12 h,收集甲醇洗脫液過濾并濃縮至200 mL,用于不同極性樹脂洗脫液對(duì)受體萵苣根長(zhǎng)的抑制率測(cè)定,具體參照Wang等[12]的方法進(jìn)行測(cè)定,根長(zhǎng)抑制率的計(jì)算公式為,相對(duì)抑制率=(1-處理值/對(duì)照值)×100%。

1.2.2 ?外源添加不同極性樹脂洗脫液處理新種植的茶樹??取不同極性樹脂吸附后的洗脫液各50?mL,于45?℃下旋轉(zhuǎn)蒸發(fā)濃縮至10 mL,加無菌蒸餾水定容至2 L,-20?℃保存?zhèn)溆谩?/p>

取未種植過茶樹的土壤風(fēng)干研磨并過40目篩;將土壤裝入盆中,每盆10 kg,選擇1年生、長(zhǎng)勢(shì)相對(duì)一致的鐵觀音茶苗并移栽到盆中,每盆6株,移栽后,恢復(fù)生長(zhǎng)30 d。適當(dāng)攪動(dòng)、松動(dòng)種植土壤,將配置好的樹脂洗脫液2 L緩慢倒入盆中,盡量使其在土壤中分布均勻,繼續(xù)常規(guī)種植茶樹60 d,收集茶樹根際土壤,用于土壤微生物的T-RFLP分析,每種處理種植3盆,即3個(gè)重復(fù)。種植土壤的基本理化指標(biāo)為:有機(jī)質(zhì)、全氮、全磷、全鉀、速效氮、速效磷、速效鉀含量,分別為9.02 g/kg、1.03?g/kg、0.56?g/kg、1.85?g/kg、89.46?mg/kg、15.28?mg/kg、179.62?mg/kg。

1.2.3 ?土壤微生物的T-RFLP分析??采用CTAB-蛋白酶K-液氮凍融法直接抽提不同樣品的土壤微生物總DNA,用于微生物的16S?rDNA的擴(kuò)增和酶切[13]。16S?rDNA擴(kuò)增的PCR反應(yīng)程序?yàn)椋?4?℃?5?min;94?℃?45?s,52?℃?45?s,72?℃?1.5?min,30個(gè)循環(huán)后,72?℃?10?min。其中,擴(kuò)增引物采用帶有FAM熒光標(biāo)記的細(xì)菌通用引物,分別為8F-FAM(5′-AGAGTTTGATCCTGGCTCA G-3′)和926R(5′-CCGTCAATTCCTTTRAGTT T-3′),PCR反應(yīng)體系的總體積為25?μL,反應(yīng)體系中各成分含量為:2.5?μL?10×PCR Buffer、正反向引物(10?μmol/L)各0.8?μL、2.0?μL?dNTP(25?μmol/L)、0.2?μL?BSA、17.05?μL?ddH2O、0.15?μL?rTaq、1.5?μL?DNA模板。PCR結(jié)束后,電泳檢測(cè),UNIQ-10柱式DNA膠回收試劑盒回收PCR產(chǎn)物中1000?bp左右的片段,用于酶切。

酶切采用HaeIII和MspI 2種內(nèi)切酶進(jìn)行消化,其中HaeIII酶切體系為:HaeIII?1?μL、H×Buffer?2?μL、ddH2O?7?μL、PCR產(chǎn)物10?μL;MspI酶切體系為:MspI?1?μL、T-Buffer?2?μL、BSA?2?μL、ddH2O?5?μL、PCR產(chǎn)物10?μL。將配置好的2種酶切體系分別置于37?℃水浴酶切5?h,酶切后的產(chǎn)物采用ABI自動(dòng)測(cè)序分析儀(Model 3130 Applied Biosystems)測(cè)定。

1.3數(shù)據(jù)處理

土壤微生物測(cè)序結(jié)果分析采用GeneMarker V1.2軟件,分析參數(shù)參照SoftGenetics Application Note July, 2006。酶切獲得的T-RFs片段分析采用Ribosomal Database Project II數(shù)據(jù)庫比對(duì)法,獲取T-RFs雙酶切片段所對(duì)應(yīng)的微生物物種。T-RFs片段豐度計(jì)算公式為:T-RFs片段豐度=ni/N×100,式中ni代表可分辨的T-RF的峰面積,N代表所有T-RF峰面積的總和[14]。其余常規(guī)的數(shù)據(jù)分析、方差分析、顯著性分析及變化分析等采用Excel軟件和DPS數(shù)據(jù)處理系統(tǒng)進(jìn)行處理。

