何毛偉 段艷廷 張亞偉 徐立斌 陳欽潤 陳建梅
【摘要】 神經(jīng)損傷在臨床上很常見,外科技術(shù)的發(fā)展已經(jīng)在很大程度上提高了修復(fù)的質(zhì)量,但修復(fù)的效果仍然不理想。嗅鞘膠質(zhì)細(xì)胞是極少數(shù)的中樞神經(jīng)系統(tǒng)可以再生的細(xì)胞之一,具有很強(qiáng)的促進(jìn)神經(jīng)修復(fù)再生和神經(jīng)髓鞘化的能力,它的發(fā)現(xiàn)為神經(jīng)系統(tǒng)再生醫(yī)學(xué)領(lǐng)域帶來了新的希望。然而,炎癥應(yīng)激下,嗅鞘膠質(zhì)細(xì)胞的活性降低或發(fā)生死亡,明確嗅鞘膠質(zhì)細(xì)胞在炎癥條件下細(xì)胞死亡的具體病理分子過程非常重要。本文對(duì)近年來的最新研究進(jìn)展進(jìn)行綜述,并且對(duì)存在的問題提出討論和假設(shè)。
【關(guān)鍵詞】 嗅鞘膠質(zhì)細(xì)胞; 炎癥應(yīng)激; 神經(jīng)損傷; 修復(fù); 病理機(jī)制
doi:10.14033/j.cnki.cfmr.2019.19.082 文獻(xiàn)標(biāo)識(shí)碼 A 文章編號(hào) 1674-6805(2019)19-0-04
Advances in Research on Stress Dysfunction of Olfactory Ensheathing Glia Induced by Inflammation/HE Maowei,DUAN Yanting,ZHANG Yawei,et al.//Chinese and Foreign Medical Research,2019,17(19):-185
【Abstract】 Nerve damage is very common in the clinic.The development of surgical techniques has greatly improved the quality of repair,but the effect of repair is still not ideal.Olfactory ensheath glial cells are one of the few cells that can be regenerated by the central nervous system.They have strong ability to promote nerve repair regeneration and neuro myelination.Its findings have brought new hope to the field of neurological regenerative medicine.However,under inflammatory stress,the activity of olfactory ensheathing glial cells is reduced or killed,and it is important to understand the specific pathological molecular processes of olfactory ensheathing glial cells under inflammatory conditions.This paper reviews the latest research progress in recent years and discusses and hypotheses the existing problems.
【Key words】 Olfactory ensheathing glial cells; Inflammatory stress; Nerve injury; Repair; Pathological mechanism
First-authors address:Bengbu Medical College,Affiliated Fuzhou General Hospital,F(xiàn)uzhou 350025,China.
