黃文江 師越 董瑩瑩 葉回春 鄔明權(quán) 崔貝 劉林毅
摘要: 病蟲害是農(nóng)業(yè)生產(chǎn)過程中影響糧食產(chǎn)量和質(zhì)量的重要生物災(zāi)害。目前,我國的作物病蟲害監(jiān)測方式以點狀的地面調(diào)查為主,無法大面積、快速獲取作物病蟲害發(fā)生狀況和空間分布信息,難以滿足作物病蟲害的大尺度科學(xué)監(jiān)測和防控的需求。近年來,隨著國內(nèi)外衛(wèi)星光譜、時間和空間分辨率的不斷提升,利用遙感手段開展高效、無損的病蟲害監(jiān)測成為有效提升我國病蟲害測報水平的重要手段。與此同時,多平臺、多種方式的作物病蟲害遙感監(jiān)測也為病蟲害的有效防治和管理提供了重要科技支撐。本文從作物病蟲害光譜特征、遙感監(jiān)測方法和遙感監(jiān)測系統(tǒng)等方面闡述了作物病蟲害遙感監(jiān)測研究的進展,分析了當(dāng)前面臨的挑戰(zhàn),并對未來發(fā)展趨勢進行了展望。
關(guān)鍵詞: 作物;遙感;病蟲害監(jiān)測;未來展望
中圖分類號: S-1 文獻標(biāo)志碼: A 文章編號: 201905-SA005
引文格式:黃文江, 師 ?越, 董瑩瑩, 葉回春, 鄔明權(quán), 崔 ?貝, 劉林毅. 作物病蟲害遙感監(jiān)測研究進展與展望[J]. 智慧農(nóng)業(yè), 2019,1(4): 1-11.
Huang W, Shi Y, Dong Y, Ye H, Wu M, Cui B, Liu L. Progress and prospects of crop diseases and pests monitoring by remote sensing[J]. Smart Agriculture, 2019, 1(4): 1-11. (in Chinese with English abstract)
1 引言
作物病蟲害是農(nóng)業(yè)生產(chǎn)過程中影響糧食產(chǎn)量和質(zhì)量的重要生物災(zāi)害[1,2]。在全球范圍內(nèi),與病害相關(guān)的糧食產(chǎn)量損失約占全球糧食總產(chǎn)量的14%,與蟲害相關(guān)的糧食產(chǎn)量損失約占全球糧食總產(chǎn)量的10%[3]。據(jù)全國農(nóng)業(yè)技術(shù)推廣服務(wù)中 心2018年公布的數(shù)據(jù),中國每年因病蟲害的發(fā)生和危害導(dǎo)致的直接糧食損失約占總產(chǎn)量的30%。2010年“中央一號文件”提出要支持開展農(nóng)作物病蟲害專業(yè)化統(tǒng)防統(tǒng)治,加強重大病蟲害監(jiān)測預(yù)警能力建設(shè)[4]。對病蟲害進行早期預(yù)警和防控對減少農(nóng)業(yè)化學(xué)藥劑的使用量和殘留量,促進生態(tài)環(huán)境和國家食品安全,以及對于中國糧食貿(mào)易策略制定和社會經(jīng)濟發(fā)展均具有重要戰(zhàn)略意義。
隨著遙感科技和計算機技術(shù)的發(fā)展,利用遙感手段對作物病蟲害進行“非接觸式”的監(jiān)測逐漸被應(yīng)用于農(nóng)業(yè)生產(chǎn)過程中。而隨著近年來遙感數(shù)據(jù)尺度的極大豐富,對病蟲害遙感監(jiān)測模型方法的研究已成為農(nóng)業(yè)遙感領(lǐng)域中一個重要研究內(nèi)容[5-9]。隨著遙感與其他數(shù)據(jù)類型之間聯(lián)系的不斷加強,各個層面的研究均得到了深化,遙感技術(shù)在農(nóng)作物病蟲害監(jiān)測、病蟲害預(yù)測預(yù)報以及田間精準(zhǔn)防控和管理等方面都有著不同程度的應(yīng)用。
利用遙感技術(shù)不僅能夠?qū)ψ魑锊∠x害的發(fā)生范圍進行監(jiān)測,也能夠?qū)Σ煌∠x害脅迫的發(fā)生類別和嚴重程度進行識別和區(qū)分[2,10-12]。各類機載、星載的精密測控傳感器的發(fā)展為不同的用戶需求提供了多重“時—空—譜”分辨率的遙感信息,這為準(zhǔn)確、快速地了解作物病蟲害發(fā)展?fàn)顩r提供了寶貴契機。而隨著遙感技術(shù)及病蟲害監(jiān)測水平的不斷提高,一些新的信號處理技術(shù)、機器學(xué)習(xí)方法和模式識別算法在監(jiān)測建模中被不斷應(yīng)用[6,13-17]。本文介紹了當(dāng)前國內(nèi)外作物病蟲害遙感監(jiān)測方法和技術(shù),闡述了作物病蟲害遙感監(jiān)測在監(jiān)測方法、監(jiān)測系統(tǒng)研發(fā)與應(yīng)用等方面的研究進展,并在此基礎(chǔ)上分析了作物病蟲害遙感監(jiān)測目前所面臨的挑戰(zhàn),同時也展望了未來發(fā)展的趨勢。