2??結(jié)果與分析

2.1不同極性樹脂洗脫液對(duì)受體萵苣根長(zhǎng)的抑制率分析

不同極性樹脂洗脫液對(duì)受體萵苣根長(zhǎng)影響的分析結(jié)果表明(表1),不同極性樹脂洗脫液對(duì)受體根長(zhǎng)均存在一定的抑制作用,以25?a茶樹根際土壤的樹脂吸附洗脫液抑制作用最強(qiáng),表現(xiàn)為ADS-8、ADS-17、ADS-F8、ADS-21、ADS-7樹脂洗脫液對(duì)萵苣根長(zhǎng)的抑制率分別為15.76%、19.68%、20.57%、29.07%、43.76%。其中以25?a茶樹根際土壤經(jīng)ADS-7樹脂吸附的洗脫液抑制作用最強(qiáng)。

2.2 ?ADS-7樹脂洗脫液處理后茶樹根際土壤細(xì)菌多樣性分析

由圖1可見,0、3、9、25?a茶樹根際土壤經(jīng)ADS-7樹脂洗脫液處理后,根際土壤細(xì)菌HaeIII和MspI酶切產(chǎn)物的T-RFs片段,隨著土壤年限的增加呈現(xiàn)下降趨勢(shì),表現(xiàn)為HaeIII酶切產(chǎn)物的T-RFs片段數(shù)量從106個(gè)下降至58個(gè),而MspI酶切產(chǎn)物的T-RFs片段數(shù)量則從124個(gè)下降至68個(gè)??梢姡煌N植年限土壤的ADS-7樹脂吸附洗脫液處理后,茶樹根際土壤細(xì)菌多樣性發(fā)生顯著的變化。

2.3 ?ADS-7樹脂洗脫液處理后茶樹根際土壤正、負(fù)相關(guān)細(xì)菌分析

以不同茶樹根際土壤細(xì)菌HaeIII酶切后的T-RFs片段豐度進(jìn)行相關(guān)性分析發(fā)現(xiàn)(圖2),不同年限茶樹根際土壤的ADS-7樹脂吸附洗脫液處理后,與土壤種植年限呈顯著或極顯著正相關(guān)的細(xì)菌T-RFs片段共15個(gè),呈顯著或極顯著負(fù)相關(guān)的有18個(gè)。

進(jìn)一步將T-RFs片段與Ribosomal Database Project II數(shù)據(jù)庫進(jìn)行比對(duì),結(jié)果表明(圖3),正相關(guān)細(xì)菌T-RFs片段15個(gè),涉及31種細(xì)菌,由8個(gè)綱組成,占比分別為β-變形菌綱12.90%、γ-變形菌綱16.13%、δ-變形菌綱6.45%、芽孢桿菌綱38.71%、放線菌亞綱9.68%、鞘脂桿菌綱9.68%、梭菌綱3.23%、螺旋體綱3.23%;負(fù)相關(guān)細(xì)菌T-RFs片段18個(gè),涉及31種細(xì)菌,由11個(gè)綱組成,占比分別為α-變形菌綱25.81%、β-變形菌綱6.45%、γ-變形菌綱12.90%、放線菌亞綱19.35%、梭菌綱12.90%、芽孢桿菌綱6.45%、螺旋體綱3.23%、柔膜菌綱3.23%、鞘脂桿菌綱3.23%、紅色桿菌亞綱3.23%、梭桿菌綱3.23%??梢姡煌N植年限土壤的ADS-7樹脂吸附洗脫液處理后,茶樹根際土壤細(xì)菌種類發(fā)生顯著變化。