嗅鞘神經(jīng)膠質(zhì)細(xì)胞(olfactory ensheathing glia,OEG)是一種巨膠質(zhì)胞亞型,位于神經(jīng)系統(tǒng)中。嗅鞘膠質(zhì)細(xì)胞的發(fā)育起源于鞘內(nèi)神經(jīng)膠質(zhì),分布在嗅上皮內(nèi),嗅覺神經(jīng)和嗅球的前兩層,這些細(xì)胞在形態(tài)學(xué),免疫細(xì)胞化學(xué)和功能特性與其他神經(jīng)膠質(zhì)細(xì)胞不同,OEG在一生中均會(huì)產(chǎn)生神經(jīng)營養(yǎng)因子和介導(dǎo)神經(jīng)元的因子保持神經(jīng)活性和軸突的延伸。此外,他們能夠遷移至受損傷的神經(jīng)處,修復(fù)再生神經(jīng)。OEG的主要作用是分泌大量神經(jīng)生長因子促進(jìn)神經(jīng)生長[1]。嗅鞘細(xì)胞是目前所發(fā)現(xiàn)的極少數(shù)的中樞神經(jīng)系統(tǒng)可以再生細(xì)胞之一。因此,OEG可能在未來被用作治療中樞神經(jīng)系統(tǒng)(CNS)創(chuàng)傷的治療細(xì)胞之一。OEG最明顯的特點(diǎn)是具有終身再生能力,并且能夠釋放多種神經(jīng)營養(yǎng)因子、神經(jīng)保護(hù)分子,是促進(jìn)神經(jīng)髓鞘化最強(qiáng)的細(xì)胞。OEG的再生特性是它創(chuàng)造了一個(gè)微環(huán)境有利于軸突生長和恢復(fù),例如吞噬細(xì)胞碎片和/或細(xì)菌、調(diào)節(jié)神經(jīng)炎癥、提供神經(jīng)保護(hù)、促進(jìn)血管生成、表達(dá)神經(jīng)營養(yǎng)因子,以及分泌細(xì)胞外基質(zhì)(ECM)分子,提供基質(zhì)對(duì)于新生成的軸突非常重要。神經(jīng)營養(yǎng)因子促進(jìn)神經(jīng)元的生長和存活,OEG表達(dá)神經(jīng)生長因子(NGF)、腦源性神經(jīng)營養(yǎng)因子(BDNF)、神經(jīng)營養(yǎng)因子3(NT-3)、神經(jīng)營養(yǎng)因子4/5(NT-4/5)、神經(jīng)調(diào)節(jié)蛋白(NRG)、睫狀神經(jīng)營養(yǎng)因子(CNTF),神經(jīng)營養(yǎng)因子(NTN)和膠質(zhì)細(xì)胞衍生生長因子(GDNF),其表達(dá)可歸因于炎癥和損傷。近年來逐漸應(yīng)用于治療周圍神經(jīng)損傷、脊髓損傷。嗅鞘細(xì)胞與神經(jīng)膠質(zhì)細(xì)胞、許旺細(xì)胞在表現(xiàn)型上有共同點(diǎn),它們都能夠促進(jìn)軸突的再生,主要區(qū)別在于嗅鞘細(xì)胞不但存在于中樞神經(jīng)系統(tǒng),也存在于外周神經(jīng)中。嗅黏膜中的神經(jīng)元是唯一生后才生長并在成年時(shí)繼續(xù)分化的神經(jīng)元,壽命為4~12周,隨著新細(xì)胞的生長,又建立了新的神經(jīng)支配關(guān)系。嗅鞘細(xì)胞存在于嗅神經(jīng)及嗅球的神經(jīng)層上,沿著嗅神經(jīng)的全長,從周圍神經(jīng)系統(tǒng)到中樞神經(jīng)分布。通過將培養(yǎng)的OEG移植到受損傷的神經(jīng)系統(tǒng)中,OEG參與了終身神經(jīng)再生。例如,OEG移植可以減輕脊髓損傷[2],脊髓損傷的動(dòng)物研究表明,OEG可以存活和生存,并且遠(yuǎn)距離移植到損傷部位,減少瘢痕組織和空腔形成,恢復(fù)呼吸和攀爬功能并改善后肢活動(dòng)度。OEG進(jìn)入瘢痕組織的遷移特性歸因于它們的快速移動(dòng),減輕周圍神經(jīng)損傷,減輕局灶性腦缺血[3-4]。嗅鞘神經(jīng)膠質(zhì)細(xì)胞(OEG)在神經(jīng)系統(tǒng)再生醫(yī)學(xué)領(lǐng)域有著廣泛的應(yīng)用。
1 炎癥條件OEG的應(yīng)激及線粒體對(duì)細(xì)胞凋亡的影響
1.1 OEG修復(fù)作用
