王妍琦 肖帥 孫海鵬 王春鵬 王其新
[摘要]目的探討尿酸對原代培養(yǎng)的乳鼠心肌成纖維細(xì)胞(CFs)膠原合成及炎性分泌的影響,以及micro-RNA-155(miR-155)在其中的作用。方法分離培養(yǎng)乳鼠CFs,并用不同濃度(0、200、400、600、800 μmol/L)的尿酸處理。采用MTT法檢測CFs的增殖情況,羥脯氨酸試劑盒檢測膠原含量,酶聯(lián)免疫吸附試驗(ELISA)法檢測炎性因子白細(xì)胞介素-6(IL-6)、白細(xì)胞介素-1β(IL-1β)和腫瘤壞死因子-α(TNF-α)表達(dá)水平。將miR-155 inhibitor轉(zhuǎn)染入CFs,選擇前述實驗結(jié)果較為穩(wěn)定的600 μmol/L尿酸刺激CFs 24 h,采用熒光定量PCR檢測miR-155、IL-6、IL-1β、TNF-α、Ⅰ型膠原(Col-Ⅰ)、Ⅲ型膠原(Col-Ⅲ)的表達(dá)水平。結(jié)果與0 μmol/L尿酸組相比較,400、600、800 μmol/L尿酸組CFs的增殖和膠原含量增加(F=18.46、11.82,P<0.05),200、400、600、800 μmol/L尿酸組CFs IL-6、IL-1β、TNF-α的表達(dá)增加(F=29.32~69.76,P<0.05)。miR-155 inhibitor可明顯抑制尿酸誘導(dǎo)的IL-6、IL-1β、TNF-α、Col-Ⅰ、Col-Ⅲ表達(dá)增加(F=72.74~275.32,P<0.05)。結(jié)論尿酸可以通過miR-155促進(jìn)CFs的膠原合成及炎性分泌。
[關(guān)鍵詞]尿酸;心肌;成纖維細(xì)胞;微RNAs;膠原;炎癥
[中圖分類號]R542.33[文獻(xiàn)標(biāo)志碼]A[文章編號]2096-5532(2019)03-0290-05
[ABSTRACT]ObjectiveTo investigate the effects of uric acid on collagen synthesis and inflammatory secretion in primary cultured neonatal rat cardiac fibroblasts (CFs) and the role of microRNA-155 (miR-155) in the process. MethodsThe CFs of neonatal rats were isolated and treated with different concentrations of uric acid (0, 200,400,600, and 800 μmol/L). The proliferation of CFs was evaluated by MTT assay, the collagen content was determined by hydroxyproline assay kit, and the expression of inflammatory factors interleukin-6 (IL-6), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) was determined by enzyme-linked immunosorbent assay. The CFs were then transfected with miR-155 inhibitor and stimulated with 600 μmol/L uric acid, which yielded stable results in the above test, for 24 h. The expression of miR-155, IL-6, IL-1β, TNF-α, collagen type Ⅰ (Col-Ⅰ), and collagen type Ⅲ (Col-Ⅲ) was determined by quantitative real-time PCR. ResultsCompared with the group treated with 0 μmol/L uric acid, the groups treated with 400, 600, and 800 μmol/L uric acid had significantly increased proliferation and collagen content of CFs (F=18.46 and 11.82,P<0.05), and the groups treated with 200, 400, 600, and 800 μmol/L uric acid had significantly increased expression of IL-6, IL-1β, and TNF-α in CFs (F=29.32-69.76,P<0.05). However, the increased expression of IL-6, IL-1β, TNF-α, Col-Ⅰ, and Col-Ⅲ induced by uric acid was significantly inhibited by miR-155 inhibitor (F=72.74-275.32,P<0.05). ConclusionUric acid acts through miR-155 to promote collagen synthesis and inflammatory secretion of CFs.