2.4 ?ADS-7樹脂洗脫液處理后茶樹根際土壤正相關(guān)細(xì)菌功能分析

由表2可見,0、3、9、25年茶樹根際土壤經(jīng)ADS-7樹脂洗脫液處理后,茶樹根際土壤正相關(guān)細(xì)菌有31種,按照其功能可分為4大類:病原菌19種,占比61.29%;抑制病原菌相關(guān)細(xì)菌3種,占比9.68%;碳素循環(huán)相關(guān)細(xì)菌4種,占比12.90%;改善土壤質(zhì)地相關(guān)細(xì)菌5種,占比16.13%??梢?,不同種植年限土壤的ADS-7樹脂吸附洗脫液處理后,茶樹根際土壤不同功能類別的細(xì)菌數(shù)量發(fā)生顯著變化,特別是病原菌數(shù)量顯著增加,表現(xiàn)為正相關(guān)細(xì)菌中病原菌占比最大。

2.5 ?ADS-7樹脂洗脫液處理后茶樹根際土壤負(fù)相關(guān)細(xì)菌功能分析

由表3可見,0、3、9、25 a茶樹根際土壤經(jīng)ADS-7樹脂洗脫液處理后,茶樹根際土壤負(fù)相關(guān)細(xì)菌31種,按照其功能可分為6大類:病原菌5種,占比16.13%;抑制病原菌相關(guān)細(xì)菌4種,占比12.90%;碳素循環(huán)相關(guān)細(xì)菌10種,占比32.26%;氮素循環(huán)相關(guān)細(xì)菌8種,占比25.81%;改善土壤質(zhì)地相關(guān)細(xì)菌3種,占比9.68%;硫素循環(huán)細(xì)菌1種,占比3.23%。可見,年限土壤經(jīng)ADS-7樹脂吸附洗脫液處理后,茶樹根際土壤不同功能類別的細(xì)菌數(shù)量發(fā)生顯著變化,特別是與抑制病原菌、碳素循環(huán)、氮素循環(huán)、土壤質(zhì)地改善、硫素循環(huán)相關(guān)的細(xì)菌數(shù)量顯著下降,總占比達(dá)到83.87%。

3??討論

植物土壤生態(tài)系統(tǒng),主要涉及植物、土壤、微生物三者,三者之間相互協(xié)調(diào),影響著植物的生長(zhǎng),土壤的質(zhì)量,微生物的生存[63]。茶樹長(zhǎng)期種植后,根系分泌物在土壤中大量積累,使土壤微生物在選擇性壓力影響下發(fā)生了顯著的變化,這種變化可能朝著對(duì)茶樹生長(zhǎng)有利或有弊的方向發(fā)展。本研究結(jié)果表明,隨著茶樹樹齡的增加,茶樹根際土壤不同極性樹脂吸附洗脫液對(duì)受體萵苣根長(zhǎng)存在一定的抑制作用,以ADS-7樹脂洗脫液的抑制作用最強(qiáng)。其次,不同種植年限土壤的ADS-7樹脂吸附洗脫液處理重新種植的茶樹后發(fā)現(xiàn),隨著土壤種植年限的增加,茶樹根際土壤細(xì)菌數(shù)量呈現(xiàn)下降趨勢(shì)。眾多學(xué)者在研究不同作物——太子參、山銀花、茶樹等連續(xù)種植后,土壤微生物數(shù)量變化時(shí)也發(fā)現(xiàn)類似的趨勢(shì)[64-66]??梢?,ADS-7樹脂洗脫液處理對(duì)茶樹根際土壤微生物數(shù)量產(chǎn)生影響,這種影響與不同年限茶樹原位種植現(xiàn)象類似。