在分子水平上,OEG表達(dá)多種胞外基質(zhì)蛋白,包括但不限于層粘連蛋白、纖連蛋白、神經(jīng)/膠質(zhì)抗原2(NG2)和galectin-1。這些細(xì)胞外基質(zhì)蛋白在神經(jīng)發(fā)生和再生扮演關(guān)鍵角色[5-7]。此外,重傷之后,如嗅球切除,OEG增殖和遷移到受損的組織器官修復(fù)然后產(chǎn)生保護(hù)性細(xì)胞因子[8-9]。此外,OEG激活免疫反應(yīng)[10],減輕氧化應(yīng)激[11],提高神經(jīng)元碎片化的間隙[12],并促進(jìn)神經(jīng)元存活[13]。這一信息強(qiáng)調(diào)了基于OEG的再生醫(yī)學(xué)正在成為治療外周/中樞神經(jīng)系統(tǒng)損傷的一種很有前途的方法[14]。
1.2 炎癥對(duì)OEG的影響
然而,由于慢性炎癥反應(yīng),OEG存活率隨著年齡的增長而降低,這在帕金森病和其他神經(jīng)退行性疾病中尤為明顯[15]。其病理學(xué)機(jī)制是由于慢性炎癥反應(yīng)導(dǎo)致的OEG的生存能力隨著年齡的增長而逐漸下降。因此,了解炎癥應(yīng)激誘導(dǎo)OEG功能障礙的分子機(jī)制可能為基于OEG的再生醫(yī)學(xué)急需的新的治療方式鋪平道路。
1.3 炎癥誘導(dǎo)神經(jīng)損傷的作用機(jī)制
越來越多的證據(jù)表明慢性炎癥在帕金森病中發(fā)生的進(jìn)行性多巴胺能神經(jīng)變性中起作用[16]。炎癥通過氧化應(yīng)激和線粒體功能障礙的惡性循環(huán)的惡化來介導(dǎo)神經(jīng)元損傷。細(xì)菌內(nèi)毒素,脂多糖(LPS),誘導(dǎo)小膠質(zhì)細(xì)胞激活和炎癥驅(qū)動(dòng)的多巴胺能神經(jīng)變性。為了檢驗(yàn)LPS誘導(dǎo)的炎癥反應(yīng)可能損害線粒體結(jié)構(gòu)和功能導(dǎo)致黑質(zhì)多巴胺能神經(jīng)元丟失,將LPS或鹽水注射到大鼠的紋狀體中。發(fā)現(xiàn)紋狀體內(nèi)LPS誘導(dǎo)線粒體呼吸缺陷,線粒體嵴損傷,線粒體氧化,黑質(zhì)中的多巴胺能神經(jīng)元顯著減少。該研究表明LPS誘導(dǎo)的多巴胺能神經(jīng)變性可能通過線粒體損傷發(fā)揮作用。
值得注意的是,以往的研究都使用脂多糖(lipopolysaccharide,
LPS)誘導(dǎo)神經(jīng)炎癥模型并觀察神經(jīng)損傷。例如,LPS被用來探討慢性炎癥是否與帕金森疾病中漸進(jìn)性多巴胺能神經(jīng)變性有關(guān)[17]。LPS介導(dǎo)的神經(jīng)毒性與腦多巴胺能神經(jīng)功能障礙有密切關(guān)聯(lián)。LPS給藥已被用于誘導(dǎo)神經(jīng)變性如阿爾茨海默病的體內(nèi)模型[18]。因此采用LPS誘導(dǎo)炎癥反應(yīng)模型觀察OGE細(xì)胞凋亡的損傷機(jī)制是一種趨勢(shì)。
1.4 線粒體在細(xì)胞死亡中的作用
線粒體是人體所有細(xì)胞中存在的細(xì)胞器(紅細(xì)胞除外),在其中發(fā)揮著關(guān)鍵作用。線粒體除了提供能量,線粒體還參與其他復(fù)雜過程,如細(xì)胞代謝,活性氧的產(chǎn)生,鈣調(diào)節(jié),細(xì)胞增殖,細(xì)胞分裂和程序性細(xì)胞死亡(細(xì)胞凋亡)等。一些研究表明炎癥誘導(dǎo)內(nèi)皮細(xì)胞凋亡通過激活含半胱氨酸的天冬氨酸水解酶9
(caspase9)依賴的線粒體凋亡途徑。此外,最近的研究發(fā)現(xiàn)線粒體動(dòng)力學(xué)(裂變和融合)維持著線粒體穩(wěn)態(tài)。過度線粒體裂變是線粒體細(xì)胞凋亡的早期階段。過多的線粒體裂變促進(jìn)了促凋亡蛋白的滲漏[如細(xì)胞色素c(cyt-c)]進(jìn)入細(xì)胞質(zhì)引發(fā)線粒體相關(guān)的細(xì)胞凋亡。這些數(shù)據(jù)表明,線粒體分裂是內(nèi)皮細(xì)胞存活和靜脈內(nèi)穩(wěn)態(tài)的潛在靶點(diǎn)。一些研究表明線粒體裂變與細(xì)胞鈣濃度密切相關(guān),因?yàn)榱炎兪且环N自收縮過程。
