秦倩 青玉鳳 周聞君 王聃 熊琴 楊小紅
[摘要] 類風(fēng)濕關(guān)節(jié)炎是一種慢性、炎性自身免疫性疾病,其發(fā)病機制尚未完全明確。自噬廣泛存在于真核生物中,是維持細胞內(nèi)正常生理活動及穩(wěn)態(tài)的一種代謝過程,其異常與多種疾病發(fā)生、發(fā)展相關(guān),近年來受到廣泛關(guān)注成為研究熱點之一。自噬可通過多種途徑影響類風(fēng)濕關(guān)節(jié)炎的發(fā)生、發(fā)展,本文就此進行綜述。
[關(guān)鍵詞] 類風(fēng)濕關(guān)節(jié)炎;自噬;發(fā)病機制;綜述
[中圖分類號] R593.22 ? ? ? ? ?[文獻標(biāo)識碼] A ? ? ? ? ?[文章編號] 1673-7210(2019)10(a)-0059-04
Progress in the role of autophagy in the pathogenesis of rheumatoid arthritis
QIN Qian1 ? QING Yufeng2 ? ZHOU Wenjun2 ? WANG Dan2 ? XIONG Qin3 ? YANG Xiaohong1,4
1.Department of Microbiology and Immunology, College of Basic Medical Sciences, North Sichuan Medical College, Sichuan Province, Nanchong ? 637000, China; 2.Department of Rheumatology and Immunology, Affiliated Hospital of North Sichuan Medical College, Sichuan Province, Nanchong ? 637000, China; 3.Department of Geriatrics, Affiliated Hospital of North Sichuan Medical College, Sichuan Province, Nanchong ? 637000, China; 4.Party Committee Office, the Second Affiliated Hospital of North Sichuan Medical College, Sichuan Province, Nanchong ? 637000, China
[Abstract] Rheumatoid arthritis is a chronic, inflammatory autoimmune disease, its pathogenesis is not yet fully clear. Autophagy widely exists in eukaryotes. It is a metabolic process that maintains normal physiological activity and homeostasis in cells. Its abnormalities are related to the occurrence and development of many diseases. In recent years, autophagy has attracted wide attention and become one of the research hotspots. Autophagy can affect the occurrence and development of rheumatoid arthritis in many ways. This article reviews this aspect.
[Key words] Rheumatoid arthritis; Autophagy; Pathogenesis; Review
