冀星 劉桂榮
摘 要:為了深入研究具有雙參數(shù)擾動及Lévy跳的隨機三種群食物網(wǎng)模型的動力學性質,首先給出了模型全局正解的存在唯一性;然后通過構造Lyapunov函數(shù),并且應用It公式和Chebyshev不等式證明了該模型的隨機最終有界性;接著利用指數(shù)鞅不等式和Borel-Cantelli引理分析了種群滅絕的充分條件;最后運用數(shù)值模擬驗證了相應理論結果的合理性。研究結果表明,在Lévy噪聲的影響下模型是隨機最終有界的,并且較大的Lévy噪聲可以導致種群的滅絕。研究方法在理論證明和數(shù)值模擬方面都得到了良好的預期結果,對于探究其他隨機種群模型的一些問題具有一定的借鑒意義。
關鍵詞:定性理論;食物網(wǎng)模型;最終有界性;滅絕性;Lévy跳
中圖分類號:O21163?文獻標志碼:A
文章編號:1008-1542(2019)04-0301-06
捕食者與食餌之間的相互作用是最重要的生態(tài)現(xiàn)象之一。近年來,三種群捕食者-食餌模型的一些動力學性質得到了許多學者的廣泛研究[1-5]。
考慮到種群系統(tǒng)因不可避免地受到環(huán)境白噪聲的影響而受到許多關注[6-12],文獻[6]建立了下列隨機三種群食物網(wǎng)模型:
3?結?論
本文研究了一類具有雙參數(shù)擾動及Lévy跳的隨機三種群食物網(wǎng)模型全局正解的存在唯一性和隨機最終有界性,討論了種群滅絕的充分條件,并運用數(shù)值模擬驗證了結果的合理性。研究結果表明,在Lévy噪聲的影響下模型是隨機最終有界的,并且Lévy噪聲可以導致種群的滅絕。因此,在考慮某些突發(fā)性環(huán)境沖擊時,具有Lévy跳的隨機模型有利于更好地研究種群的動力學性質。在未來的研究中,將著力于考慮該模型的一些其他的動力學性質。
參考文獻/References:
[1]?SEN D, GHORAI S, BANERJEE M . Complex dynamics of a three species prey-predator model with intraguild predation [J]. Ecological Complexity, 2018, 34: 9-22.
[2]?PANJA P, MONDAL S K. Stability analysis of coexistence of three species prey-predator model [J]. Nonlinear Dynamics, 2015, 81(1/2): 373-382.
[3]?趙治濤, 張開蕊, 張玲. 具有食餌互惠的隨機三種群捕食模型的持續(xù)與滅絕[J]. 黑龍江大學自然科學學報, 2017,34(1):23-34.
ZHAO Zhitao, ZHANG Kairui, ZHANG Ling. Persistence and extinction for a stochastic three species predation model with prey mutualism [J]. Journal of Natural Science of Heilongjiang University, 2017,34(1):23-34.
[4]?CHEN Bin, WANG Minxing. Positive solutions to a three-species predator-prey model [J]. Acta Mathematica Scientia, 2008, 28(6): 1256-1266.
[5]?DUBEY B, UPADHYAY R K. Persistence and extinction of one-prey and two-predators system [J]. Nonlinear Analysis Modelling & Control, 2004, 9(4): 307-329.
[6]?QIU Hong, DENG Wenmin. Stationary distribution and global asymptotic stability of a three-species stochastic food-chain system [J].Turkish Journal of Mathematics, 2017, 41: 1292-1303.
[7]?DALAL N, GREENHALGH D, MAO Xuerong. A stochastic model for internal HIV dynamics [J]. Journal of Mathematical Analysis and Applications, 2008, 341(2): 1084-1101.
[8]?VASILOVA M. Asymptotic behavior of a stochastic Gilpin-Ayala predator-prey system with time-dependent delay [J]. Mathematical & Computer Modelling, 2013, 57(3/4): 764-781.
[9]?MAITI A, JANA M M, SAMANTA G P. Deterministic and stochastic analysis of a ratio-dependent predator-prey system with delay [J]. Nonlinear Analysis Modelling & Control, 2013, 12(3): 383-398.
[10]DU Bo. Existence, extinction and global asymptotical stability of a stochastic predator-prey model with mutual interference [J]. Journal of Applied Mathematics and Computing, 2014, 46(1/2): 79-91.
[11]劉蒙. 隨機種群模型若干性質的研究[D]. 哈爾濱:哈爾濱工業(yè)大學, 2012.
LIU Meng. Analysis on Some Properties of Stochastic Population Systems [D]. Harbin: Harbin Institute of Technology, 2012.
[12]DU Bo, WANG Yamin, LIAN Xiuguo. A stochastic predator-prey model with delays [J]. Advances in Difference Equations, 2015, 2015(1): 141-148.
[13]LIU Qun, JIANG Daqing, SHI Ningzhong, et al. Stochastic mutualism model with Lévy jumps [J]. Communications in Nonlinear Science and Numerical Simulation, 2017, 43: 78-90.
[14]臧彥超, 李俊平. 帶Beddington-DeAngelis功能反應和Lévy噪聲的隨機捕食-被捕食系統(tǒng)的漸近性質[J]. 應用數(shù)學學報, 2015, 38(2): 340-349.
ZANG Yanchao, LI Junping. A dynamics of a stochastic predator-prey system with Beddington-DeAngelis functional response and Lévy jumps [J]. Acta Mathematicae Applicatae Sinica, 2015, 38(2): 340-349.
[15]LIU Meng, ZHU Yu. Stationary distribution and ergodicity of a stochastic hybrid competition model with Lévy jumps [J]. Nonlinear Analysis: Hybrid Systems, 2018, 30: 225-239.
[16]ZHANG Xinhong, JIANG Daqing, HAYAT T, et al. Dynamics of a stochastic SIS model with double epidemic diseases driven by Lévy jumps [J]. Physica A: Statistical Mechanics and its Applications, 2017, 471(1): 767-777.
[17]ZHANG Qiumei, JIANG Daqing, ZHAO Yanan, et al. Asymptotic behavior of a stochastic population model with Allee effect by Lévy jumps [J]. Nonlinear Analysis: Hybrid Systems, 2017, 24: 1-12.
[18]LIU Meng , BAI Chuanzhi , DENG Meiling , et al. Analysis of stochastic two-prey one-predator model with Lévy jumps [J]. Physica A: Statistical Mechanics and Its Applications, 2016, 445: 176-188.
[19]MAO Xuerong. Stochastic Differential Equations and Applications [M]. Chichester: Horwood ?Publishing Limited, 2007.
[20]LIPSTER R S H. A strong law of large numbers for local martingales [J]. Stochastics,1980, 3(4): 217-3228.
[21]ZOU Xiaoling, WANG Ke. Numerical simulations and modeling for stochastic biological systems with jumps[J]. Communications in Nonlinear Science and Numerical Simulation,2014, 19(5): 1557-1568.