作物長(zhǎng)期種植,土壤物質(zhì)積累后會(huì)對(duì)微生物數(shù)量與種類產(chǎn)生影響。Wang等[12]研究發(fā)現(xiàn),百香果連續(xù)種植后,產(chǎn)量和品質(zhì)呈現(xiàn)下降趨勢(shì);郝慧榮等[67]研究發(fā)現(xiàn),牛膝連年種植后,反而有利于促進(jìn)其生長(zhǎng)和品質(zhì)提高??梢姡钊敕治鲎魑镞B續(xù)種植后土壤微生物種類及功能變化對(duì)于明晰“土壤病”的形成具有重要的意義。本研究結(jié)果表明,不同種植年限土壤的ADS-7樹脂吸附洗脫液處理重新種植的茶樹后,隨著土壤年限的增加,與其正相關(guān)細(xì)菌T-RFs片段15個(gè),涉及8個(gè)綱、31種細(xì)菌,其中病原菌19種,占比61.29%??梢?,ADS-7樹脂吸附洗脫液處理后,茶樹根際土壤的病原菌數(shù)量增多,進(jìn)而影響茶樹的生長(zhǎng)。此外,進(jìn)一步分析發(fā)現(xiàn),隨著土壤年限的增加,與其負(fù)相關(guān)細(xì)菌T-RFs片段18個(gè),涉及11個(gè)綱、31種細(xì)菌,其中與抑制病原菌、碳素循環(huán)、氮素循環(huán)、土壤質(zhì)地改善、硫素循環(huán)相關(guān)的細(xì)菌數(shù)量顯著下降,總占比達(dá)到83.87%??梢?,ADS-7樹脂吸附洗脫液處理后,茶樹根際土壤的益生菌與土壤養(yǎng)分循環(huán)相關(guān)的細(xì)菌數(shù)量下降,茶樹根際土壤質(zhì)地變劣,養(yǎng)分循環(huán)受阻。

土壤微生物是土壤生態(tài)系統(tǒng)的重要組成部分,其數(shù)量及多樣性水平高低對(duì)于生態(tài)系統(tǒng)穩(wěn)定具有重要的作用,豐富的土壤微生物有利于降低“土壤病”的發(fā)生機(jī)率,反之則提高[68-69]。可見,不同年限土壤的ADS-7樹脂吸附洗脫液處理重新種植的茶樹后,茶樹根際土壤細(xì)菌多樣性及群落結(jié)構(gòu)失去平衡,進(jìn)而可能導(dǎo)致茶樹生長(zhǎng)受阻。

綜上,本研究探討了茶樹根際土壤物質(zhì)的自毒潛力及其對(duì)土壤微生物多樣性的影響,結(jié)果表明,ADS-7樹脂吸附洗脫液對(duì)受體萵苣根長(zhǎng)的抑制作用最強(qiáng),ADS-7樹脂洗脫液處理重新種植的茶樹后,隨著土壤年限的增加,茶樹根際土壤病原菌數(shù)量大幅上升,益生菌與土壤養(yǎng)分循環(huán)相關(guān)的細(xì)菌數(shù)量顯著下降,土壤微生物生態(tài)系統(tǒng)平衡失調(diào),“土壤病”形成,進(jìn)而可能導(dǎo)致茶樹生長(zhǎng)和品質(zhì)受阻。然而,對(duì)于茶樹—土壤—微生物,三者之間是如何實(shí)現(xiàn)相互調(diào)控與影響,還需進(jìn)一步深入研究。

參考文獻(xiàn)

