国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

具有變號(hào)非線性項(xiàng)的分?jǐn)?shù)階微分方程邊值問題正解的存在性

2019-10-21 09:26江衛(wèi)華韓晴晴楊君霞

江衛(wèi)華 韓晴晴 楊君霞

摘 要:為了進(jìn)一步研究非線性項(xiàng)的分?jǐn)?shù)階微分方程邊值問題的性質(zhì),討論了帶有變號(hào)非線性項(xiàng)的(n-1,1)分?jǐn)?shù)階微分方程特征值問題正解的存在性,其中分?jǐn)?shù)階導(dǎo)數(shù)是Riemann-Liouville型。首先利用給定邊值問題的Green函數(shù),將微分方程轉(zhuǎn)化為等價(jià)的積分方程,然后在非線性項(xiàng)f(t,x)滿足Caratheodory條件(即任意選取變量x,非線性項(xiàng)f(t,x)為可測(cè)函數(shù),對(duì)(0,1)區(qū)間內(nèi)幾乎所有t,非線性項(xiàng)f(t,x)為x的連續(xù)函數(shù))下。通過構(gòu)造適當(dāng)?shù)腂anach空間,運(yùn)用錐拉伸與錐壓縮不動(dòng)點(diǎn)定理和Leray-Schauder非線性抉擇得出邊值問題正解存在的充分條件。結(jié)果表明,非線性項(xiàng)f(t,x)中的t可以在(0,1)區(qū)間內(nèi)任何點(diǎn)處具有奇性,同時(shí)還改變了使邊值問題的解存在的特征值λ的取值范圍。研究結(jié)果為現(xiàn)存結(jié)論的深入研究打下了基礎(chǔ)。

關(guān)鍵詞:常微分方程;不動(dòng)點(diǎn)定理;巴拿赫空間;格林函數(shù);正解;分?jǐn)?shù)階微分方程

中圖分類號(hào):O175.8?文獻(xiàn)標(biāo)志碼:A

文章編號(hào):1008-1542(2019)04-0294-07

近年來,隨著分?jǐn)?shù)階微分方程在物理、化學(xué)、工程等領(lǐng)域的廣泛應(yīng)用,越來越多的學(xué)者意識(shí)到了它的重要性[1-7],對(duì)分?jǐn)?shù)階微分方程的邊值問題正解的存在性的研究成為熱點(diǎn)問題之一[8-24]。

3?結(jié)?論

筆者分別運(yùn)用錐拉伸與錐壓縮不動(dòng)點(diǎn)定理和Leray-Schauder非線性抉擇,在非線性項(xiàng)f(t,x)不是連續(xù)函數(shù)的情況下,給出了具有特征值的分?jǐn)?shù)階微分方程兩點(diǎn)邊值問題正解存在的充分條件。使得非線性項(xiàng)f(t,x)中的t可以在(0,1)區(qū)間內(nèi)任何點(diǎn)處具有奇性,同時(shí)還改變了使邊值問題的解存在的特征值λ的取值范圍。研究結(jié)果為現(xiàn)存結(jié)論的深入研究打下了基礎(chǔ)。

參考文獻(xiàn)/References:

[1]?鐘承奎.非線性泛函分析引論[M]. 蘭州:蘭州大學(xué)出版社,2004.

[2]?鄭祖庥.分?jǐn)?shù)微分方程的發(fā)展和應(yīng)用[J].徐州師范大學(xué)學(xué)報(bào)(自然科學(xué)版),2008,26(2):1-10.

ZHENG Zuxiu.On the development and applications of fractional differential equations [J]. Journal of Xuzhou Normal University(Natural Science Edition),2008,26(2):1-10.

[3]?王高雄,周之銘,朱思銘,等.常微分方程[M].北京:高等教育出版社,2006.

[4]?蘇新衛(wèi),穆曉霞.非線性分?jǐn)?shù)階微分方程正解的存在性和唯一性[J].河南師范大學(xué)學(xué)報(bào)(自然科學(xué)版),2006,34(4):9-12.

SU Xinwei, MU Xiaoxia. Existence and uniqueness of positive solutions for a system of nonlinear fractional differential equations [J]. Journal of Henan Normal University (Natural Science),2006,34(4):9-12.

