徐經(jīng)琦 王君 史同新 徐迪 張翠蘋
[摘要]目的探討扁平苔癬低氧誘導(dǎo)因子-1α(HIF-1α)、葡萄糖轉(zhuǎn)運(yùn)因子-1(GLUT-1)及基質(zhì)金屬蛋白酶-2(MMP-2)的表達(dá),并分析三者在扁平苔癬發(fā)病中的作用。方法應(yīng)用免疫組織化學(xué)方法,檢測(cè)45例扁平苔癬病人皮損組織HIF-1α、GLUT-1及MMP-2蛋白表達(dá)和分布情況,以35例正常人皮膚組織作為對(duì)照。結(jié)果扁平苔癬皮損組織中HIF-1α、GLUT-1及MMP-2的表達(dá)陽(yáng)性率分別為86.6%、88.9%和85.7%,均高于對(duì)照組(χ2=23.74~40.00,P<0.01)。扁平苔癬皮損組織中HIF-1α、MMP-2和GLUT-1表達(dá)均呈正相關(guān)(r=0.98~0.99,P<0.05)。結(jié)論扁平苔癬皮損組織中HIF-1α、GLUT-1及MMP-2均過(guò)表達(dá),三者與扁平苔癬的發(fā)生與發(fā)展有關(guān)。
[關(guān)鍵詞]扁平苔癬;缺氧誘導(dǎo)因子1,α亞基;葡萄糖轉(zhuǎn)運(yùn)體1型;基質(zhì)金屬蛋白酶2;免疫組織化學(xué)
[中圖分類號(hào)]R758.65[文獻(xiàn)標(biāo)志碼]A[文章編號(hào)]2096-5532(2019)03-0350-05
[ABSTRACT]ObjectiveTo investigate the expression of hypoxia-inducible factor-1α (HIF-1α), glucose transporter 1 (GLUT-1), and matrix metalloproteinase-2 (MMP-2) in lichen planus and their role in the pathogenesis of lichen planus. Me-thodsImmunohistochemistry was used to measure the expression and distribution of HIF-1α, GLUT-1, and MMP-2 proteins in the skin lesions of 45 patients with lichen planus, and the skin tissue samples from 35 healthy individuals were collected as control group. ResultsIn the skin lesions of lichen planus, the positive rates of HIF-1α, GLUT-1, and MMP-2 were 86.6%,88.9%, and 85.7%, respectively, which were higher than the positive rates in the control group (χ2=23.74-40.00,P<0.01). There was a positive correlation between HIF-1α, GLUT-1, and MMP-2 in the skin lesions of lichen planus (r=0.98-0.99,P<0.05). ConclusionOverexpression of HIF-1α, GLUT-1, and MMP-2 is observed in the skin lesions of lichen planus, and HIF-1α, GLUT-1, and MMP-2 are associated with the development and progression of lichen planus.