[KEY WORDS]uric acid; myocardium; fibroblasts; microRNAs; collagen; inflammation
心力衰竭(簡稱心衰)是眾多心血管疾病的最終歸宿,心臟重塑和炎癥是心衰發(fā)展過程中的關(guān)鍵病理標(biāo)志。心肌纖維化是心臟重塑的關(guān)鍵原因,也是多種心臟疾病發(fā)展至一定階段的常見病理改變[1]。心肌成纖維細(xì)胞(CFs)是心臟中數(shù)量最多的細(xì)胞,其主要功能是調(diào)節(jié)細(xì)胞外基質(zhì)(ECM)平衡。當(dāng)心臟受損時(缺血、低氧、物理化學(xué)刺激等),CFs增殖活化,分泌炎性細(xì)胞因子,合成膠原增多,這是心肌纖維化的主要病理途徑[2]。大量流行病學(xué)研究表明,高尿酸血癥是多種心血管疾病的獨立危險因素[3-7],血尿酸水平升高可以增加病人心衰及不良預(yù)后的風(fēng)險,且與心室重構(gòu)有著密切關(guān)系[8-9]。近年來,尿酸對心血管疾病影響的基礎(chǔ)研究主要集中在心肌細(xì)胞的損傷上[10-11],而關(guān)于尿酸對心肌纖維化和CFs影響的研究報道相對較少。MicroRNA-155(miR-155)已被證明可以在多種心血管疾病中發(fā)揮作用[12-15]。最近的研究表明,miR-155能夠增加心肌重構(gòu)過程中蛋白的過度沉積[12,16],但是miR-155在CFs炎癥反應(yīng)中的作用研究相對較少。本研究應(yīng)用尿酸刺激CFs,觀察其對細(xì)胞炎性分泌及膠原合成的影響,并探討miR-155在其中的作用。
1材料與方法
1.1材料
1.1.1動物出生2~3 d的Wistar大鼠,雌雄不限,購自青島大任富城畜牧有限公司。
1.1.2試劑尿酸(Sigma公司),DMEM培養(yǎng)液、2.5 g/L胰酶(含0.2 g/L EDTA)和胎牛血清(Hyclone公司),MTT試劑盒(Solarbio公司),羥脯氨酸試劑盒(南京建成科技有限公司),Lipofectamin 2000(Invitrogen公司),大鼠白細(xì)胞介素-6(IL-6)、白細(xì)胞介素-1β(IL-1β)和腫瘤壞死因子-α(TNF-α)酶聯(lián)免疫吸附試驗(ELISA)檢測試劑盒(欣博盛公司),miR-155 inhibitor及其陰性對照、miRNA PCR試劑盒(廣州銳博生物科技有限公司),總RNA試劑盒(美國Omega公司),逆轉(zhuǎn)錄試劑盒及熒光定量PCR試劑盒(天根生物公司),PCR引物由生工生物工程(上海)股份有限公司合成。
1.2CFs的分離培養(yǎng)
取10~15只出生 2~3 d的Wistar大鼠,無菌條件下取出心臟,放入預(yù)冷D-Hanks液中洗凈淤血,剪取心室,將組織剪成大小約1 mm3的碎塊,加入0.8 g/L胰蛋白酶2 mL,置于 37 ℃水浴中消化10 min,吹打1 min,吸除上清,再加入0.8 g/L胰蛋白酶2 mL消化2~3 min,吸取上清至5 mL胎牛血清中終止消化,如此反復(fù)10~15次至組織完全消化。用 200 目篩網(wǎng)過濾細(xì)胞懸液,收集濾液至離心管中以l 500 r/min離心10 min,將所得細(xì)胞用含體積分?jǐn)?shù)0.10胎牛血清的 DMEM 培養(yǎng)液重懸,充分吹打后將細(xì)胞轉(zhuǎn)入培養(yǎng)瓶中,置于37 ℃含體積分?jǐn)?shù)0.05 CO2的培養(yǎng)箱中差速貼壁培養(yǎng)1 h,棄未貼壁細(xì)胞,加入含體積分?jǐn)?shù)0.10胎牛血清的 DMEM 培養(yǎng)液繼續(xù)培養(yǎng),取2~4代細(xì)胞進(jìn)行后續(xù)實驗。
1.3MTT法檢測CFs增殖情況
取培養(yǎng)狀態(tài)良好的CFs,接種于96孔板,每孔100 μL(5 000個細(xì)胞),培養(yǎng)24 h,分別用不同濃度(0、200、400、600、800 μmol/L)的尿酸處理24 h,加入MTT溶液每孔10 μL,孵育4 h,棄上清,再加入DMSO每孔100 μL,置搖床上低速震蕩10 min,用酶標(biāo)儀檢測490 nm波長處吸光度(A)值。每組設(shè)4個復(fù)孔。