類風(fēng)濕關(guān)節(jié)炎(RA)是一組以多關(guān)節(jié)滑膜炎為主的自身免疫性疾病,病理改變?yōu)榛ぜ毎鲋?、釋放炎性因子沉積在關(guān)節(jié)及軟骨導(dǎo)致關(guān)節(jié)腫痛、畸形和功能喪失。自噬是一種廣泛存在于真核生物細胞中高度保守的生理過程,可維持細胞穩(wěn)態(tài)并提供能量[1]。研究發(fā)現(xiàn),自噬與腫瘤、代謝紊亂、自身免疫性疾病等發(fā)生密切相關(guān)[2-4],本文主要對自噬在RA發(fā)病機制中的作用進行綜述。
1 自噬概述
自噬廣泛存在于真核生物細胞中,通過分解自身組分維持細胞內(nèi)正常生理活動及穩(wěn)態(tài)。根據(jù)自噬體膜形成和運輸方式的不同,將自噬分為分子伴侶介導(dǎo)的自噬(CMA)、微自噬、巨自噬[5]三種。其中巨自噬目前研究較多,亦為本文所述的自噬,其過程概括為細胞內(nèi)的異常蛋白質(zhì)或受損細胞器誘導(dǎo)細胞質(zhì)內(nèi)形成具有雙層膜結(jié)構(gòu)的自噬前體;自噬前體包裹目標(biāo)物質(zhì)形成自噬體;自噬體與溶酶體結(jié)合形成自噬溶酶體;自噬溶酶體釋放水解酶消化胞內(nèi)物質(zhì)[6]。
2 自噬的分子機制
自噬在自噬體的形成和成熟過程中受到多種因素的調(diào)節(jié),其中最重要的調(diào)節(jié)通路為雷帕霉素靶蛋白(mTOR)通路,它可以負向調(diào)節(jié)自噬[7-10]。
Unc-5樣激酶1(ULK1)是自噬相關(guān)基因(Atg)1在哺乳動物中的同源物,是自噬啟動的關(guān)鍵蛋白[11]。ULK1可直接調(diào)節(jié)前自噬體的形成,并與自噬相關(guān)蛋白Atg13、Atg31、Atg29形成前自噬體的核心結(jié)構(gòu)。ULK1在體內(nèi)主要以ULK1復(fù)合物形式發(fā)揮作用[12],當(dāng)受到外界壓力(如饑餓、應(yīng)激)時,未被磷酸化的ULK1蛋白增加,并與Atg13結(jié)合形成Atg1-Atg13,隨后結(jié)合到Atg17-Atg29-Atg31復(fù)合物上,招募其他自噬蛋白,啟動細胞自噬[13]。另有研究發(fā)現(xiàn),Atg101同樣參與了ULK1復(fù)合物的形成,其作用為穩(wěn)定Atg13、ULK1蛋白在ULK1復(fù)合物中的位置[14]。
Beclin-1是Atg6的同源物,包括Bcl-2同源結(jié)構(gòu)域3(BH3)、中央螺旋區(qū)(CCD)和進化保守區(qū)(ECD),自噬調(diào)控蛋白可與Beclin-1在上述區(qū)域結(jié)合,使自噬相關(guān)基因著陸在自噬體膜上,調(diào)控自噬水平[15]。BH3結(jié)構(gòu)域位于N端,通過與Bcl-2結(jié)合降低自噬激活程度;CCD結(jié)構(gòu)域位于中間,其可與紫外線輻射誘導(dǎo)相關(guān)基因結(jié)合,促進自噬膜的形成;C端為進化保守結(jié)構(gòu)域,與Vps34(PI3KC3同源物)結(jié)合形成Vps34-Beclin-1復(fù)合物,被Atg14定位到自噬體上,產(chǎn)生磷脂酰肌醇3-磷酸(PI3P)招募自噬相關(guān)蛋白促進自噬體的形成調(diào)節(jié)自噬水平[16]。
腺苷酸活化蛋白激酶(AMPK)是一種活性受AMP調(diào)節(jié)的蛋白激酶,根本作用是促進ATP生成,維持機體能量平衡[17]。AMPK對自噬的調(diào)節(jié)是雙向的,AMPK通過檢測細胞內(nèi)AMP/ATP細胞壓力(是否低糖或缺氧)[18],若比值增大,AMP即與AMPK結(jié)合磷酸化并激活A(yù)MPK,促進其下游靶點(包括ULK1)磷酸化誘導(dǎo)自噬[19],AMPK還可磷酸化mTORC1中的支架蛋白,抑制mTOR功能,增強自噬[20]。同時,AMPK本身也是ULK1的一個靶分子,ULK1可以通過負反饋調(diào)節(jié)抑制AMPK活性終止自噬信號的傳遞[21]。