[5]?EIDELMAN S D, KOCHUBEI A N. Cauchy problem for fractional diffusion equations [J].Journal of Differential Equations,2004,199(2):211-255.

[6]?BAI Zhanbing,GE Weigao,WANG Yifu. The method of lower and upper solutions for some fourth-order equations[J]. Journal of Inequalities in Pure and Applied Mathematics, 2004, 5(1):124-131.

[7]?KILBAS A A, TRUJILLO J J. Differential equations of fractional order: Methods, results and problems.Ⅱ[J].Applicable Analysis, 2002, 81(2):435-493.

[8]?YUAN C. Multiple positive solutions for (n-1,1)-type semipositione conjugate boundary value problems of nonlinear fractional differential equations[J]. Electronic Journal of Qualitative Theory of Differential Equations, 2010,36:1-12.

[9]?劉靜.幾類非線性項(xiàng)變號(hào)的微分方程邊值問題解的存在性[D]. 曲阜:曲阜師范大學(xué),2012.

LIU Jing. Existence of Solutions for Boundary Value Problems of Differential Equations with Several Kinds of Nonlinear Term Variations[D]. Qufu: Qufu Normal University,2012.

[10]王亞平,劉立山,吳永洪.帶有Riemann-Stieltjes積分邊界條件的非線性奇異分?jǐn)?shù)階微分方程邊值問題正解的存在性[J]. 應(yīng)用數(shù)學(xué)學(xué)報(bào),2017,40(5):752-769.

WANG Yaping, LIU Lishan, WU Yonghong. Existence of multiplicity of positive solutions for nonlinear singular fractional differential equation with Riemann-Stieltjes integral boundary conditions[J]. Acta Mathematicae Applicatae Sinica,2017,40(5):752-769.

[11]江衛(wèi)華,陳靜,郭彥平.具有變號(hào)非線性項(xiàng)的二階三點(diǎn)微分方程組的邊值問題的2組正解[J].中國(guó)農(nóng)業(yè)大學(xué)學(xué)報(bào),2007,12(1):95-98.

JIANG Weihua, CHEN Jing, GUO Yanping. Two positive solutions to a second-order and three-point boundary value problem with sign changing nonlinear term[J]. Journal of China Agricultural University,2007,12(1):95-98.

[12]江衛(wèi)華,張強(qiáng),郭巍巍.具有變號(hào)非線性項(xiàng)的脈沖微分方程邊值問題的正解[J].河北科技大學(xué)學(xué)報(bào),2013,34(1):1-6.

JIANG Weihua, ZHANG Qiang, GUO Weiwei. Positive solutions of the boundary value problem for impulsive differential equations with sign-changing nonlinearterm[J]. Journal of Hebei University of Science and Technology,2013,34(1):1-6.

[13]姚慶六.帶變號(hào)系數(shù)的非線性二階兩點(diǎn)邊值問題的正解[J].鄭州大學(xué)學(xué)報(bào)(理學(xué)版),2007,39(1):6-11.

YAO Qingliu. Positive solutions of a nonlinear second-order two-point boundary value problems with coefficient that changes sign[J]. Journal of Zhengzhou University (Natural Science Edition),2007,39(1):6-11.

[14]杜睿娟.共振情形下二階多點(diǎn)邊值問題解的存在性[J].數(shù)學(xué)的實(shí)踐與認(rèn)識(shí),2015,45(24):272-278.

DU Ruijuan. Existence of solutions for second-order multi-point boundary value problems at resonance[J]. Mathematics in Practice and Theory,2015,45(24):272-278.

[15]田元生,李小平,葛渭高. p-Laplacian分?jǐn)?shù)階微分方程邊值問題正解的存在性[J].應(yīng)用數(shù)學(xué)學(xué)報(bào),2018,41(4):529-539.

TIAN Yuansheng, LI Xiaoping, GE Weigao. Existence of positive solutions to boundary value problems of fractional differential equation with p-Laplacian[J]. Acta Mathematicae Applicatae Sinica,2018,41(4):529-539.