1.4羥脯氨酸法檢測CFs膠原含量
取培養(yǎng)狀態(tài)良好的CFs,接種于6孔板培養(yǎng)24 h,分別給予不同濃度的尿酸(0、200、400、600、800 μmol/L)處理24 h,取細(xì)胞培養(yǎng)液,按照試劑盒說明書操作,用羥脯氨酸法檢測膠原蛋白含量。
1.5ELISA 法檢測CFs炎性因子表達(dá)
取培養(yǎng)狀態(tài)良好的CFs,接種于6孔板培養(yǎng)24 h,分別給予不同濃度的尿酸(0、200、400、600、800 μmol/L)處理24 h,用ELISA 法檢測細(xì)胞培養(yǎng)上清液中IL-6、IL-1β和TNF-α的表達(dá)水平。
1.6細(xì)胞轉(zhuǎn)染
取培養(yǎng)狀態(tài)良好的CFs,接種于6孔板培養(yǎng)24 h。按照說明書分別將miR-155 inhibitor及其陰性對照與Lipofectamin 2000溫和混勻,室溫孵育20 min,后將混合液加入到各孔中,置于培養(yǎng)箱中培養(yǎng) 6 h。選擇前述實驗結(jié)果較為穩(wěn)定的600 μmol/L尿酸進(jìn)行刺激。實驗設(shè)尿酸組、尿酸+陰性對照組以及尿酸+inhibitor組。采用熒光定量PCR方法檢測各組CFs中miR-155的表達(dá)情況。
1.7熒光定量PCR檢測炎性因子及膠原mRNA的表達(dá)
實驗設(shè)正常對照組(A組)、尿酸組(B組)和尿酸+inhibitor組(C組)。采用熒光定量PCR方法檢測各組CFs中IL-6、IL-1β、TNF-α、Ⅰ型膠原(Col-Ⅰ)和Ⅲ型膠原(Col-Ⅲ) mRNA表達(dá)水平。
1.8統(tǒng)計學(xué)分析
采用SPSS 22.0軟件進(jìn)行統(tǒng)計學(xué)處理,所得數(shù)據(jù)均符合正態(tài)分布以±s表示,多組比較采用單因素方差分析,以P<0.05 為差異有統(tǒng)計學(xué)意義。
2結(jié)果
2.1乳鼠CFs的形態(tài)
倒置顯微鏡下觀察,培養(yǎng)3~5 d時CFs呈融合狀態(tài),細(xì)胞大且薄,呈長梭形或多角形,略透明,排列緊密,交叉重疊生長,無自發(fā)搏動。
2.2不同濃度尿酸對CFs增殖的影響
尿酸作用24 h后,400、600、800 μmol/L尿酸組MTT法所測的A值較0 μmol/L尿酸組明顯增加(F=18.46,P<0.05),而200 μmol/L尿酸組與0 μmol/L尿酸組相比較差異無顯著性(P>0.05)。見表1。
2.3不同濃度尿酸對CFs膠原含量的影響
尿酸作用24 h后,400、600、800 μmol/L尿酸組CFs膠原蛋白含量較0 μmol/L尿酸組明顯增加(F=11.82,P<0.05),而200 μmol/L尿酸組與0 μmol/L尿酸組相比較差異無顯著性(P>0.05)。見表1。
2.4不同濃度尿酸對CFs炎性因子表達(dá)的影響
不同濃度尿酸作用24 h后,與0 μmol/L尿酸組相比,200、400、600、800 μmol/L尿酸組CFs炎性因子IL-6、IL-1β、TNF-α的表達(dá)均顯著增加(F=29.32~69.76,P<0.05)。見表2。
2.5轉(zhuǎn)染CFs后各組miR-155的表達(dá)
以600 μmol/L尿酸處理細(xì)胞24 h后,尿酸組CFs miR-155的相對表達(dá)量為1.00±0.00,尿酸+陰性對照組為1.07±0.10,尿酸+inhibitor組為0.31±0.08,尿酸+inhibitor組miR-155的相對表達(dá)量明顯低于尿酸組及尿酸+陰性對照組(F=172.65,P<0.05)。
2.6MiR-155對尿酸誘導(dǎo)的CFs中炎性因子及膠原mRNA表達(dá)的影響
熒光定量PCR檢測顯示,miR-155 inhibitor可以明顯抑制600 μmol/L尿酸誘導(dǎo)的IL-6、IL-1β、TNF-α、Col-Ⅰ、Col-Ⅲ的表達(dá)增加(F=72.74~275.32,P<0.05)。見表3。
3討論