細(xì)胞活力和功能是由線粒體高度調(diào)控的,線粒體對(duì)內(nèi)環(huán)境穩(wěn)態(tài)失衡,尤其是炎癥損傷,會(huì)表現(xiàn)出多種應(yīng)激反應(yīng),包括氧化應(yīng)激反應(yīng)、炎癥反應(yīng)和神經(jīng)系統(tǒng)的缺血反應(yīng)[19-20]。線粒體影響細(xì)胞生存和死亡的一般機(jī)制有三:(1)ATP耗盡[21];(2)介導(dǎo)細(xì)胞氧化應(yīng)激[22];(3)釋放促凋亡因子,啟動(dòng)含半胱氨酸的天冬氨酸水解酶(cysteinyl laspartate specific proteinase,Caspase)依賴的死亡途徑[23-24]。例如,線粒體誘發(fā)的氧化應(yīng)激,促進(jìn)了炎癥損傷中的內(nèi)皮細(xì)胞凋亡[25]。線粒體異常分裂,通過加速肝細(xì)胞死亡,參與脂肪肝疾病的發(fā)展和進(jìn)展[21-26]。在分子水平上,線粒體裂變是由線粒體裂變蛋白(Drp1)從細(xì)胞質(zhì)轉(zhuǎn)位到線粒體表面上與線粒體結(jié)合,Drp1將在線粒體周圍形成“環(huán)”結(jié)構(gòu),并在GTP的幫助下迫使線粒體分裂成幾個(gè)子線粒體。值得注意的是,Drp1與線粒體的相互作用被線粒體裂變因子(Mff)微調(diào)Drp1的線粒體外膜受體。糖尿病腎病的發(fā)病機(jī)制也與線粒體過度分裂有關(guān)[27]。在炎癥相關(guān)的神經(jīng)退行性疾病中,線粒體分裂被激活并導(dǎo)致線粒體氧化應(yīng)激。此外,IL-1β介導(dǎo)的神經(jīng)退化,本質(zhì)上是由于線粒體氧化應(yīng)激和線粒體去極化所引起的[28]。此外,炎癥誘導(dǎo)的抑郁樣行為也與線粒體異常有關(guān)[29]。這些數(shù)都據(jù)強(qiáng)調(diào)了線粒體在維持神經(jīng)元活力方面的關(guān)鍵作用。但目前還沒有研究探討炎癥損傷中OEG線粒體穩(wěn)態(tài)的改變。
1.5 線粒體介導(dǎo)細(xì)胞死亡的機(jī)制研究
此外,線粒體介導(dǎo)的細(xì)胞損傷或死亡主要依賴于線粒體外膜的高滲透性[30]。線粒體膜滲透促進(jìn)線粒體促凋亡因子[包括cyt-c、細(xì)胞凋亡調(diào)節(jié)蛋白(Smac)和細(xì)胞凋亡調(diào)節(jié)蛋白(HtrA2/Omi)]從線粒體釋放到細(xì)胞質(zhì)或細(xì)胞核中,這些促凋亡因子,最終激活caspase-9參與的線粒體死亡通路[31]。值得注意的是,線粒體外膜的通透性主要由Bcl-2相關(guān)X蛋白(Bcl-2 associated X protein)及其激活因子Bnip3(Bcl-2/adenovirus E1B 19KD- interacting protein3)控制。Bax的增加和Bcl-2的減少,通通促進(jìn)了線粒體外膜的高滲透性,而過于通透的線粒體外膜,可能進(jìn)一步誘導(dǎo)線粒體滲透性過渡孔(mPTP)的打開。mPTP開放時(shí)間和開放程度的增加,也輔助性的激活了線粒體依賴的死亡信號(hào)通路[32]。因此,Bax激活和線粒體促凋亡因子泄漏(尤其是HtrA2/Omi)被認(rèn)為是線粒體相關(guān)細(xì)胞死亡的兩個(gè)關(guān)鍵上游分子事件。在創(chuàng)傷性腦損傷中,Bnip3激活被認(rèn)為是神經(jīng)元凋亡的發(fā)病機(jī)制[33]。同樣,在錳誘導(dǎo)的神經(jīng)毒性和缺血性中風(fēng)中,Bnip3上調(diào)會(huì)加重線粒體功能障礙[34]和神經(jīng)元死亡[35]。但需要注意的是,炎癥是否通過Bax依賴性線粒體凋亡介導(dǎo)OEG損傷尚不完全清楚。以往的研究均使用LPS誘導(dǎo)神經(jīng)炎癥[36],發(fā)現(xiàn)LPS可導(dǎo)致軸突[37]、小膠質(zhì)細(xì)胞[38]和螺旋神經(jīng)節(jié)神經(jīng)元[39]線粒體損傷。
2 炎癥誘導(dǎo)OEG損傷的可能機(jī)制
目前的研究尚不能明確炎癥導(dǎo)致OEG損傷的具體病理機(jī)制,但是明確這些病理分子過程會(huì)為OEG抵抗慢性炎癥應(yīng)激提供一個(gè)潛在的治療靶點(diǎn),為神經(jīng)損傷的修復(fù)提供新的思路?;谶@些報(bào)道,筆者提出并分析了以下3個(gè)假設(shè):(1)Lps誘導(dǎo)的炎癥是否引起OEG細(xì)胞凋亡;(2)Lps介導(dǎo)的OEG死亡是否需要線粒體功能障礙;(3)LPS是否通過JNK-Bnip3-Bax信號(hào)通路調(diào)節(jié)OEG活力和線粒體穩(wěn)態(tài)。