  • 王海斌,?陳曉婷,?丁??力,?等. 福建省安溪縣茶園土壤酸化對(duì)茶樹產(chǎn)量及品質(zhì)的影響[J].?應(yīng)用與環(huán)境生物學(xué)報(bào),?2018,?24(6):?1398-1403.
  • Ye J H, Wang H B, Kong X H, et al. Soil sickness problem in tea plantations in Anxi county, Fujian province, China[J]. Allelopathy Journal, 2016,?39(1):?19-28.
  • Ye J H, Wang H B, Yang X Y, et al. Autotoxicity of the soil of consecutively cultured tea plantations on tea (Camellia sinensis) seedlings[J]. Acta Physiologia Plantarum, 2016,?38(8):?195.
  • Jia X L, Ye J H, Zhang Q, et al. Soil toxicity and microbial community structure of Wuyi rock tea plantation[J]. Allelopathy Journal, 2017,?41(1):?113-126.
  • Jia X L, Wang H B, Ye J H, et al. Identification of Allelochemicals responsible for soil degradation in continuously cropped Tea plantations[J].?Allelopathy Journal,?2018,?45(1):?1-12.
  • Travis S?W, Harsh P?B, Erich G, et al. Root Exudation and rhizosphere biology[J]. Plant Physiology, 2003,?132(1):?44-51.
  • Vivanco J M, Bais H P, Stermitz F R, et al. Biogeographical variation in community response to root allelochemistry: novel weapons and exotic invasion[J]. Ecology Letters,?2004,?7(4):?285-292.
  • Marschner P, Timonen S.?Interactions between plant species and mycorrhizal colonization on the bacterial community composition in the rhizosphere[J]. Applied Soil Ecology, 2005, 28(1): 23-36.
  • 王海斌,?陳曉婷,?丁??力,?等. 連作茶樹根際土壤自毒潛力、酶活性及微生物群落功能多樣性分析[J].?熱帶作物學(xué)報(bào), 2018,?39(5):?852-857.
  • 王海斌,?陳曉婷,?丁??力,?等.?不同樹齡茶樹根際土壤細(xì)菌多樣性的T-RFLP分析[J].?應(yīng)用與環(huán)境生物學(xué)報(bào),?2018,?24(4):?775-782.
  • Huang L F, Song L X, Xia X J, et al. Plant-soil feedbacks and soil sickness: From mechanisms to application in agriculture[J]. Journal of Chemical Ecology, 2013,?39(S1):?232-242.
  • Wang H?B, Chen X?T, Ding L, et al. Replant problem and soil toxicity of passion fruit (Passiflora edulis?Sims) in China[J]. Allelopathy Journal, 2018,?44(1):?1-11.
  • Wang H?B, Zhang Z?X, Li H, et al. Characterization of metaproteomics in crop rhizospheric soil[J]. Journal?Proteome Research, 2011,?10(3):?932-940.
  • Horswell J, Cordiner S?J, Maas E?W, et al. Forensic comparison of soils by bacterial community DNA profiling[J]. Journal of Forensic Sciences, 2002,?47(2):?350-353.
  • Thanigaivel S, Vijayakumar S, Gopinath S, et al. In vivo?and in vitro?antimicrobial activity of?Azadirachta indica?(Lin) against?Citrobacter freundii?isolated from naturally infected Tilapia (Oreochromis mossambicus)[J]. Aquaculture, 2015,?437:?252-255.
  • Reyes F, Singh N, Khurram N?A, et al. Strongyloides hyperinfection syndrome causing fatal meningitis and septicemia by Citrobacter koseri[J]. IDCases, 2017,?10:?102-104.
  • Nunney L, Schuenzel E?L, Scally M, et al. Large-scale intersubspecific recombination in the plant-pathogenic bacterium?Xylella fastidiosa?is associated with the host shift to mulberry[J]. Applied and Environmental Microbiology, 2014,?80(10):?3025-3033.
  • Nazareno E?S, Kersey C?M, Dumenyo C?K. Characterization of the incompatible interaction between?Erwinia tracheiphila?and non-host tobacco (Nicotiana tabacum)[J]. Physiology and?Molecular?Plant Pathology, 2016,?96:?85-93.
  • Bhullar K, Zarepour M, Yu H?B, et al. The serine protease autotransporter pic modulates?Citrobacter rodentium?pathog ene sis and its innate recognition by the host[J]. Infection?and Immunity,?2015,?83(7):?2636-2650.
  • Vincenzo?S, Chiara?C, Azaira?B, et al. Epidemiology, pathogenicity and emerging resistances in Staphylococcus pasteuri: From mammals and lampreys, to man[J]. Recent Patents on Anti-Infective Drug Discovery,?2009,?4(2):?123-129.
  • Prosekov A,?Milentyeva I, Sukhikh S, et al.?Identification of probiotic strains isolated from human gastrointestinal tract and investigation of their antagonistic, antioxidant and antiproliferative properties[J].?Biology?Medicine, 2015,?7(5):?1-5.
  • Fotoglidis A,?Pagourelias E,?Kyriakou P,?et al.?Endocarditis caused by unusual streptococcus species (Streptococcus pluranimalium)[J]. Hippokratia,?2015,?19(2):?182-185.
  • Li?J?Q, Tan?B?P, Mai?K?S, et al. Comparative study between probiotic bacterium?Arthrobacter?XE-7 and chloramphenicol on protection of?Penaeus chinensis?post-larvae from pathogenic vibrios[J]. Aquaculture,?2006,?253(1-4):?140-147.