除上述分子外,p53與p62也被證明與自噬密切相關(guān)。p53蛋白在細胞質(zhì)中對自噬起抑制作用,在細胞核中起促進作用[22]。p62可作為媒介,促進底物與自噬小體結(jié)合,啟動細胞自噬[23]。
3 自噬與RA
3.1 自噬與免疫細胞
胸腺上皮細胞(TECs)向幼稚T細胞提呈自身胞漿抗原對T細胞陰性選擇獲得對自身免疫耐受的CD4、CD8單陽性細胞至關(guān)重要[24],Mizushima[25]發(fā)現(xiàn),在胸腺選擇過程中TECs自噬水平增加,自身胞漿抗原通過自噬進入溶酶體參與MHCⅡ類分子加工與合成[26],Atg5陰性胸腺小鼠模型中,T細胞抗原受體(TCR)與MHCⅡ類分子的結(jié)合發(fā)生異常[24]。以上研究表明,自噬可能參與了淋巴細胞庫的建立,自噬缺陷與自身免疫耐受性喪失密切相關(guān),會引起包括RA在內(nèi)的多種自身免疫性疾病的發(fā)生。
獲得性免疫中,大多數(shù)效應(yīng)T細胞在發(fā)揮效應(yīng)后死亡,但有部分繼續(xù)存活成為記憶T細胞。記憶T細胞再次接觸抗原時會作出迅速有效的反應(yīng),此反應(yīng)對抗繼發(fā)性感染十分重要,對自身抗原卻非常不利,甚至?xí)?dǎo)致自身免疫性疾病的發(fā)生[27]。最近一項研究提出,RA患者T細胞存在“自噬記憶”,通過調(diào)節(jié)糖酵解和脂肪酸合成途徑基因,使記憶T細胞和效應(yīng)T細胞保持更高的自噬率,具有代謝優(yōu)勢長期存活,最終導(dǎo)致關(guān)節(jié)炎[28]。
實驗發(fā)現(xiàn),RA患者外周血淋巴、單核和中性粒細胞中自噬體熒光強度顯著高于正常人,且其強弱與RA炎癥呈正相關(guān),當(dāng)患者病情得到緩解后,發(fā)現(xiàn)其自噬水平也隨之降低[29]。同時,在RA滑液中發(fā)現(xiàn)中性粒細胞自噬相關(guān)蛋白LC3表達升高,滑液中白細胞介素(IL)-6、IL-8、IL-10和單核細胞趨勢蛋白(MCP)-1濃度也升高,猜測上述因子可能通過細胞因子-細胞因子受體相互作用和IL-17信號通路介導(dǎo)RA中性粒細胞自噬[30]。
3.2 自噬與RA成纖維樣滑膜細胞(FLS)
RA的主要病理特點為滑膜細胞異常增生,RA的FLS可產(chǎn)生多種細胞因子、趨化因子和基質(zhì)降解酶,參與關(guān)節(jié)炎癥和骨質(zhì)破壞,是RA發(fā)病機制中的重要組成部分[31]。FLS產(chǎn)生大量蛋白質(zhì),當(dāng)未折疊或錯誤折疊的蛋白質(zhì)在內(nèi)質(zhì)網(wǎng)積聚至一定程度時,會造成內(nèi)質(zhì)網(wǎng)應(yīng)激狀態(tài),導(dǎo)致細胞自噬增加[32]。另外,RA患者FLS會產(chǎn)生大量腫瘤壞死因子(TNF)-α,后者能有效地誘導(dǎo)LC3-Ⅱ、Beclin-1和p62等自噬相關(guān)基因的表達與活化,提高RA患者FLS的自噬水平;使用TNF-α抑制劑作用于FLS,發(fā)現(xiàn)FLS凋亡明顯增加[33]。自噬可以及時清除受損、衰老的FLS,減少其凋亡,使炎癥持續(xù)存在,加重RA病情。
3.3 自噬與RA骨破壞
破骨細胞是造成骨吸收的主要細胞,主要參與RA患者的骨和關(guān)節(jié)破壞。研究發(fā)現(xiàn),RA破骨細胞自噬活性增強,Beclin-1和Atg7表達增高,且過表達Beclin-1可以誘導(dǎo)破骨細胞自噬,增強破骨細胞對骨的吸收,而抑制自噬可以阻止破骨細胞分化[34]。RA中TNF-α可以激活自噬,并調(diào)節(jié)破骨細胞分化和骨吸收[35]。T、B細胞和FLS產(chǎn)生核因子受體激活劑配體,并與受體結(jié)合,上調(diào)自噬促進破骨前體細胞分化為成熟破骨細胞[36],而抑制自噬可以阻斷小鼠單核/巨噬細胞的破骨作用,敲除自噬底物p62也會降低破骨過程中相關(guān)基因的表達[37]。自噬可以通過破骨細胞增加RA骨破壞,加重關(guān)節(jié)癥狀。