2 作物病蟲害遙感監(jiān)測方法研究進展
隨著遙感衛(wèi)星數(shù)據(jù)源的不斷豐富,近幾年新發(fā)射的中國高分(GF)系列、歐洲航天局的哨兵系列(Sentinel series)等,加之已有的中國的風(fēng)云(FY)系列、環(huán)境(HJ)系列,美國的Landsat系列衛(wèi)星等,使得遙感觀測數(shù)據(jù)的空間分辨率和時間分辨率都得到了極大提升[18]。近年來,利用遙感手段進行作物病蟲害監(jiān)測,主要針對不同的遙感數(shù)據(jù)源的特點,對不同病蟲害脅迫下的光譜響應(yīng)特征進行分析,通過選取病蟲害敏感性波段所表現(xiàn)的波普特性,對遙感信號進行分析和建模,從而實現(xiàn)病蟲害的監(jiān)測和分類。
2.1 基于高光譜分析技術(shù)的遙感監(jiān)測
基于高光譜技術(shù)的作物病蟲害監(jiān)測研究主要集中在可見光波段和近紅外波段。通過高光譜觀測獲取的作物連續(xù)的波譜信息在病蟲害遙感監(jiān)測和識別方面的主要有以下兩方面的應(yīng)用:一方面利用高光譜傳感器可以同時獲取作物病蟲害脅迫的光譜差異和紋理差異,進而結(jié)合兩方面的差異性信息提取脅迫特征;另一方面,獲取的高光譜波段信息可以有效表征由病蟲害引起的葉片理化組分的變化差異。
作物受病蟲害脅迫后引起的葉片表面“可見—近紅外”波段的光譜反射率的變化是病蟲害遙感的直接特征,反映了植被物理生化組分的響應(yīng)。病蟲害引起的光譜響應(yīng)研究已引起了很多學(xué)者重視,并被廣泛應(yīng)用于遙感監(jiān)測和早期脅迫診斷研究[19-22]。Luo等[23]研究了生長了蚜蟲的小麥葉片的光譜響應(yīng),結(jié)果表明,在700~750nm、750~930nm、950~1030nm和1040~1130nm處葉片的光譜反射對小麥蚜蟲的響應(yīng)率顯著;除此之外,利用原始光譜的特征變換形式可以有效地加強波譜特征的差異,從而提取出目標(biāo)病害的類別和嚴重程度。例如,Spilenlli等[24]對梨樹冠層光譜數(shù)據(jù)進行了求導(dǎo),通過篩選對梨樹火瘟病較為敏感的導(dǎo)數(shù)特征進行了火瘟病的遙感識別和早期監(jiān)測,并對不同維度光譜信息的對比分析,發(fā)現(xiàn)高維的光譜信息包含更多與病害脅迫相關(guān)的特征,能夠?qū)Σ『γ{迫進行較為精確的早期監(jiān)測。Purcell等[25]利用高光譜分析儀測定了不同侵染等級下的甘蔗樣本,并通過傅里葉變換(Fourier Transform,F(xiàn)T)對光譜的紋理信息進行了提取,接著利用主成分分析法篩選了重要的特征變量,并用偏最小二乘法(Partial Least-Square Method,PLS)對篩選特征與不同病害嚴重度進行了建模分析,結(jié)果表明二階微分光譜相比于其他特征擁有更高的監(jiān)測精度,在病害早期識別中有較大的應(yīng)用潛力。
另一方面,對敏感波段進行組合構(gòu)成的光譜指數(shù)不僅擁有明確的物理意義,還能突顯病蟲害的生理生化過程,從而從生物學(xué)機制的角度實現(xiàn)對病蟲害的監(jiān)測和區(qū)分。Shi等[26]通過接種實驗獲取了小麥條銹病、白粉病和蚜蟲的冠層高光譜數(shù)據(jù),通過相關(guān)性分析篩選了敏感波段并基于敏感波段提取了多個植被指數(shù)特征,之后通過多種核判別分析構(gòu)建了多種非線性分類器,并利用所構(gòu)建的分類器對冠層進行了監(jiān)測識別,結(jié)果表明,基于Sigmoid核函數(shù)構(gòu)建的非線性分類器能夠獲得較高精度的監(jiān)測效果。Naidu等[21]通過野外實驗獲取了受葡萄卷葉病侵染的葡萄葉片高光譜數(shù)據(jù),通過相關(guān)性分析發(fā)現(xiàn)綠波段和近紅外波段的光譜反射率對病害脅迫有顯著的響應(yīng)。