  • Jansson E, Lindberg L, S?ker E, et al. Diagnosis of bacterial kidney disease by detection of?Renibacterium salmoninarumby real-time PCR[J]. Journal of?Fish Diseases,?2008,?31(10):?755-763.
  • 李璐瑤,?劉夢(mèng)佳,?滕明明,?等. 霍氏腸桿菌生物學(xué)特性的研究[J]. 畜牧獸醫(yī)雜志, 2017,?36(4):?1-2, 6.
  • Mack D, Becker P, Chatterjee I, et al. Mechanisms of biofilm formation in?Staphylococcus epidermidis?and?Staphylococcus aureus: functional molecules, regulatory circuits, and adaptive responses[J]. International Journal of Medical Microbiology, 2004,?294(2-3):?203-212.
  • 徐??佳. 奶牛乳腺炎葡萄球菌種類、毒力基因及抗性基因與耐藥性的調(diào)查分析[D]. 揚(yáng)州: 揚(yáng)州大學(xué), 2016.
  • Kumar V, Kumar M, Sharma S, et al. Probiotics in agroecosystem[M].?Singapore: Springer,?2017: 451-467.
  • Bark S?W, Kim?K?B?W?R, Kim M?J, et al. Optimization and characterization of conditions for cellulose-degrading crude enzymes produced by Cellulophaga lytica?PKA 1005[J]. Korean Journal of Microbiology and Biotechnology 42(1): 18-24.
  • Xia F, Zou B, Shen C, et al. Complete genome sequence of?Methylophilus?sp. TWE2 isolated from methane oxidation enrichment culture of tap-water[J]. Journal of Biotechnology, 2015,?211:?121-122.
  • Pablos T?E, Sigala J?C, Borgne S?L, et al. Aerobic expression of?Vitreoscillahemoglobin efficiently reduces overflow metabolism in?Escherichia coli[J].?Journal of Biotechnology,?2014,?9(6):?791-799.
  • Noparat P, Maneerat S, Saimmai A. Application of biosurfactant from?Sphingobacterium spiritivorum?AS43 in the biodegradation of used lubricating oil[J]. Applied Biochemistry and Biotechnology, 2014,?172(8):?3949-3963.
  • 劉志丹,?周??良,?杜竹瑋,?等. 異化金屬還原菌的研究進(jìn)展[J]. 微生物學(xué)通報(bào), 2005,?32(5):?156-159.
  • Salam L, Obayori O, Campbell C, et al.?Pyrene biodegradation potentials of an actinomycete, microbacterium esteraromaticum isolated from tropical hydrocarbon-contaminated soil[J]. Journal of Microbiology, Biotechnology and Food Sciences, 2017,?6(4): 995-1000.
  • Kurniyati K, Kelly J?F, Vinogradov E, et al. A novel glycan modifies the flagellar filament proteins of the oral bacterium?Treponema denticola[J]. Molecular Microbiology,?2017,?103(1):?67-85.
  • Raffel S?J, Battisti J?M, Fischer R?J, et al. Inactivation of genes for antigenic variation in the relapsing fever spirochete?Borrelia hermsii?reduces infectivity in mice and transmission by ticks[J]. PLoS Pathogens, 2014,?10(4):?e1004056.
  • Yang P, Hung G?C, Lei H?Y, et al. Genome sequencing and annotation of?Afipia septicemium?strain OHSU_II[J].?Geno m ics Data, 2014,?2:?123-126.
  • Han Y?W. Fusobacterium nucleatum: a commensal-turned pathogen[J]. Current Opinion in Microbiology,?2015,?23:?141-147.
  • Xiu Y?J, Wu T, Meng X?H, et al. Identification and isolation of a spiroplasma pathogen from diseased oriental river prawn,?Macrobrachium nipponense, in China: A new freshwater crustacean host[J]. Aquaculture, 2015,?437:?270-274.
  • Messmer V?D, Bioemberg G?V, Ritter C, et al. Diagnostic molecular mycobacteriology in regions with low tuberculosis endemicity: Combining real-time PCR assays for detection of multiple mycobacterial pathogens with line probe assays for identification of resistance mutations[J]. EBioMedicine, 2016,?9:?228-237.
  • Lusby P?E, Coombes A?L, Wilkinson J?M. Bactericidal activity of different honeys against pathogenic bacteria[J]. Archives of Medical Research, 2005,?36(5):?464-467.
  • 魯紅學(xué),?周??燚. 類芽孢桿菌在植物病害防治和環(huán)境治理中的應(yīng)用研究進(jìn)展[J]. 安徽農(nóng)業(yè)科學(xué), 2008,?36(30):?13244-13247.
  • Floate K?D, Poku G?K?K, Coghlin P?C. Overview and relevance of?Wolbachia?bacteria in biocontrol research[J]. Biocontrol Science and Technology, 2006,?16(8):?767-788.
  • Khasnobis S, Vincent E?E, Chatterjee D. Emerfing therapeutic targets in tuberculosis: post-genomic era[J]. Expert Opinion on Therapeutic Targets, 2002,?6(1):?21-40.
  • Tourova?T?P,??Spiridonova?E?M, Berg??I?A,??et al.?Phylogeny and evolution?of the family?Ectothiorhodospiraceae?based on comparison of 16S rRNA,?cbbL?and?nifH?gene sequences[J]. International Journal of Systematic and Evolutionary Microbiology, 2007,?57:?2387-2398.
  • Hervé V, Junier T, Bindschedler S, et al. Diversity and ecology of oxalotrophic bacteria[J]. World Journal of Microbiology & Biotechnology, 2016,?32:?28-35.
  • Kurata A, Matsumoto M, Kobayashi T, et al. Hyaluronate lyase of a deep-sea?bacillus niacini[J]. Marine Biotechnology, 2015,?17(3):?277-284.