[16]王威璇,翟成波.無窮區(qū)間上分?jǐn)?shù)階微分方程m-點(diǎn)邊值問題的正解[J].吉林大學(xué)學(xué)報(bào)(理學(xué)版),2018,56(6):1315-1323.

WANG Weixuan, ZHAI Chengbo. Positive solutions of m-point boundary value problems for fractional differential equations on infinite intervals [J].Journal of Jilin University (Science Edition),2018,56(6):1315-1323.

[17]廖秀,韋煜明,馮春華.一類無窮區(qū)間上分?jǐn)?shù)階微分方程邊值問題正解的存在性[J].吉林大學(xué)學(xué)報(bào)(理學(xué)版),2018,56(6):1299-1306.

LIAO Xiu, WEI Yuming, FENG Chunhua. Existence of positive solutions for a class of boundary value problems of fractional differential equations on infinite interval[J]. Journal of Jilin University (Science Edition),2018,56(6): 1299-1306.

[18]劉元彬,梅雪暉,胡衛(wèi)敏.含p-Laplacian算子的分?jǐn)?shù)階脈沖微分方程邊值問題的解[J].數(shù)學(xué)的實(shí)踐與認(rèn)識(shí),2018,48(20):202-211.

LIU Yuanbin, MEI Xuehui, HU Weimin. Solutions of boundary value problems of fractional impulsive differential equations with p-Laplacian operator[J]. Mathematics in Practice and Theory,2018,48(20):202-211.

[19]黃燕萍,韋煜明.一類分?jǐn)?shù)階微分方程多點(diǎn)邊值問題的多解性[J].廣西師范大學(xué)學(xué)報(bào)(自然科學(xué)版),2018,36(3):41-49.

HUANG Yanping, WEI Yuming. Multiple solutions of multiple-points boundary value problem for a class of fractional differential equation[J]. Journal of Guangxi Normal University (Natural Science Edition),2018,36(3):41-49.

[20]宋姝,周碧波,張玲玲.一類Caputo分?jǐn)?shù)階脈沖微分方程的反周期邊值問題[J].中北大學(xué)學(xué)報(bào)(自然科學(xué)版),2018,39(4):391-396.

SONG Shu, ZHOU Bibo, ZHANG Lingling. The anti-periodic boundary value problems for a class of impulsive differential equations of Caputo fractional order[J]. Journal of North University of China(Natural Science Edition),2018,39(4):391-396.

[21]陳會(huì).非線性分?jǐn)?shù)階微分方程邊值問題解的存在性[J].淮陰師范學(xué)院學(xué)報(bào)(自然科學(xué)版),2018,17(3):205-211.

CHEN Hui. Existence of solutions for boundary value problems with nonlinear fractional differential equations[J]. Journal of Huaiyin Teachers College(Natural Science Edition),2018,17(3):205-211.

[22]杜煒,許和乾.一類具有p-Laplacian算子的分?jǐn)?shù)階微分方程邊值問題正解的存在性[J].淮陰師范學(xué)院學(xué)報(bào)(自然科學(xué)版),2018,17(3):189-193.

DU Wei, XU Heqian. Existence of positive solutions for boundary value problem with p-Laplacian operators of fractional differential equations[J]. Journal of Huaiyin Teachers College(Natural Science Edition),2018,17(3):189-193.

[23]JIANG Weihua, SUN Bingzhi. Existence of solutions for functional boundary value problems of second-order nonlinear differential equations system at resonance[J]. Advances in Difference Equations, 2017, 2017(1):269.

[24]CHEN Yi, TANG Xianhua. Positive solutions of fractional differential equations at resonance on the half-line[J]. Boundary Value Problems, 2012,2012: 64.

高陵县| 景泰县| 施秉县| 连平县| 高密市| 保定市| 崇州市| 宁波市| 阳朔县| 乌兰县| 平湖市| 马山县| 措勤县| 台北县| 鄯善县| 社旗县| 资源县| 景德镇市| 海南省| 都江堰市| 永仁县| 伽师县| 松潘县| 连州市| 沾化县| 论坛| 竹溪县| 方正县| 迭部县| 微山县| 邢台县| 镇雄县| 平陆县| 中牟县| 自贡市| 崇文区| 牙克石市| 大丰市| 宁武县| 逊克县| 浦东新区|