隨后,基于敏感波段構(gòu)建了相關(guān)的植被指數(shù),實現(xiàn)了對葡萄卷葉病的高精度遙感識別。在這些研究的基礎(chǔ)上,越來越多的學(xué)者發(fā)現(xiàn)作物病蟲害在不同的光譜波段中表現(xiàn)出不同的響應(yīng)[27-29],因此如何針對不同的病蟲害種類,在實際監(jiān)測中需要尋找和構(gòu)建具有高專一性的監(jiān)測指標(biāo),選擇較為合適的模型構(gòu)建方法是作物病蟲害遙感監(jiān)測中繼續(xù)解決的關(guān)鍵問題[30-32]。目前較為普遍的思路是通過尋找與病蟲害嚴重度較為敏感的高光譜波段來提取和構(gòu)建相關(guān)的光譜特征,表1為當(dāng)前主要的作物病蟲害遙感識別和監(jiān)測的光譜特征,用于區(qū)分和識別不同病蟲害脅迫。
2.2 基于航空/航天平臺的多光譜遙感監(jiān)測
在區(qū)域尺度上,隨著航空/航天遙感平臺的不斷完善,國內(nèi)外構(gòu)建起了完善的遙感對地觀測體系,為病蟲害的大尺度遙感監(jiān)測提供了技術(shù)支撐。Held等[46]通過分析受甘蔗銹病脅迫的甘蔗光譜數(shù)據(jù),利用DWSI指數(shù)對EO-1 Hyperion高光譜影像進行了分析,成功實現(xiàn)了研究區(qū)病蟲害發(fā)生范圍的監(jiān)測。Yuan等[45]通過星地聯(lián)合實驗獲取了陜西關(guān)中地區(qū)小麥白粉病的地面高光譜數(shù)據(jù),并利用SPOT-6衛(wèi)星影像,基于SAM算法將地面高光譜數(shù)據(jù)與多光譜影像進行了融合,對小麥白粉病進行監(jiān)測,結(jié)果表明監(jiān)測精度達78%,說明基于SAM算法的地面高光譜與多光譜影像融合技術(shù)能夠應(yīng)用于病蟲害遙感監(jiān)測。Lenthe等[47]通過接種實驗獲取了小麥條銹病和白粉病的地面測量數(shù)據(jù),同時也獲取了對應(yīng)的熱紅外影像,通過選取敏感特征并構(gòu)建監(jiān)測模型,全局精度達到了88.6%。Yang等[48]對棉花根腐病上的多光譜和高光譜圖像信息進行了比較,結(jié)果認為多光譜影像在大區(qū)域的病蟲害遙感監(jiān)測和識別方面能達到較為滿意的效果。Pan等[33]對甜菜葉斑病的研究表明,400~900nm光譜范圍內(nèi)的反射率特征能夠?qū)θ~斑病實現(xiàn)精確監(jiān)測。Zhang等[17]分別利用馬氏距離法(Mahalanobis Distance,MD),偏最小二乘回歸(Partial Least Squares Regression,PLSR),最大似然法(Maximum Likelihood Estimate,MLE)和混合調(diào)諧濾波的混合像元分解法(Mixture Tuned Matched Filtering,MTMF)對小麥白粉病進行監(jiān)測,在區(qū)域尺度上,采用多時相遙感衛(wèi)星影像對病害的發(fā)生和發(fā)展進行監(jiān)測,結(jié)果表明,耦合PLSR和MTMF的監(jiān)測方法對區(qū)域尺度的白粉病監(jiān)測精度達到78%。
相較于大尺度的衛(wèi)星遙感觀測,基于航空遙感平臺的機載高光譜/多光譜傳感器除用到目標(biāo)作物的光譜特征外,也需要對圖像的結(jié)構(gòu)和紋理特征進行解析。例如,Kim等[38]對獲取的機載遙感影像的信息熵、對比度等紋理特征基于顏色共生矩陣方法進行了提取,從而實現(xiàn)了柚皮病進行檢測和病害識別,分類精度達到96.7%。Panmanas等[49]對大豆黃斑病、瘡痂病、黑點病的高光譜遙感影像進行分析,結(jié)合光譜信息和紋理信息實現(xiàn)了病蟲害的區(qū)分和識別。此外,值得注意的是,在多病害分類和識別方面,有學(xué)者嘗試利
用計算機圖形學(xué)的算法對病蟲害的表征信息進行識別。Wang等[50]利用無人機影像種顯示的番茄瘟病、紋枯病和胡麻斑病的病斑紋理結(jié)構(gòu)特征,對三種病害進行了區(qū)分和監(jiān)測。Yao等[51]基于作物在遙感影像中的方向一致性特征,對多種小麥病蟲害進行了識別。
農(nóng)田地塊尺度和區(qū)域尺度下基于航空/航天平臺的多光譜病蟲害遙感監(jiān)測特點及應(yīng)用案例見表2。