高尿酸血癥是一種常見的代謝性疾病,與高血壓、血脂異常、糖代謝受損等密切相關(guān)[5],是心血管疾病的一個重要的獨立危險因素[4-7]。有臨床研究顯示,在普通人群中,血尿酸水平與左心室肥厚存在獨立相關(guān)性[17];在老年心衰病人中,血尿酸水平與心室重構(gòu)明顯相關(guān)且獨立于腎功能之外[7,18]。動物實驗研究顯示,血尿酸水平升高可以誘導(dǎo)小鼠心室重塑、炎癥、心肌纖維化以及膠原相關(guān)酶的分泌異常[19-21]。在細(xì)胞水平,尿酸可以誘導(dǎo)CFs增殖、內(nèi)皮素-1(ET-1)表達(dá)增加和活性氧(ROS)生成增多等氧化應(yīng)激反應(yīng)[22],但是尿酸對CFs膠原合成及炎性因子分泌的影響尚未見報道。
心肌纖維化是心臟受損后,炎癥介導(dǎo)心肌細(xì)胞壞死、凋亡,ECM異常增多和過度沉積的病理過程。心臟ECM主要由膠原、蛋白多糖、糖蛋白、生長因子和蛋白酶等構(gòu)成,其中的膠原主要是Col-Ⅰ和表1不同濃度尿酸對CFs增殖和膠原合成的影響(n=3,A,±s)尿酸濃度(c/μmol·L-1)細(xì)胞增殖膠原蛋白Col-Ⅲ[23]。生理狀態(tài)時,CFs通過合成膠原、分泌膠原水解酶,合成新膠原蛋白替代老化的膠原蛋白,從而穩(wěn)定心臟ECM的成分和結(jié)構(gòu)[24]。心臟損傷后,受到自分泌和旁分泌的調(diào)控,CFs活化并迅速增殖,向損傷區(qū)域遷移,分泌ECM(主要是膠原),從而促進(jìn)傷口愈合和瘢痕形成[25-26],當(dāng)心臟持續(xù)接受外界刺激時,則會造成膠原的過度沉積,形成心肌纖維化[27]。本實驗結(jié)果顯示,CFs的增殖能力以及合成Col-Ⅰ和Col-Ⅲ的量在一定范圍內(nèi)隨尿酸濃度的增加而增加,表明較高濃度的尿酸可以誘導(dǎo)CFs過度合成膠原,導(dǎo)致心肌纖維化的發(fā)生。
心臟炎癥可以觸發(fā)CFs的表型轉(zhuǎn)化,增加心肌膠原沉積,是心臟重構(gòu)的一個病理關(guān)鍵[28]。心臟損傷后,CFs可以產(chǎn)生促炎性細(xì)胞因子、趨化因子(如IL-1β、IL-6、TNF-α等),募集炎性細(xì)胞(中性粒細(xì)胞、巨噬細(xì)胞、單核細(xì)胞等)到心臟組織中,CFs與炎性細(xì)胞相互作用,引發(fā)心臟炎癥的惡性循環(huán)[29-30]。高尿酸血癥病人血清炎癥指標(biāo)升高,說明高尿酸血癥可引起機(jī)體炎癥反應(yīng)[31]。最近有研究結(jié)果表明,CFs中NLRP3炎癥小體的激活在心臟炎癥反應(yīng)中起關(guān)鍵作用[32-33]。而尿酸可以通過激活NLRP3炎癥小體,釋放促炎性細(xì)胞因子到細(xì)胞外,介導(dǎo)炎癥反應(yīng)[34]。因此,我們推測尿酸可以誘導(dǎo)CFs的炎癥反應(yīng)。本實驗結(jié)果顯示,一定濃度尿酸可刺激CFs分泌炎性細(xì)胞因子(IL-6、IL-1β、TNF-α),可見尿酸可以在一定程度上促進(jìn)心臟炎癥的發(fā)生發(fā)展。
研究已證明,某些microRNAs在某些特定的疾病中過度表達(dá),它們通過單獨或者聯(lián)合作用調(diào)節(jié)疾病的發(fā)生發(fā)展。miR-155在各種炎癥性心臟病,包括心肌肥大、心肌炎、動脈粥樣硬化和心衰中起重要作用[35]。最近研究發(fā)現(xiàn),miR-155參與心臟重塑的病理過程,miR-155敲除可以改善血管緊張素Ⅱ(AngⅡ)誘導(dǎo)的心臟重塑,減輕膠原沉積,而miR-155的過度表達(dá)則可促進(jìn)CFs的表達(dá)轉(zhuǎn)化[12]。本研究通過抑制miR-155表達(dá)來探討miR-155在尿酸誘導(dǎo)的心肌纖維化中的作用,結(jié)果表明miR-155在尿酸誘導(dǎo)的心肌纖維化中起促進(jìn)作用,它參與了CFs的膠原合成及炎性分泌。
綜上所述,尿酸可以通過miR-155促進(jìn)CFs的膠原合成及炎性分泌,抑制miR-155則可減輕上述反應(yīng),提示靶向miR-155可能作為心肌纖維化的潛在治療方法。
[參考文獻(xiàn)]
[1]施洋,李瀾,邢曉雪,等. 心肌纖維化與慢性充血性心力衰竭研究進(jìn)展[J]. ?中國臨床藥理學(xué)雜志, 2016,32(1):87-90.