4 自噬與瓜氨酸肽
瓜氨酸肽在RA發(fā)病機制和自身抗體的產(chǎn)生中起著至關(guān)重要的作用,抗環(huán)瓜氨酸(CCP)抗體存在常與RA預(yù)后不良相關(guān)[38],從RA患者中純化的抗CCP抗體不僅能在體外誘導(dǎo)人破骨細胞分化,還能在小鼠體內(nèi)引起骨的丟失[39]。研究證明,自噬對瓜氨酸肽的表達和抗CCP抗體的產(chǎn)生密切有關(guān),抗原提呈細胞需要通過自噬才能成功表達瓜氨酸蛋白[40]。在RA患者的FLS中,某些瓜氨酸蛋白,如波形蛋白和α烯醇化酶,在自噬誘導(dǎo)劑處理后,表達量增加[41-42]。這些實驗表明,自噬可能通過維持瓜氨酸肽的生成參與了自我耐受的破壞,導(dǎo)致RA的發(fā)生。
5 其他
研究發(fā)現(xiàn),自噬會使RA患者FLS對甲氨蝶呤(MTX)治療產(chǎn)生抵抗。用MTX體外刺激骨關(guān)節(jié)炎(OA)與RA患者FLS,發(fā)現(xiàn)RA-FLS死亡率明顯低于OA-FLS,MTX可以通過增強HMGB1和Beclin-1的表達上調(diào)自噬刺激RA-FLS自噬,增加FLS存活率;抑制Beclin-1表達,可增加FLS對甲氨蝶呤的易感性,導(dǎo)致FLS死亡增加[43]。地塞米松可增加軟骨細胞內(nèi)活性氧(ROS)水平,上調(diào)自噬,促進軟骨退變[44]。
6 小結(jié)與展望
綜上所述,自噬對RA的影響是多方面的。但其相關(guān)機制研究還停留在表觀層面,深入探究定會有助于進一步認識RA發(fā)病機制,同時為尋找新的治療靶點提供理論、實踐依據(jù)。
[參考文獻]
[1] ?Zech ATL,Singh SR,Schlossarek S,et al. Autophagy in cardiomyopathies [J]. Biochim Biophys Acta Mol Cell Res,2019. [Epub ahead of print].
[2] ?Xie W,Zhou J. Aberrant regulation of autophagy in mammalian diseases [J]. Biol Lett,2018,14(1):20170540.
[3] ?Shin JH,Park SJ,Jo DS,et al. Down-regulated TMED10 in Alzheimer disease induces autophagy via ATG4B activation [J]. Autophagy,2019,3(1):1-11.
[4] ?Hao Y,Kacal M,Ouchida AT,et al. Targetome analysis of chaperone-mediated autophagy in cancer cells [J]. Autophagy,2019,3(1):1-14.
[5] ?Hotchkiss RS,Strasser A,Mcdunn JE,et al. Cell death [J]. N Engl J Med,2009,361(16):1570-1583.
[6] ?李宜醒,姚偉靜,易聰.細胞自噬研究進展[J].中國細胞生物學(xué)學(xué)報,2019,41(2):1-9.
[7] ?Saxton RA,Sabatini DM. mTOR signaling in growth,meta-bolism,and disease [J]. Cell,2017,168(6):960-976.
[8] ?Wang X,Proud CG. mTORC1 signaling:what we still don′t know [J]. J Mol Cell Biol,2011,3(4):206-220.