總體而言,基于高光譜遙感影像對區(qū)域尺度上的病蟲害監(jiān)測研究過多的依賴于遙感手段獲取的地物光譜信息,較少的考慮了田間小氣候、病蟲害生境、人為因素等多元數(shù)據(jù)的影響,因此,對于融合遙感與其他多元數(shù)據(jù)對病蟲害進行監(jiān)測的研究尚不完善,且系統(tǒng)性較弱,未來在基于多元信息融合研究基礎(chǔ)上的病蟲害監(jiān)測方面的工作有待加強。
3 作物病蟲害監(jiān)測系統(tǒng)研究進展
目前,作物病蟲害監(jiān)測系統(tǒng)一般由知識庫、數(shù)據(jù)庫、算法層、分析層和展示層等5部分組成,通常以數(shù)據(jù)庫和算法層等為核心。目前國際上已經(jīng)開發(fā)了多種病蟲害監(jiān)測系統(tǒng),并被廣泛地應(yīng)用于田間病蟲害脅迫診斷及管理等方面。例如,美國伊利諾伊大學(xué)牽頭研制的農(nóng)情系統(tǒng)Comax/Gos-sym通過其自研的監(jiān)測和診斷系統(tǒng)確定了灌溉、施肥、施藥和施用脫葉劑的最佳方案,推動了棉田管理和病蟲害防治的信息化和自動化[74];美國康奈爾大學(xué)和聯(lián)合國糧食及農(nóng)業(yè)組織聯(lián)合開發(fā)了全球谷物銹病監(jiān)測系統(tǒng)BGRI,應(yīng)用該系統(tǒng)對全球的銹病進行監(jiān)測并指導(dǎo)防治,在保證作物產(chǎn)量的前提下,可以節(jié)約30%左右的銹病殺菌劑使用量[75];國際玉米小麥育種和改良中心(Centro Internacional de Mejoramientode Maizy Trigo,CIMMYT)開發(fā)了小麥玉米病害監(jiān)測系統(tǒng),該系統(tǒng)可以為作物病蟲害的早期識別提供及時的預(yù)警,為農(nóng)民的田間防控提供指導(dǎo)意見;美國拜耳公司研究出了一種農(nóng)情實時監(jiān)測系統(tǒng)Climate,農(nóng)戶可以通過該系統(tǒng)選擇和搭建針對性的專家決策系統(tǒng),使用者能夠基于自身的情況創(chuàng)建知識庫和模型庫,這種模式賦予了系統(tǒng)很高的實用性和靈活性,能夠快速便捷地進行二次及多次開發(fā)。
但是,上述系統(tǒng)的主要缺點是數(shù)據(jù)源過于單一,即數(shù)據(jù)來源主要是傳統(tǒng)的氣象觀測站、地面調(diào)查網(wǎng)絡(luò)、以及用戶上傳的田間數(shù)據(jù),沒有充分利用遙感等多源異構(gòu)信息在農(nóng)情系統(tǒng)決策中的作用。系統(tǒng)產(chǎn)出的大尺度病蟲害監(jiān)測產(chǎn)品只能為病蟲害發(fā)展的中期和長期趨勢進行評價,無法有效地應(yīng)對實時的病蟲害防控和管理需求。中國科學(xué)院研發(fā)的作物病蟲害遙感監(jiān)測與預(yù)測系統(tǒng)耦合了高分辨率遙感影像以及氣象、植保等多源空間數(shù)據(jù)集,對中國主要糧食產(chǎn)區(qū)的小麥、水稻、玉米病蟲害進行連續(xù)地監(jiān)測和制圖,可為當(dāng)?shù)刂脖2块T的病蟲害防治決策提供科學(xué)的數(shù)據(jù)支撐。總體而言,隨著遙感對地觀測手段的多樣化,作物病蟲害監(jiān)測系統(tǒng)還不夠完善,如何將作物病蟲害遙感監(jiān)測算法集成到業(yè)務(wù)化運行的大尺度遙感監(jiān)測系統(tǒng)中,是未來作物病蟲害遙感系統(tǒng)構(gòu)建要解決的關(guān)鍵問題。
4 作物病蟲害遙感監(jiān)測未來展望
4.1 復(fù)雜環(huán)境條件下的病蟲害遙感監(jiān)測
現(xiàn)階段的作物病蟲害遙感監(jiān)測方法在實際農(nóng)業(yè)管理應(yīng)用中,對田間環(huán)境、作物種植模式等條件有較高的依賴性,導(dǎo)致病害遙感監(jiān)測的精度、穩(wěn)定性和通用性方面與實際生產(chǎn)需求有一定的差距。目前,對病蟲害的遙感監(jiān)測研究正逐漸從單一時相反射率特征的提取向多時相探測病蟲害引起的連續(xù)波譜變化方向轉(zhuǎn)變。并在此基礎(chǔ)上,考慮到田間土壤類型、氣候類型等環(huán)境條件的影響,逐步開展病蟲害病理機制的遙感監(jiān)測,從而滿足復(fù)雜田間環(huán)境下的農(nóng)作物監(jiān)測要求。另一方面,利用遙感信息與植物病理機制相結(jié)合的方法對病蟲害生境變遷的范圍和程度進行監(jiān)測是實現(xiàn)病蟲害早期預(yù)警的關(guān)鍵環(huán)節(jié)。因此,應(yīng)依據(jù)不同類型病蟲害的特異性建立綜合作物病蟲害光譜特征和生境特征所表達的病蟲害不同方面的響應(yīng),從根本上控制農(nóng)藥用量。