[2]LINDNER D, ZIETSCH C, TANK J, et al. Cardiac fibroblasts support cardiac inflammation in heart failure[J]. ?Basic Research in Cardiology, 2014,109(5):428.
[3]GUDIO G . Hyperuricemia as a risk factor for cardiovascular disease: clinical review[J]. ?Medwave, 2016,16(10):e6606.
[4]BORGHI C, VERARDI F M, PAREO I, et al. Hyperuricemia and cardiovascular disease risk[J]. ?Expert Review of Cardiovascular Therapy, 2014,12(10):1219-1225.
[5]YOSHIMURA A, ADACHI H, HIRAI Y, et al. Serum uric acid is associated with the left ventricular mass index in males of a general population[J]. ?International Heart Journal, 2014,55(1):65-70.
[6]PALMER T M, NORDESTGAARD B G, MARIANNE B, et al. Association of plasma uric acid with ischaemic heart disease and blood pressure: mendelian randomisation analysis of two large cohorts[J]. ?British Medical Journal, 2013,347:f4262.
[7]FILIPPATOS G S, AHMED M I, GLADDEN J D, et al. Hyperuricaemia, chronic kidney disease, and outcomes in heart failure: potential mechanistic insights from epidemiological data[J]. ?European Heart Journal, 2011,32(6):712-720.
[8]KAUFMAN M, GUGLIN M. Uric acid in heart failure: a biomarker or therapeutic target[J]? Heart Failure Reviews, 2013,18(2):177-186.
[9]RADOVANOVIC S, SAVIC-RADOJEVIC A, PEKMEZO-VIC T, et al. Uric acid and gamma-glutamyl transferase activity are associated with left ventricular remodeling indices in patients with chronic heart failure[J]. ?Revista Espaola de Cardiología, 2014,67(8):632-642.
[10]LI Zhi, SHEN Yang, CHEN Yingqun, et al. High uric acid inhibits cardiomyocyte viability through the ERK/P38 pathway via oxidative stress[J]. ?Cellular Physiology and Bioche-mistry, 2018,45(3):1156-1164.
[11]YAN Meiling, CHEN Kankai, HE Li, et al. Uric acid induces cardiomyocyte apoptosis via activation of calpain-1 and endoplasmic reticulum stress[J]. ?Cellular Physiology and Bioche-mistry, 2018,45(5):2122-2135.
[12]WEI Yuzhen, YAN Xiaofei, YAN Lianhua, et al. Inhibition of microRNA-155 ameliorates cardiac fibrosis in the process of angiotensin Ⅱ-induced cardiac remodeling[J]. ?Molecular Medicine Reports, 2017,16(5):7287-7296.
[13]NAZARI-JAHANTIGH M, WEI Y Y, NOELS H, et al. MicroRNA-155 promotes atherosclerosis by repressing Bcl6 in macrophages[J]. ?The Journal of Clinical Investigation, 2012,122(11):4190-4202.
[14]WANG Hui, BEI Yihua, HUANG Peipei, et al. Inhibition of miR-155 protects against LPS-induced cardiac dysfunction and apoptosis in mice[J]. ?Molecular Therapy, Nucleic Acids, 2016,5(10):e374.
[15]BALA S, CSAK T, SAHA B, et al. The pro-inflammatory effects of miR-155 promote liver fibrosis and alcohol-induced steatohepatitis[J]. ?Journal of Hepatology, 2016,64(6):1378-1387.
[16]HE Wangwei, HUANG He, XIE Qiang, et al. MiR-155 knockout in fibroblasts improves cardiac remodeling by targeting tumor protein p53-Inducible nuclear protein 1[J]. ?Journal of Cardiovascular Pharmacology and Therapeutics, 2016,21(4):423-435.
[17]DOEHNER W, JANKOWSKA E A, SPRINGER J, et al. Uric acid and xanthine oxidase in heart failure-Emerging data and therapeutic implications[J]. ?International Journal of Car-diology, 2016,213:15-19.