參考文獻(xiàn)
[1] Ramón-Cueto A,Avila J.Olfactory ensheathing glia:properties and function[J].Brain Research Bulletin,1998,46(3):175-187.
[2] Yao R,Murtaza M,Velasquez J T,et al.Olfactory Ensheathing Cells for Spinal Cord Injury:Sniffing Out the Issues[J].Cell Transplantation,2018,27(6):879-889.
[3] Matthew B,James J,Mary C,et al.The Glia Response after Peripheral Nerve Injury:A Comparison between Schwann Cells and Olfactory Ensheathing Cells and Their Uses for Neural Regenerative Therapies[J].International Journal of Molecular Sciences,2017,18(2):287.
[4] Augestad I L,Nyman A K G,Costa A I,et al.Effects of Neural Stem Cell and Olfactory Ensheathing Cell Co-transplants on Tissue Remodelling After Transient Focal Cerebral Ischemia in the Adult Rat[J].Neurochemical Research,2017,42(6):1599-1609.
[5] ONeill P,Lindsay S L,Pantiru A,et al.Sulfatase-Mediated Manipulation of the Astrocyte-Schwann Cell Interface[J].Glia,2016,65(1):19-33.
[6] Cao L,Mu L,Qiu Y,et al.Diffusible,membrane-bound,and extracellular matrix factors from olfactory ensheathing cells have different effects on the self-renewing and differentiating properties of neural stem cells[J].Brain Research,2010,1359:56-66.
[7] Tan A M,Zhang W,Levine J M.NG2:a component of the glial scar that inhibits axon growth[J].Journal of Anatomy,2005,207(6):717-725.
[8] Chehrehasa F,Ekberg J A K,St John J A.A novel method using intranasal delivery of EdU demonstrates that accessory olfactory ensheathing cells respond to injury by proliferation[J].Neuroscience Letters,2014,563:90-95.
[9] Nan B,Getchell M L,Partin J V,et al.Leukemia inhibitory factor,interleukin-6,and their receptors are expressed transiently in the olfactory mucosa after target ablation[J].Journal of Comparative Neurology,2001,435(1):60-77.