  • Lin S, Huangpu J?J, Chen T, et al. Analysis of soil microbial community structure and enzyme activities associated with negative effects of pseudostellaria heterophylla?consecutive monoculture on yield[J]. Pakistan Journal of Botany, 2015,?47(2):?761-769.
  • Rawat S, Johri B?N. Role of Thermophilic Microflora in Composting[M]//Satyanarayana T, Littlechild J, Kawarabayasi Y. Thermophilic Microbes in Environmental and Industrial Biotechnology. Dordrecht: Springer, 2013: 137-169.
  • Nguyen N?L, Yu W?J, Yang H?Y, et al. A novel methanotroph in the genus?Methylomonas?that contains a distinct clade of soluble methane monooxygenase[J]. Journal of Microbiology,?2017,?55(10):?775-782.
  • Hiraishi A, Okamura K. Proposal of?Rhodoplanes tepidamans?sp. nov. to accommodate the thermotolerant phototrophic bacterium previously referred to as Rhodoplanes (Rhodopseudomonas)?cryptolactis[J]. International Journal of Systematic and Evolutionary Microbiology, 2017,?67:?1540-1545.
  • Mellbye B?L, Giguere A?T, Bottomley P?J, et al. Quorum quenching of?Nitrobacter winogradskyi?suggests that quorum sensing regulates fluxes of nitrogen oxide(s) during nitrification[J]. mBio, 2016,?7(5):?e01753-e01756.
  • Subramanian P, Kim K, Krishnamoorthy R, et al. Endophytic bacteria improve nodule function and plant nitrogen in soybean on co-inoculation with?Bradyrhizobium japonicum?MN110[J]. Plant Growth Regulation, 2015,?76(3):?327-332.
  • Wang J, Bao J?T, Su J?Q, et al. Impact of inorganic nitrogen additions on microbes in biological soil crusts[J]. Soil Biology & Biochemistry, 2015,?88:?303-313.
  • Depraect O?G, Barajas C?G, Roblero J?J, et al. Characterization of a marine microbial community used for enhanced sulfate reduction and copper precipitation in a two-step process[J]. Applied Biochemistry and Biotechnology, 2017,?182(2):?452-467.
  • Zamani M, diCenzo G?C, Milunovic B, et al. A putative 3-hydroxyisobutyryl-CoA hydrolase is required for efficient symbiotic nitrogen fixation in?Sinorhizobium meliloti?and?Sinorhizobium fredii?NGR234[J]. Environmental Microbio logy, 2017,?19(1):?218-236.
  • Ali S?S, Abomohra A?E, Sun J?Z. Effective bio-pretreatment of sawdust waste with a novel microbial consortium for enhanced biomethanation[J]. Bioresource Technology, 2017,?238:?425-432.
  • Lennon J?T. Diversity and metabolism of marine bacteria cultivated on dissolved DNA[J]. Applied and Environmental Microbiology, 2007,?73(9):?2799-2805.
  • Arora P?K, Srivastava A, Singh V?P. Bacterial degradation of nitrophenols and their derivatives[J]. Journal of Hazardous Materials, 2014,?266:?42-59.
  • Hemmann J?L, Saurel O, Ochsner A?M, et al. The one-carbon carrier methylofuran from?Methylobacterium extorquens?AM1 contains a large number of α- and γ-linked glutamic acid residues[J]. Journal of?Biological?Chemistry, 2016,?291(17):?9042-9051.
  • Orsi W?D, Barker J?rgensen B, Biddle J?F. Transcriptional analysis of sulfate reducing and chemolithoautotrophic sulfur oxidizing bacteria in the deep subseafloor[J]. Environmental?Microbiology?Reports,?2016,?8(4):?452-460.
  • Kim J?N, Henriksen E?D?C, Cann I?K, et al. Nitrogen utilization and metabolism in?Ruminococcus albus?8[J]. Applied and Environmental Microbiology, 2014,?80(10):?3095-3102.
  • Marschner P. Plant-microbe interactions in the rhizosphere and nutrient cycling [C]//Marschner P, Rengel Z. Nutrient cycling in terrestrial ecosystems. Beilin: Springer, 2007: 159-182.
  • 王海斌,?陳曉婷,?丁??力,?等. 土壤酸度對(duì)茶樹根際土壤微生物群落多樣性影響[J].?熱帶作物學(xué)報(bào),?2018,?39(3):?448-454.
  • 吳林坤,?吳紅淼,?朱??銓,?等. 不同改良措施對(duì)太子參根際土壤酚酸含量及特異菌群的影響[J].?應(yīng)用生態(tài)學(xué)報(bào), 2016,?27(11): 3623-3630.
  • 張珍明,?樂??樂,?林昌虎,?等. 不同種植年限山銀花根區(qū)土壤生物特性[J]. 水土保持通報(bào), 2015,?35(5):?71-76.
  • 郝慧榮,?李振方,?熊??君,?等. 連作懷牛膝根際土壤微生物區(qū)系及酶活性的變化研究[J]. 中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào), 2008,?16(2): 307-311.
  • Girvan M?S, Campbell C?D, Killham K, et al. Bacterial diversity promotes community stability and functional resilience after perturbation[J]. Environmental Microbiology, 2005,?7(3):?301-313.
  • Latz E, Eisenhauer N, Rall B?C, et al. Plant diversity improves protection against soil-borne pathogens by fostering antagonistic bacterial communities[J]. Journal of Ecology, 2012,?100(3):?597-604.