4.2 病蟲害動態(tài)持續(xù)監(jiān)測
現(xiàn)階段對作物病蟲害的遙感監(jiān)測大多針對某一個或幾個病蟲特征較為明顯的生育期,對作物病蟲害的整體發(fā)生發(fā)展的過程監(jiān)測研究較少。盡管在病蟲特征較為明顯的生育期進行遙感監(jiān)測研究能夠獲得較高的監(jiān)測精度,但是監(jiān)測時間較晚,不利于病蟲害的防治和及時控制。病蟲害的發(fā)生與發(fā)展是一個連續(xù)的過程,作物受侵染部位的生物物理變化是跟蹤不同階段寄主與病蟲原相互作用關(guān)系的重要指標(biāo)。目前,隨著多種遙感平臺的出現(xiàn)及日益普及,多尺度的連續(xù)時間病蟲害動態(tài)監(jiān)測越來越成為可能。在冠層尺度上,如何基于高光譜觀測數(shù)據(jù)獲取病蟲害發(fā)生發(fā)展過程中的關(guān)鍵監(jiān)測指標(biāo)并構(gòu)建精確的監(jiān)測模型;在田塊尺度上,如何基于無人機近地面飛行數(shù)據(jù),結(jié)合病蟲害高光譜特征進行精確的嚴重度估測和范圍監(jiān)測;在區(qū)域尺度上,如何基于病蟲害光譜特征,結(jié)合多時相遙感衛(wèi)星數(shù)據(jù),綜合考慮氣象、生境、菌源等因子,構(gòu)建綜合的病蟲害監(jiān)測方法體系,是未來研究的重要研究方向。
4.3 全球尺度病蟲害遙感監(jiān)測系統(tǒng)
目前,隨著遙感對地觀測手段的多樣化,對病蟲害遙感監(jiān)測系統(tǒng)提出了更高要求。系統(tǒng)需要同時滿足遙感監(jiān)測的實時性、監(jiān)測結(jié)果的準(zhǔn)確性以及監(jiān)測產(chǎn)品推廣的便捷性。協(xié)同應(yīng)用多源遙感觀測數(shù)據(jù)構(gòu)建全球尺度的病蟲害遙感監(jiān)測系統(tǒng),實現(xiàn)病蟲害的精準(zhǔn)監(jiān)測是病蟲害遙感監(jiān)測系統(tǒng)未來的趨勢。
近年來,隨著中國對地觀測計劃的順利實施,一系列高光譜分辨率、高空間分辨率和高時間分辨率衛(wèi)星成功發(fā)射,這些衛(wèi)星協(xié)同作用,為建立多尺度作物病蟲害遙感監(jiān)測和預(yù)測系統(tǒng)提供了數(shù)據(jù)支持,使得作物病蟲害遙感監(jiān)測系統(tǒng)的研發(fā)成為未來農(nóng)業(yè)精準(zhǔn)管理的重要研究方向。
5 總結(jié)
近年來,隨著遙感技術(shù)的不斷發(fā)展,以及研究者對遙感數(shù)據(jù)在農(nóng)業(yè)管理和監(jiān)測方面應(yīng)用的不斷深入,使得遙感技術(shù)進行作物病蟲害監(jiān)測逐漸成為可能。本文分別從作物病蟲害的光譜特征、監(jiān)測方法以及系統(tǒng)研發(fā)等幾個方面對現(xiàn)階段作物病蟲害遙感監(jiān)測方法進行了總結(jié)和展望。雖然目前的遙感監(jiān)測技術(shù)與實際生產(chǎn)管理的需求仍然存在一定的差距,但在實際應(yīng)用中,通過將現(xiàn)有病蟲害監(jiān)測模型與田間環(huán)境條件與菌源狀態(tài)等因子相結(jié)合,并充分考慮病蟲害病理學(xué)知識的基礎(chǔ)上,深入挖掘遙感技術(shù)在病蟲害監(jiān)測方面的潛力,可為中國農(nóng)業(yè)大面積精準(zhǔn)管理和植保提供精確、實時、大范圍的監(jiān)測信息。
參考文獻
[1] Strange R N, Scott P R. Plant disease: A threat to global food security[J]. Annual Review of Phytopathology, 2005, 43(1): 83-116.