[10] Lane A P,Turner J,May L,et al.A Genetic Model of Chronic Rhinosinusitis-Associated Olfactory Inflammation Reveals Reversible Functional Impairment and Dramatic Neuroepithelial Reorganization[J].Journal of Neuroscience,2010,30(6):2324-2329.
[11] Jinbo L,Zhiyuan L,Zhijian Z,et al.Olfactory Ensheathing Cell-Conditioned Medium Protects Astrocytes Exposed to Hydrogen Peroxide Stress[J].Cellular & Molecular Neurobiology,2013,33(5):699-705.
[12] Li Y,Zou T,Xue L,et al.TGF-β1 enhances phagocytic removal of neuron debris and neuronal survival by olfactory ensheathing cells,via,integrin/MFG-E8 signaling pathway[J].Molecular and Cellular Neuroscience,2017,85:45-56.
[13] Wright A A,Todorovic M,Tello-Velasquez J,et al.Enhancing the Therapeutic Potential of Olfactory Ensheathing Cells in Spinal Cord Repair Using Neurotrophins[J].Cell Transplantation,2018,27(6):867-878.
[14] Liu Q,Qin Q,Sun H,et al.Neuroprotective effect of olfactory ensheathing cells co-transfected with Nurr1 and Ngn2 in both in vitro and in vivo models of Parkinsons disease[J].Life Sciences,2018,194:168-176.
[15] Lei Q,Tan J,Yi S,et al.Mitochonic acid 5 activates the MAPK-ERK-yap signaling pathways to protect mouse microglial BV-2 cells against TNFα-induced apoptosis via increased Bnip3-related mitophagy[J].Cellular & Molecular Biology Letters,2018,23(1):14.
[16] Hunter R,Ojha U,Bhurtel S,et al.Lipopolysaccharide-induced functional and structural injury of the mitochondria in the nigrostriatal pathway[J].Neuroscience Research,2017,114:62-69.
[17] Kaizaki A,Tien L T,Pang Y,et al.Celecoxib reduces brain dopaminergic neuronaldysfunction,and improves sensorimotor behavioral performance in neonatal rats exposed to systemic lipopolysaccharide[J].Journal of Neuroinflammation,2013,10(1):1-14.
[18] Noh H,Jeon J,Seo H.Systemic injection of LPS induces region-specific neuroinflammation and mitochondrial dysfunction in normal mouse brain[J].Neurochemistry International,2014,69:35-40.
[19] Santuy A,Turégano-López M,Rodríguez J R,et al.A Quantitative Study on the Distribution of Mitochondria in the Neuropil of the Juvenile Rat Somatosensory Cortex[J].Cerebral Cortex,2018,28(10):3673-3684.
[20] Jung-Hwa T C.Stimulation-induced structural changes at the nucleus,endoplasmic reticulum and mitochondria of hippocampal neurons[J].Molecular Brain,2018,11(1):44.
[21] Ruibing L,Ting X,Dandan L,et al.Therapeutic effect of Sirtuin 3 on ameliorating nonalcoholic fatty liver disease:The role of the ERK-CREB pathway and Bnip3-mediated mitophagy[J].Redox Biology,2018,18:229-243.
[22] Zhou H,Wang S,Hu S,et al.ER–Mitochondria Microdomains in Cardiac Ischemia-Reperfusion Injury:A Fresh Perspective[J].Frontiers in Physiology,2018,9:755.
[23] Hao Z,Jin W,Pingjun Z,et al.NR4A1 aggravates the cardiac microvascular ischemia reperfusion injury through suppressing FUNDC1-mediated mitophagy and promoting Mff-required mitochondrial fission by CK2α[J].Basic Research in Cardiology,2018,113(4):23.
[24] Zhu P,Hu S,Jin Q,et al.Ripk3 promotes ER stress-induced necroptosis in cardiac IR injury:A mechanism involving calcium overload/XO/ROS/mPTP pathway[J].Redox Biology,2018,16:157-168.