[KEY WORDS]lichen planus; hypoxia-inducible factor 1, alpha subunit; glucose transporter type 1; ?matrix metallopro-teinase 2; ?immunohistochemistry
扁平苔癬(LP)原發(fā)損害為多角形扁平丘疹,好發(fā)于四肢伸側(cè)、軀干以及頸背部,往往伴有瘙癢,給病人帶來(lái)很大的苦惱[1]。研究顯示,LP是多種機(jī)制共同作用導(dǎo)致的免疫炎性疾病。近年來(lái)越來(lái)越多的研究表明,低氧環(huán)境下誘導(dǎo)的低氧誘導(dǎo)因子(HIF)在免疫炎癥反應(yīng)中發(fā)揮著重要作用[2]。基質(zhì)金屬蛋白酶家族(MMPs)是以鋅離子為錨定結(jié)構(gòu)的內(nèi)肽酶家族,參與幾乎所有細(xì)胞的生化反應(yīng),其中的基質(zhì)金屬蛋白酶-2(MMP-2)可特異性水解Ⅳ型膠原。皮膚表皮基底層主要成分為Ⅳ型膠原,MMP-2平衡失代償會(huì)導(dǎo)致基底層液化變性[3]。既往多項(xiàng)研究顯示,葡萄糖轉(zhuǎn)運(yùn)因子-1(GLUT-1)是受HIF-1調(diào)控的靶基因之一,低氧環(huán)境下HIF-1蛋白表達(dá)增高,并誘導(dǎo)下游因子GLUT-1蛋白表達(dá),二者均參與細(xì)胞低氧調(diào)控的生化反應(yīng)以適應(yīng)低氧環(huán)境[4-5]。本文研究應(yīng)用免疫組織化學(xué)方法,檢測(cè)HIF-1α、GLUT-1、MMP-2在正常皮膚組織、LP皮損組織中的表達(dá)情況,探討三者在LP中的表達(dá)及其之間是否存在相關(guān)性?,F(xiàn)將結(jié)果報(bào)告如下。
1材料與方法
1.1標(biāo)本及其來(lái)源
2015年7月—2017年7月,收集我院黃島院區(qū)皮膚科診治的LP病人皮損組織45例,均經(jīng)病理檢查確診。其中男24例,女21例;年齡20~60歲,平均(37.2±10.0)歲;病程3月~15年,平均10.33月。另取本院同期外科手術(shù)后病人的正常皮膚組織35例,其中男17例,女18例;年齡22~60歲,平均
1.2主要試劑
兔抗人HIF-1α多克隆抗體、兔抗人MMP-2多克隆抗體、兔抗人GLUT-1均購(gòu)自青島云山公司;SP試劑盒購(gòu)自福建邁新生物技術(shù)公司;通用型二抗(PV-6001)、 二氨基聯(lián)苯胺試劑購(gòu)自北京中杉金橋生物技術(shù)有限公司。
1.3檢測(cè)指標(biāo)及方法
將組織切片置于烘片機(jī)中烘烤1 h,緩沖液沖洗3次,微波抗原修復(fù)20 min,加入30 g/L過(guò)氧化物酶1孵育10 min,微波加熱修復(fù)2 min,分別滴加一抗HIF-1α、MMP-2及GLUT-1(滴度分別為1∶200,1∶75和1∶150),37 ℃水浴1 h,加入通用型二抗PV-6001,置37 ℃恒溫箱45 min。 陽(yáng)性對(duì)照采用自身對(duì)照,陰性對(duì)照采用PBS緩沖液代替一抗。光鏡下觀察染色情況。
1.4結(jié)果判斷
HIF-1α和GLUT-1染色結(jié)果判定:隨機(jī)取切片四角及中央10個(gè)高倍視野進(jìn)行觀察。細(xì)胞染色強(qiáng)度評(píng)分:3分,棕褐色染色;2分,棕黃色染色;1分,淺黃色染色;0分,細(xì)胞無(wú)顯色。再對(duì)陽(yáng)性細(xì)胞百分比評(píng)分:<30%為1分;30%~70%為2分,>70為3分。根據(jù)染色強(qiáng)度和陽(yáng)性細(xì)胞百分比評(píng)分相乘得分評(píng)定結(jié)果,<1分為陰性表達(dá)(-),≥1分為陽(yáng)性表達(dá)(+)。MMP-2染色結(jié)果評(píng)定:陽(yáng)性細(xì)胞百分?jǐn)?shù)<10%為陰性(-),≥10%為陽(yáng)性(+)。