[18]張佩迪,劉培釗,楊艷敏. 血尿酸水平與老年慢性心力衰竭心室重構(gòu)的關(guān)系[J]. ?中國老年學(xué), 2017,37(15):3714-3716.
[19]JIA G H, HABIBI J, BOSTICK B P, et al. Uric acid promotes left ventricular diastolic dysfunction in mice fed a wes-tern diet[J]. ?Hypertension, 2015,65(3):531-539.
[20]SHIMIZU T, YOSHIHISA A, KANNO Y, et al. Relationship of hyperuricemia with mortality in heart failure patients with preserved ejection fraction[J]. ?American Journal of Phy-siology-Heart and Circulatory Physiology, 2015,309(7):H1123-H1129.
[21]CHEN C C, HSU Y J, LEE T M. Impact of elevated uric acid on ventricular remodeling in infarcted rats with experimentalD, hyperuricemia[J]. ?American Journal of Physiology-Heart and Circulatory Physiology, 2011,301(3):H1107-H1117.
[22]CHENG T H, LIN J W, CHAO H H, et al. Uric acid activates extracellular signal-regulated kinases and thereafter endothelin-1 expression in rat cardiac fibroblasts[J]. ?Internatio-nal Journal of Cardiology, 2010,139(1):42-49.
[23]RIENKS M, PAPAGEORGIOU A P, FRANGOGIANNIS N G, et al. Myocardial extracellular matrix an ever-changing and diverse entity[J]. ?Circulation Research, 2014,114(5):872-888.
[24]NGU J M, TENG G Q, MEIJNDERT H C, et al. Human cardiac fibroblast extracellular matrix remodeling: dual effects of tissue inhibitor of metalloproteinase-2[J]. ?Cardiovascular Pathology, 2014,23(6):335-343.
[25]DEB A, UBIL E. Cardiac fibroblast in development and wound healing[J]. ?Journal of Molecular and Cellular Cardiology, 2014,70(9):47-55.
[26]HUANG Ying, QI Yuan, DU Jianqing, et al. MicroRNA-34a regulates cardiac fibrosis after myocardial infarction by targeting Smad4[J]. ?Expert Opinion on Therapeutic Targets, 2014,18(12):1355-1365.
[27]MOORE-MORRIS T, GUIMARAES-CAMBOA N, YUT-ZEY K E, et al. Cardiac fibroblasts: from development to heart failure[J]. ?Journal of Molecular Medicine, 2015,93(8):823-830.
[28]CHEN W, FRANGOGIANNIS N G. Fibroblasts in post-infarction inflammation and cardiac repair[J]. ?Biochimica et Biophysica Acta-Molecular Cell Research, 2013,1833(4,SI):945-953.[29]TANG Xilan, LIU Jianxun, DONG Wei, et al. Protective effect of kaempferol on LPS plus ATP-induced inflammatory response in cardiac fibroblasts[J]. ?Inflammation, 2015,38(1):94-101.
[30]WU L, ONG S, TALOR M V, et al. Cardiac fibroblasts mediate IL-17A-driven inflammatory dilated cardiomyopathy[J]. ?Journal of Experimental Medicine, 2014,211(7):1449-1464.
[31]TURAK O, OZCAN F, TOK D, et al. Serum uric acid, inflammation, and nondipping circadian pattern in essential hypertension[J]. ?Journal of Clinical Hypertension, 2013,15(1):7-13.
[32]ZHANG W B, XU X M, KAO R, et al. Cardiac fibroblasts contribute to myocardial dysfunction in mice with sepsis: the role of NLRP3 inflammasome activation[J]. ?PLoS One, 2014,9(9):e107639.
[33]SANDANGER , RANHEIM T, VINGE L E, et al. The NLRP3 inflammasome is up-regulated in cardiac fibroblasts and mediates myocardial ischaemia-reperfusion injury[J]. ?Cardiovascular Research, 2013,99(1):164-174.
[34]GALLEGO-DELGADO J, TY M, ORENGO J M, et al. A surprising role for uric acid: the inflammatory malaria response[J]. ?Current Rheumatology Reports, 2014,16(2):1-6.
[35]ZHANG Dong, CUI Yongchun, LI Bin, et al. miR-155 regulates high glucose-induced cardiac fibrosis via the TGF-beta signaling pathway[J]. ?Molecular Biosystems, 2017,13(1):215-224.
(本文編輯 馬偉平)