[2] 黃文江. 作物病害遙感監(jiān)測機理與應(yīng)用[M]. 北京: 農(nóng)業(yè)科技出版社, 2009.
[3]Deutsch C A, Tewksbury J J, Tigchelaar M, et al. Increase in crop losses to insect pests in a warming climate[J]. Science, 2018, 361(6405): 916-919.
[4] 陶鳳英, 潘云鶴, 欒金波. 農(nóng)作物病蟲害專業(yè)化統(tǒng)防統(tǒng)治的現(xiàn)狀與發(fā)展對策[J]. 內(nèi)蒙古農(nóng)業(yè)科技, 2011(2): 96-97.
Tao F, Pang Y, Luan J. Development status of professional control of crop diseases and insect pests and countermeasures [J]. Inner Mongolia Agricultural Science and Technology, 2011(2): 96-97.
[5] Piao S, Ciais P, Huang Y, et al. The impacts of climate change on water resources and agriculture in China[J]. Nature, 2010, 467(7311): 43-51.
[6] 黃文江, 張競成, 羅菊花, 等. 作物病蟲害遙感監(jiān)測與預(yù)測[M]. 北京: 科學(xué)出版社, 2015.
[7] Huang W, Yang Q, Pu R, et al. Estimation of nitrogen vertical distribution by bi-directional canopy reflectance in winter wheat[J]. Sensors, 2014, 14(11): 20347-20359.
[8] Khanal S, Fulton J, Shearer S. An overview of current and potential applications of thermal remote sensing in precision agriculture[J]. Computers and Electronics in Agriculture, 2017, 139: 22-32.
[9] Sankaran S, Khot L R, Espinoza C Z, et al. Low-alti tude, high-resolution aerial imaging systems for row and field crop phenotyping: A review[J]. European Journal of Agronomy, 2015, 70: 112-123.
[10] Mesas-Carrascosa F J, Torres-Sánchez J, Clavero-Rumbao I, et al. Assessing optimal flight parameters for generating accurate multispectral orthomosaicks by UAV to support site-specific crop management[J]. Remote Sensing, 2015, 7(10): 12793-12814.
[11] Liu Y, Pu H, Sun D W. Hyperspectral imaging tech ???nique for evaluating food quality and safety during various processes: A review of recent applications[J]. Trends in Food Science & Technology, 2017, 69: 25-35.
[12] Mahlein A K, Rumpf T, Welke P, et al. Development of spectral indices for detecting and identifying plant diseases[J]. Remote Sensing of Environment, 2013, 128(1): 21-30.
[13] Su J, Liu C, Coombes M, et al. Wheat yellow rust monitoring by learning from multispectral UAV aerial imagery[J]. Computers and Electronics in Agriculture, 2018, 155: 157-166.
[14] Franke J, Menz G. Multi-temporal wheat disease detection by multi-spectral remote sensing[J]. Precision Agriculture, 2007, 8(3): 161-172.
[15] Liu Z Y, Wu H F, Huang J F. Application of neural networks to discriminate fungal infection levels in rice panicles using hyperspectral reflectance and principal components analysis[J]. Computers and Electronics in Agriculture, 2010, 72(2): 99-106.
[16] Zhang B, Huang W, Li J, et al. Principles, developments and applications of computer vision for external quality inspection of fruits and vegetables: A review[J]. Food Research International, 2014, 62(62): 326-343.
[17] Zhang J C, Yuan L, Pu R, et al. Comparison between wavelet spectral features and conventional spectral features in detecting yellow rust for winter wheat[J]. Computers and Electronics in Agriculture, 2014, 100(2): 79-87.