1.5統(tǒng)計(jì)學(xué)方法
采用SPSS 24.0 軟件進(jìn)行統(tǒng)計(jì)學(xué)處理,計(jì)數(shù)資料比較采用χ2檢驗(yàn);相關(guān)性分析采用Spearman法。P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
2結(jié)果
2.1兩組MMP-2表達(dá)比較
LP皮損組織中MMP-2陽(yáng)性染色主要表現(xiàn)為表皮基底層細(xì)胞漿中出現(xiàn)棕黃色顆粒沉淀,對(duì)照組表皮無(wú)明顯染色或者可見淡黃色沉淀(圖1)。LP皮損組織中39例MMP-2陽(yáng)性表達(dá),表達(dá)陽(yáng)性率為86.6%,高于正常皮膚組織(31.5%),差異有統(tǒng)計(jì)學(xué)意義(χ2=26.58,P<0.05)。
2.2兩組GLUT-1表達(dá)比較
LP皮損組織中GLUT-1陽(yáng)性染色主要表現(xiàn)為基底層棕黃色顆粒沉淀,棘層及真皮淺層淋巴細(xì)胞亦出現(xiàn)陽(yáng)性染色,棕黃色染色主要定位于細(xì)胞膜和極少量細(xì)胞漿;對(duì)照組無(wú)明顯著色(圖2)。LP皮損組織中有40例GLUT-1陽(yáng)性表達(dá),表達(dá)陽(yáng)性率為88.9%,高于正常皮膚組織(20.0%),兩組比較差異有統(tǒng)計(jì)學(xué)意義(χ2=40.00,P<0.05)。
2.3兩組HIF-1α表達(dá)比較
HIF-1α陽(yáng)性染色為基底層細(xì)胞及真皮淺層淋巴細(xì)胞胞核出現(xiàn)棕黃色顆粒,主要定位于核膜(圖3)。正常皮膚組織中HIF-1α不表達(dá)或少量表達(dá);LP皮損組織中39例HIF-1α陽(yáng)性表達(dá),表達(dá)陽(yáng)性率為86.7%,兩組比較差異有顯著意義(χ2=23.74,P<0.05)。
2.4LP皮損組織HIF-1α、MMP-2和GLUT-1表達(dá)的相關(guān)性
LP 皮損組織中HIF-1α與GLUT-1表達(dá)呈正相關(guān)(r=0.98,P<0.05),GLUT-1與MMP-2表達(dá)呈正相關(guān)(r=0.99,P<0.05),HIF-1α與MMP-2表達(dá)呈正相關(guān)(r=0.99,P<0.05)。
3討論
近年來(lái)研究表明,低氧微環(huán)境在免疫炎性疾病發(fā)生、發(fā)展中起重要作用[6]。有研究顯示,因炎癥因子刺激,皮膚免疫性疾病微環(huán)境常處于低氧狀態(tài),微環(huán)境低氧會(huì)使機(jī)體產(chǎn)生保護(hù)性生理生化反應(yīng)以維持血氧穩(wěn)定。
HIF-1α作為低氧刺激下的主要的誘導(dǎo)反應(yīng)蛋白,幾乎可產(chǎn)生于任何細(xì)胞,其主要作用包括提高代謝水平、維持血氧穩(wěn)定以及促進(jìn)生理生化反應(yīng)增加氧含量[7]。同時(shí),免疫炎性反應(yīng)因子可通過(guò)MAPK等信號(hào)通路,間接地誘導(dǎo)HIF-1α高表達(dá)[8]。推測(cè)HIF-1α和其誘導(dǎo)的下游因子的協(xié)同作用可導(dǎo)致上皮細(xì)胞增殖和凋亡的失衡,但機(jī)制還有待進(jìn)一步研究[9-10]。本文研究結(jié)果顯示,LP組HIF-1α表達(dá)陽(yáng)性率及染色程度較正常對(duì)照組顯著增高,推測(cè)HIF-1α在LP的發(fā)生、發(fā)展中可能發(fā)揮重要作用。