[25] Cui J,Li Z,Zhuang S,et al.Melatonin alleviates inflammation-induced apoptosis in human umbilical vein endothelial cells via suppression of Ca2+-XO-ROS-Drp1-mitochondrial fission axis by activation of AMPK/SERCA2a pathway[J].Cell Stress Chaperones,2018,23(2):281-293.
[26] Zhou H,Du W,Li Y,et al.Effects of melatonin on fatty liver disease:the role of NR4A1/DNA-PKcs/p53 pathway,mitochondrial fission and mitophagy[J].Journal of Pineal Research,2017,64(1):229-243.
[27] Junqin Sheng,Hongyan Li,Qin Dai,et al.DUSP1 recuses diabetic nephropathy via repressing JNK-Mff-mitochondrial fission pathways[J].Journal of Cellular Physiology,2019,234(3):3043-3057.
[28] Mcfarland A J,Davey A K,Mcdermott C M,et al.Differences in statin associated neuroprotection corresponds with either decreased production of IL-1β or TNF-α in an in vitro model of neuroinflammation-induced neurodegeneration[J].Toxicology & Applied Pharmacology,2018,344:56-73.
[29] Chen W J,Du J K,Hu X,et al.Protective effects of resveratrol on mitochondrial function in the hippocampus improves inflammation-induced depressive-like behavior[J].Physiology & Behavior,2017,182:54-61.
[30] Zhou H,Zhang Y,Hu S,et al.Melatonin protects cardiac microvasculature against ischemia/reperfusion injury via suppression of mitochondrial fission-VDAC1-HK2-mPTP-mitophagy axis[J].Journal of Pineal Research,2017,63:e12413.
[31] Li H,He F,Zhao X,et al.YAP Inhibits the Apoptosis and Migration of Human Rectal Cancer Cells via Suppression of JNK-Drp1-Mitochondrial Fission-HtrA2/Omi Pathways[J].Cellular Physiology and Biochemistry:International Journal of Experimental Cellular Physiology,Biochemistry,and Pharmacology,2017,44(5):2073-2089.
[32] Jing X,Yang J,Jiang L,et al.MicroRNA-29b Regulates the Mitochondria-Dependent Apoptotic Pathway by Targeting Bax in Doxorubicin Cardiotoxicity[J].Cellular Physiology and Biochemistry:International Journal of Experimental Cellular Physiology,Biochemistry,and Pharmacology,2018,48(2):692-704.
[33] Cho B B.Caspase-independent programmed cell death following ischemic stroke[J].Journal of Investigative Surgery:the Official Journal of the Academy of Surgical Research,2008,21(3):141-147.
[34] Prabhakaran K,Chapman G D.BNIP3 up-regulation and mitochondrial dysfunction in manganese-induced neurotoxicity[J].Neurotoxicology,2009,30(3):414-422.
[35] Zhao S T,Chen M,Li S J,et al.Mitochondrial BNIP3 upregulation precedes endonuclease G translocation in hippocampal neuronal death following oxygen-glucose deprivation[J].BMC Neuroscience,2009,10(1):113.
[36] Rigillo G,Vilella A,Benatti C,et al.LPS-induced histone H3 phospho(Ser10)-acetylation(Lys14) regulates neuronal and microglial neuroinflammatory response[J].Brain,Behavior,and Immunity,2018,74:277-290.
[37] Errea O,Moreno B,Gonzalez-Franquesa,et al.The disruption of mitochondrial axonal transport is an early event in neuroinflammation[J].Journal of Neuroinflammation,2015,12(1):152.
[38] Ho D H,Je A R,Lee H,et al.LRRK2 Kinase Activity Induces Mitochondrial Fission in Microglia via Drp1 and Modulates Neuroinflammation[J].Experimental Neurobiology,2018,27(3):171-180.
[39] Zuo W Q,Hu Y J,Yang Y,et al.Sensitivity of spiral ganglion neurons to damage caused by mobile phone electromagnetic radiation will increase in lipopolysaccharide-induced inflammation in vitro model[J].Journal of Neuroinflammation,2015,12(1):105.
(收稿日期:2019-05-05) (本文編輯:郎序瑩)