[18] Lin Y, Pu R, Zhang J, et al. Using high spatial resolution satellite imagery for mapping powdery mildew at a regional scale[J]. Precision Agriculture, 2016, 17(3): 332-348.
[19] Yao Z, He D, Lei Y. Hyperspectral Imaging for identification of powdery mildew and stripe rust in wheat[C]// 2018 ASABE Annual International Meeting. American Society of Agricultural and Biological Engineers, 2018.
[20] 王海光, 馬占鴻, 王韜, 等. 高光譜在小麥條銹病嚴重度分級識別中的應(yīng)用[J]. 光譜學(xué)與光譜分析, 2007, 27(9): 1811-1814.
Wang H, Ma Z, Wang T, et al. Application of hyperspectral data to the classification and identification of severity of wheat stripe rust[J]. Spectroscopy and Spectral Analysis, 2007, 27(9): 1811-1814.
[21] Naidu R A, Perry E M, Pierce F J, et al. The potential of spectral reflectance technique for the detection of Grapevine leafroll-associated virus-3 in two red-berried wine grape cultivars[J]. Computers and Electronics in Agriculture, 2009, 66(1): 38-45.
[22] Prabhakar M, Prasad Y G, Thirupathi M, et al. Use of ground based hyperspectral remote sensing for detection of stress in cotton caused by leafhopper (Hemiptera: Cicadellidae)[J]. Computers and Electronics in Agriculture, 2011, 79(2): 189-198.
[23] Luo J, Huang W, Zhao J, et al. Detecting aphid density of winter wheat leaf using hyperspectral measurements[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2013, 6(2): 690-698.
[24] Spinelli F, Noferini M, Costa G. Near infrared spectroscopy (NIRs): Perspective of fire blight detection in asymptomatic plant material[J]. Acta Horticulturae, 2006, 704(704): 87-90.
[25] Purcell D E, O'shea M G, Johnson R A, et al. Near-Infrared spectroscopy for the prediction of disease ratings for Fiji leaf gall in sugarcane clones[J]. Applied Spectroscopy, 2009, 63(4): 450-457.
[26] Shi Y, Huang W, Luo J, et al. Detection and discrimination of pests and diseases in winter wheat based on spectral indices and kernel discriminant analysis[J]. Computers and Electronics in Agriculture, 2017, 141:171-180.
[27] Lowe A, Harrison N, French A P. Hyperspectral image analysis techniques for the detection and classification of the early onset of plant disease and stress[J]. Plant Methods, 2017, 13(1): no. 80, 1-12.
[28] Chen B, Wang K, Li S, et al. Spectrum characteristics of cotton canopy infected with verticillium wilt and inversion of severity level[C]// Proceedings of First IPIF TC 12 International Conference on Computer and Computing Technologies in Agriculture, (CCTA2007)(Ⅱ).2007.
[29] Shi Y, Huang W, Zhou X, et al. Evaluation of wavelet spectral features in pathological detection and discrimination of yellow rust and powdery mildew in winter wheat with hyperspectral reflectance data[J]. Journal of Applied Remote Sensing, 2017, 11(2): 026025.
[30] Delalieux S, Van A J, Keulemans W, et al. Detection of biotic stress (Venturia inaequalis) in apple trees using hyperspectral data: Non-parametric statistical approaches and physiological implications[J]. European Journal of Agronomy, 2007, 27(1): 130-143.
[31] Han L, Haleem M S, Taylor M. Automatic detection and severity assessment of crop diseases using image pattern recognition[M]. Emerging Trends and Advanced Technologies for Computational Intelligence. Springer, Cham, 2016.
[32] Wu D, Feng L, Zhang C, et al. Early detection of botrytis cinerea on eggplant leaves based on visible and near-infrared spectroscopy[J]. Transactions of the American Society of Agricultural and Biological Engineers, 2008, 51(3): 1133-1139.
[33] Pan L, Lu R, Zhu Q, et al. Predict compositions and mechanical properties of sugar beet using hyperspectral scattering[J]. Food and Bioprocess Technology, 2016, 9(7): 1177-1186.
[34] Pu R, Ge S, Kelly N M, et al. Spectral absorption features as indicators of water status in coast live oak (Quercus agrifolia) leaves[J]. International Journal of Remote Sensing, 2003, 24(9): 1799-1810.
[35] Zarco-Tejada P J, Berj N A, Pez-Lozano RL, et al. Assessing vineyard condition with hyperspectral indices: Leaf and canopy reflectance simulation in a row-structured discontinuous canopy[J]. Remote Sensing of Environment, 2005, 99(3): 271-287.