GLUT-1是葡萄糖轉(zhuǎn)運(yùn)蛋白主要反應(yīng)元件,存在于各類細(xì)胞中,低氧、應(yīng)激反應(yīng)等可誘導(dǎo)GLUT-1蛋白表達(dá),在低氧狀態(tài)下可被HIF-1α轉(zhuǎn)錄激活,調(diào)節(jié)下游因子,進(jìn)而調(diào)控低氧狀態(tài)下細(xì)胞生理生化反應(yīng),促進(jìn)細(xì)胞糖代謝和糖酵解,使細(xì)胞獲得更多能量來(lái)適應(yīng)低氧的不利環(huán)境[11-12]。有研究顯示,GLUT-1蛋白在正常及良性上皮腫瘤中未見表達(dá),而在肺
LP皮損組織上皮基膜和基底層角質(zhì)形成細(xì)胞的錨定成分被破壞,從而導(dǎo)致上皮組織和其他連接的組織之間出現(xiàn)裂隙,這層連接組織主要成分為Ⅳ型膠原[17-18]。近年來(lái)研究顯示,MMP-2在LP及銀屑病等增殖性疾病中表達(dá)增高[19-20]。MMP-2及其調(diào)控因子的平衡失調(diào),導(dǎo)致MMP-2降解減弱,增多的MMP-2過(guò)度破壞上皮的連接組織,從而誘發(fā)基底膜損傷,導(dǎo)致LP慢性發(fā)展。最新研究發(fā)現(xiàn),低氧也可引起MMP-2表達(dá)增加,MMPs參與缺血低氧損傷和腫瘤的侵襲轉(zhuǎn)移等許多病理生理過(guò)程[21]。HIF-1α在低氧條件下對(duì)MMP-2也有調(diào)控作用。有研究應(yīng)用氯化鈷模擬低氧以及降低氧分壓影響脂肪細(xì)胞,結(jié)果顯示,在低氧條件下MMP-2 mRNA表達(dá)明顯提高,在低氧環(huán)境下HIF-1α與MMP-2可能有一定的相關(guān)性[22]。另有研究發(fā)現(xiàn),低氧環(huán)境下腸癌、胃癌病人MMP-2表達(dá)較正常人高,癌組織轉(zhuǎn)移能力也較正常組織高[23]。國(guó)外學(xué)者采用蛋白質(zhì)印跡法、明膠酶譜等方法對(duì)纖維肉瘤組織進(jìn)行定量實(shí)驗(yàn)顯示,24 h后MMP-2 mRNA水平和細(xì)胞分泌作用顯著增高[24]。本文的研究結(jié)果也顯示,LP中MMP-2的表達(dá)與GLUT-1顯著相關(guān)。
有研究表明,能被HIF-1α直接誘導(dǎo)的基因即低氧反應(yīng)基因(HRG)的啟動(dòng)子或增強(qiáng)子有一個(gè)小于100 bp的DNA序列,可調(diào)控細(xì)胞對(duì)低氧的反應(yīng)。而MMP-2的啟動(dòng)子里缺乏此序列,推測(cè)HIF-1α對(duì)MMP-2的調(diào)控機(jī)制可能為間接調(diào)控[25-26]。NING 等[27]采用Western blot及酶聯(lián)免疫方法研究表明,惡性腫瘤組織GLUT-1可促進(jìn)MMP-2的轉(zhuǎn)錄活性,繼而對(duì)MMP-2的表達(dá)進(jìn)行正向調(diào)控。另有研究顯示,惡性腫瘤細(xì)胞中GLUT-1與MMP-2表達(dá)有顯著相關(guān)性[28]。ITO等[29]通過(guò)對(duì)8種腫瘤細(xì)胞系研究發(fā)現(xiàn),GLUT-1與MMP-2在惡性腫瘤中表達(dá)量增高并有顯著相關(guān)性,在橫紋肌肉瘤中GLUT-1對(duì)MMP-2有正向調(diào)控作用并影響腫瘤細(xì)胞的侵襲力。本文研究結(jié)果顯示,GLUT-1在LP組織中的表達(dá)高于正常組織,并且與MMP-2表達(dá)呈正相關(guān)關(guān)系,提示HIF-1α可能通過(guò)GLUT-1在轉(zhuǎn)錄水平上對(duì)MMP-2進(jìn)行正向調(diào)節(jié)。
綜上所述,LP皮損組織中HIF-1α、GLUT-1和 MMP-2表達(dá)均增加,并且三者之間的表達(dá)呈正相關(guān),提示HIF-1α、GLUT-1和 MMP-2在LP的發(fā)病中有重要作用,但其具體機(jī)制尚需進(jìn)一步研究。
[參考文獻(xiàn)]
[1]王慧,白莉. 扁平苔癬皮損中MIF,MMP-9的表達(dá)及意義[J]. 中國(guó)醫(yī)藥導(dǎo)報(bào), 2010,7(33):13-14.