[9] ?Ranek MJ,Kokkonen-Simon KM,Chen A,et al. PKG1-modified TSC2 regulates mTORC1 activity to counter adverse cardiac stress [J]. Nature,2019,566(7743):264-269.
[10] ?Rockel JS,Kapoor M. Autophagy:controlling cell fate in rheumatic diseases [J]. Nat Rev Rheumatol,2016,12(9):517-531.
[11] ?Mcalpine F,Williamson LE,Tooze SA,et al. Regulation of nutrient-sensitive autophagy by uncoordinated 51-like kinases 1 and 2 [J]. Autophagy,2013,9(3):361-373.
[12] ?Lee E,Tournier C. The requirement of uncoordinated 51-like kinase 1 (ULK1) and ULK2 in the regulation of autophagy [J]. Autophagy,2011,7(7):689-695.
[13] ?Rao Y,Perna MG,Hofmann B,et al. The Atg1–kinase complex tethers Atg9-vesicles to initiate autophagy [J]. Nat Commun,2016,7(1):10 338.
[14] ?Suzuki H,Kaizuka T,Mizushima N,et al. Structure of the Atg101-Atg13 complex reveals essential roles of Atg101 in autophagy initiation [J]. Nat Struct Mol Biol,2015,22(7):572-580.
[15] ?Levine B,Liu R,Dong X,et al. Beclin orthologs:integrative hubs of cell signaling,membrane trafficking,and physiology [J]. Trends Cell Biol,2015,25(9):533-544.
[16] ?Mcknight NC,Zhong Y,Wold MS,et al. Beclin 1 is required for neuron viability and regulates endosome pathways via the UVRAG-VPS34 complex [J]. PLoS Genet,2014,10(10):e1004626.
[17] ?Andris F,Leo O. AMPK in lymphocyte metabolism and function [J]. Int Rev Immunol,2015,34(1):67-81.
[18] ?Hardie DG. Sensing of energy and nutrients by AMP-activated protein kinase [J]. Am J Clin Nutr,2011,93(4):891S-896S.
[19] ?Kim J,Kim JH,Kim YC,et al. Differential regulation of distinct Vps34 complexes by AMPK in nutrient stress and autophagy [J]. Cell,2013,152(1-2):290-303.
[20] ?Lyu S,Han D,Li X,et al. Fyn knockdown inhibits migration and invasion in cholangiocarcinoma through the activated AMPK/mTOR signaling pathway [J]. Oncol Lett,2018,15(2):2085-2090.
[21] ?Szymańska P,Martin KR,Mackeigan JP,et al. Computational analysis of an autophagy/translation switch based on mutual inhibition of MTORC1 and ULK1 [J]. PLoS One,2015,10(3):e11 6550.
[22] ?Tasdemir E,Maiuri MC,Morselli E,et al. A dual role of p53 in the control of autophagy [J]. Autophagy,2014,4(6):810-814.
[23] ?Matsuzawa Y,Oshima S,Nibe Y,et al. RIPK3 regulates p62-LC3 complex formation via the caspase-8-dependent cleavage of p62 [J]. Biochem Biophys Res Commun,2015,456(1):298-304.
[24] ?Nedjic J,Aichinger M,Emmerich J,et al. Autophagy in thymic epithelium shapes the T-cell repertoire and is essential for tolerance [J]. Nature,2008,455(7211):396-400.
[25] ?Mizushima N. In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker [J]. Mol Biol Cell,2003,15(3):1101-1111.
[26] ?Kasai M,Tanida I,Ueno T,et al. Autophagic compartments gain access to the MHC class Ⅱ compartments in thymic epithelium [J]. J Immunol,2009,183(11):7278-7285.
[27] ?吳長有.初始和記憶T細胞的研究進展[J].現(xiàn)代免疫學(xué),2005,25(5):353-356.