猜你喜歡
樹根極性年限
世界上最深的樹根
影響種公牛使用年限的幾個(gè)因素與解決辦法
巧奪天工
跟蹤導(dǎo)練(四)
樹干和樹根
愿望巴士 10瘋狂的樹根
幼兒畫刊(2017年10期)2017-10-18 00:46:02
不同產(chǎn)地、生長(zhǎng)年限銀杏葉總多酚含量比較
中成藥(2017年6期)2017-06-13 07:30:35
表用無極性RS485應(yīng)用技術(shù)探討
體外發(fā)酵法評(píng)定不同茬次和生長(zhǎng)年限苜蓿的營(yíng)養(yǎng)價(jià)值
一種新型的雙極性脈沖電流源
泾源县| 明溪县| 阿拉善右旗| 云南省| 金堂县| 拜城县| 遂溪县| 荣昌县| 樟树市| 海口市| 景东| 黎川县| 新源县| 吉林市| 高尔夫| 新津县| 三台县| 威宁| 万全县| 洪泽县| 张家界市| 江川县| 雅江县| 永修县| 岐山县| 连平县| 奉贤区| 连州市| 宜兰市| 新蔡县| 玉溪市| 晋州市| 姜堰市| 鹤庆县| 普洱| 盐山县| 龙江县| 石景山区| 藁城市| 桑日县| 灵武市|