[2]GRAS E, BELAIDI E, BRIANON-MARJOLLET A, et al. Endothelin-1 mediates intermittent hypoxia-induced inflammatory vascular remodeling through HIF-1 activation[J]. ?Journal of Applied Physiology, 2016,120(4):437-443.
[3]WANG Jing, LUO Hong, XIAO Yan, et al. miR-125b inhi-bits keratinocyte proliferation and promotes keratinocyte apoptosis in oral lichen planus by targeting MMP-2 expression through PI3 K/Akt/mTOR pathway[J]. ?Biomedicine & Pharmacotherapy, 2016,80(80):373-380.
[4]SELEIT I, BAKRY O A, AL-SHARAKY D R, et al. Evaluation of hypoxia inducible factor-1α and glucose transporter-1 expression in non melanoma skin cancer: an immunohistochemical study[J]. J Clin Diagn Res, 2017,11(6):EC09-EC16.
[5]FUJINO M, AISHIMA S, SHINDO K, et al. Expression of glucose transporter-1 is correlated with hypoxia-inducible factor 1α and malignant potential in pancreatic neuroendocrine tumors[J]. ?Oncology Letters, 2016,12(5):3337-3343.
[6]HUANG X, HE Z, JIANG X, et al. Folic acid represses Hypoxia-induced inflammation in THP-1 cells through inhibition of the PI3K/Akt/HIF-1α pathway[J]. ?PLoS One, 2016,11(3/4):e0151553.
[7]KARAGIOTA A, KOURTI M, SIMOS G, et al. HIF-1α-derived cell-penetrating peptides inhibit ERK-dependent activation of HIF-1 and trigger apoptosis of cancer cells under hypoxia[J]. ?Cell Mol Life Sci, 2019,76(4):809-825.
[8]BALAMURUGAN K. HIF-1 at the crossroads of hypoxia, inflammation, and cancer[J]. ?International Journal of Cancer. Journal International du Cancer, 2015,138(5):1058-1066.
[9]SUMI C, OKAMOTO A, TANAKA H, et al. Suppression of mitochondrial Oxygen metabolism mediated by the transcription factor HIF-1 alleviates propofol-induced cell toxicity[J]. ?Scientific Reports, 2018,8(1):8987-8988.
[10]CHOI Y K. A positive circuit of VEGF increases Glut-1 expression by increasing HIF-1α gene expression in human retinal endothelial cells[J]. ?Archives of Pharmacal Research, 2017,40(12):1433-1442.
[11]HOSSEINPOUR S, MASHHADIABBAS F, AHSAIE M G. Diagnostic biomarkers in oral verrucous carcinoma:a systema-tic review[J]. ?Pathology & Oncology Research, 2017,23(1):19-32.
[12]SHEN Lifang, ZHAO Xin, ZHOU Shuihong, et al. In vivo evaluation of the effects of simultaneous inhibition of GLUT-1 and HIF-1 alpha by antisense oligodeoxynucleotides on the radiosensitivity of laryngeal carcinoma using micro F-18-FDG PET/CT[J]. ?Oncotarget, 2017,8(21):34709-34726.
[13]CANPOLAT T, ERSZ C, UUZ A, et al. GLUT-1 expression in proliferative endometrium, endometrial hyperplasia, endometrial adenocarcinoma and the relationship between GLUT-1 expression and prognostic parameters in endometrial adenocarcinoma[J]. ?Turk Patoloji Dergisi, 2016,32(3):141-147.
[14]ZHANG T B, ZHAO Y, TONG Z X, et al. Inhibition of glucose-transporter 1 (GLUT-1) expression reversed Warburg effect in gastric cancer cell MKN45[J]. ?International Journal of Clinical and Experimental Medicine, 2015,8(2):2423-2428.