[28] ?Kumar P,Yao LJ,Saidin S,et al. Molecular mechanisms of autophagic memory in pathogenic T cells in human arthritis [J]. J Autoimmun,2018,11(94):90-98.
[29] ?Chen Y,Chang C,Chen H,et al. Association between autophagy and inflammation in patients with rheumatoid arthritis receiving biologic therapy [J]. Arthritis Res Ther,2018,20(1):268.
[30] ?An Q,Yan W,Zhao Y,et al. Enhanced neutrophil autophagy and increased concentrations of IL-6,IL-8,IL-10 and MCP-1 in rheumatoid arthritis [J]. Int Immunopharmacol,2018,65:119-128.
[31] ?Bartok B,F(xiàn)irestein GS. Fibroblast-like synoviocytes:key effector cells in rheumatoid arthritis [J]. Immunol Rev,2010,233(1):233-255.
[32] ?Cybulsky AV. Endoplasmic reticulum stress,the unfolded protein response and autophagy in kidney diseases [J]. Nat Rev Nephrol,2017,13(11):681-696.
[33] ?Dai Y,Ding J,Yin W,et al. Increased autophagy enhances the resistance to tumor necrosis factor-alpha treatment in rheumatoid arthritis human fibroblast-like synovial cell [J]. Biomed Res Int,2018,2018:1-9.
[34] ?Lin N,Beyer C,Gie?覻l A,et al. Autophagy regulates TNFα-mediated joint destruction in experimental arthritis [J]. Ann Rheum Dis,2013,72(5):761-768.
[35] ?Lin NY,Stefanica A,Distler JH. Autophagy:a key pathway of TNF-induced inflammatory bone loss [J]. Autophagy,2013,9(8):1253-1255.
[36] ?Tanaka S. Regulation of bone destruction in rheumatoid arthritis through RANKL-RANK pathways [J]. World J Orthop,2013,4(1):1-6.
[37] ?Li R,Chen G,Ren J,et al. The adaptor protein p62 is involved in RANKL-induced autophagy and osteoclastogenesis [J]. J Histochem Cytochem,2014,62(12):879-888.
[38] ?任佳琦,趙金霞.抗瓜氨酸蛋白抗體陰性類風(fēng)濕關(guān)節(jié)炎的診治進展[J].中華風(fēng)濕病學(xué)雜志,2018,22(7):497-500.
[39] ?Krishnamurthy A,Joshua V,Haj HA,et al. Identification of a novel chemokine-dependent molecular mechanism underlying rheumatoid arthritis-associated autoantibody-mediated bone loss [J]. Ann Rheum Dis,2016,75(4):721-729.
[40] ?Ireland JM,Unanue ER. Autophagy in antigen-presenting cells results in presentation of citrullinated peptides to CD4 T cells [J]. J Exp Med,2011,208(13):2625-2632.
[41] ?Sorice M,Iannuccelli C, Manganelli V,et al. Autophagy generates citrullinated peptides in human synoviocytes:a possible trigger for anti-citrullinated peptide antibodies [J]. Rheumatology,2016,55(8):1374-1385.
[42] ?Valeria M,Serena R,Antonella C,et al. Autophagy induces protein carbamylation in fibroblast-like synoviocytes from patients with rheumatoid arthritis [J]. Rheumatology,2018,57(11):2032-2041.
[43] ?Xu K,Cai Y,Lu S,et al. Autophagy induction contributes to the resistance to methotrexate treatment in rheumatoid arthritis fibroblast-like synovial cells through high mobility group box chromosomal protein 1 [J]. Arthritis Res Ther,2015,17(1):374.
[44] ?Shen C,Cai GQ,Peng JP,et al. Autophagy protects chondrocytes from glucocorticoids-induced apoptosis via ROS/Akt/FOXO3 signaling [J]. Osteoarthritis Cartilage,2015,23(12):2279-2287.
(收稿日期:2019-06-06 ?本文編輯:李亞聰)