[15]ADACHI N, KUBOTA Y, KOSAKA K, et al. Low-dose radiation pretreatment improves survival of human ceiling culture-derived proliferative adipocytes (ccdPAs) under hypoxia via HIF-1 alpha and MMP-2 induction[J]. ?Biochemical and Biophysical Research Communications, 2015,463(4):1176-1183.
[16]MAHMOUD E D, VIVEK K P V, MAHMOUD S, et al. Hyperglycaemic impairment of PAR2-mediated vasodilation: prevention by inhibition of aortic endothelial sodium-glucose-co-transporter-2 and minimizing oxidative stress[J]. ?Vascul Pharmacol, 2018,109:56-71.
[17]NEVEEN E S, FATMA M E, HALA A T, et al. Evaluation of serum levels of neurotrophin 4 and brain-derived nerve growth factor in uremic pruritus patients[J]. ?Clin Cosmet Investig Dermatol, 2019,12:109-114.
[18]GLAZEWSKA EK, NICZYPORUK M, AWICKI S, et al. Therapy of psoriasis with narrowband ultraviolet-B light in-fluences plasma concentrations of MMP-2 and TIMP-2 in patients[J]. ?Ther Clin Risk Manag, 2016,12:1579-1585.
[19]JING Wanga, HONG Luob, YAN Xiao, et al. miR-125b inhibits keratinocyte proliferation and promotes keratinocyte apoptosis in oral lichen planus by targeting MMP-2 expression through PI3K/Akt/mTOR pathway[J]. ?Biomed Pharmaco-ther, 2016,80:373-380.
[20]DEROSA G1, ROMANO D, BIANCHI L, et al. The effects of canrenone on inflammatory markers in patients with metabolic syndrome[J]. ?Ann Med, 2015,47(1):47-52.
[21]SUN L, XIE S, JI X, et al. MMP-2-responsive fluorescent nanoprobes for enhanced selectivity of tumor cell uptake and imaging[J]. ?Biomaterials Science, 2018,6(10):2619-2626.
[23]YASUDA M, MIYAZAWA M, FUJITA?M, ?et al. Expression of hypoxia inducible factor-1alpha (HIF-1alpha) and glucose transporter-1 (GLUT-1) in ovarian adenocarcinomas: difference in hypoxic status depending on histological character[J]. ?Oncology Reports, 2008,19(1):111-116.
[24]LU Shuming, ZHANG Zhuqing, CHEN Meiru, et al. Silibinin inhibits the migration and invasion of human gastric cancer SGC7901 cells by downregulating MMP-2 and MMP-9 expression via the p38MAPK signaling pathway[J]. ?Oncology Letters, 2017,14(6):7577-7582.
[25]KIM S R, EOM T K, BYUN H G. Inhibitory effect of the carnosine-gallic acid syntheticpeptide on MMP-2 and MMP-9 in human fibrosarcoma HT1080 cells[J]. ?Journal of PeptidScience, 2014,20(9):716-724.
[26]AI P, SHEN B, PAN H, et al. MiR-411 suppressed vein wall fibrosis by downregulating MMP-2 via targeting HIF-1α[J]. ?Journal of Thrombosis and Thrombolysis, 2018,45(2):264-273.
[27]NING X, WANG Y, YAN W, et al. Chitin synthesis inhibitors promote liver cancer cell metastasis via interfering with hypoxia-inducible factor 1α[J]. ?Chemosphere, 2018,206:231-237.
[28]X Yingying, BAO Yangyang, Hong Shui, et al. Effect on the expression of MMP-2,MT-MMP in laryngeal carcinoma Hep-2 cell line by antisense glucose transporter-1[J]. ?Archives of Medical Research, 2012,43(5):395-401.
[29]ITO H, DUXBURY M, ZINNER M J, et al. Glucose transporter-1 gene expression is associated with pancreatic cancer invasiveness and MMP-2 activity[J]. ?Surgery, 2004,136(3):548-556.
(本文編輯 黃建鄉(xiāng))