[36] Rouse J W, Haas R H, Schell J A, et al. Monitoring vegetation systems in the great plains with Erts[J]. Nasa Special Publication, 1974, (351): 3010-3017.
[37] Broge N H , Leblanc E . Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density[J]. Remote Sensing of Environment, 2001, 76(2):156-172.
[38] Kim D G, Burks T F, Qin J W, et al. Classification of ????grapefruit peel diseases using color texture feature analysis[J]. International Journal of Agricultural and Biological Engineering, 2009, 2(3): 41-50.
[39] Gitelson A A. Remote estimation of fraction of radiation absorbed by photosynthetically active vegetation: generic algorithm for maize and soybean[J]. Remote Sensing Letters, 2019, 10(3): 283-291.
[40] Gitelson A A, Gritz Y, Merzlyak M N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves[J]. Journal of Plant Physiology, 2003, 160(3): 271-282.
[41] Devadas R, Lamb D W, Simpfendorfer S, et al. Evaluating ten spectral vegetation indices for identifying rust infection in individual wheat leaves[J]. Precision Agriculture, 2009, 10(6): 459-470.
[42] Ren H, Zhou G, Zhang F. Using negative soil adjustment factor in soil-adjusted vegetation index (SAVI) for aboveground living biomass estimation in arid grasslands[J]. Remote Sensing of Environment, 2018, 209: 439-445.
[43] Féret J B, le Maire G, Berveiller S J, et al. Estimating leaf mass per area and equivalent water thickness based on leaf optical properties: Potential and limitations of physical modeling and machine learning[J]. Remote Sensing of Environment, 2019, 231: no.110959, 1-14.
[44] Mirik M, Kassymzhanova-Mirik S, Elliott N C, et al. Using digital image analysis and spectral reflectance data to quantify damage by greenbug (Hemitera: Aphididae) in winter wheat[J]. Computers and Electronics in Agriculture, 2006, 51(1-2): 86-98.
[45] Yuan L, Zhang J C, Shi Y, et al. Damage mapping of powdery mildew in winter wheat with high-resolution satellite image[J]. Remote Sensing, 2014, 6(5): 3611-3623.
[46] Held A. Detecting sugarcane ‘orange rust’ disease using EO-1 Hyperion hyperspectral imagery[J]. International Journal of Remote Sensing, 2004, 25(2): 489-498.
[47] Lenthe J H, Oerke E C, Dehne H W, et al. Digital infrared thermography for monitoring canopy health of wheat[J]. Precision Agriculture, 2007, 8(1-2): 15-26.
[48] Yang C, Everitt J H, Fernandez C J. Comparison of airborne multispectral and hyperspectral imagery for mapping cotton root rot[J]. Biosystems Engineering, 2010, 107(2): 131-139.
[49] Panmanas S, Yuki H, Munehiro T. Study on non-destructive evaluation methods for defect pods for green soybean processing by near-infrared spectroscopy[J]. Journal of Food Engineering, 2009, 93(4): 502-512.
[50] Wang X, Zhang M, Zhu J, et al. Spectral prediction of phytophthora infestans infection on tomatoes using artificial neural network (ANN)[J]. International Journal of Remote Sensing, 2008, 29(6): 1693-1706.
[51] Yao Q, Guan Z, Zhou Y, et al. Application of support vector machine for detecting rice diseases using shape and color texture features[C]// 2009 International Conference on Engineering Computation, 2009.
[52] Zhang X, Han L, Dong Y, et al. A deep learning-based approach for automated yellow rust disease detection from high-resolution hyperspectral UAV images[J]. Remote Sensing, 2019, 11(13): 1554.
[53] Su J, Liu C, Coombes M, et al. Wheat yellow rust monitoring by learning from multispectral UAV aerial imagery[J]. Computers and Electronics in Agriculture, 2018, 155: 157-166.
[54] Bohnenkamp D, Behmann J, Mahlein A K. In-field detection of yellow rust in wheat on the ground canopy and UAV scale[J]. Remote Sensing, 2019, 11(21): 2495.
[55] Shi Y, Huang W, Luo J, et al. Detection and discrimination of pests and diseases in winter wheat based on spectral indices and kernel discriminant analysis[J]. Computers and Electronics in Agriculture, 2017, 141: 171-180.
[56] Qin W, Xue X, Zhang S, et al. Droplet deposition and efficiency of fungicides sprayed with small UAV against wheat powdery mildew[J]. International Journal of Agricultural and Biological Engineering, 2018, 11(2): 27-32.
[57] Liu W, Cao X, Fan J, et al. Detecting wheat powdery mildew and predicting grain yield using unmanned aerial photography[J]. Plant Disease, 2018, 102(10): 1981-1988.
[58] Meng Y, Lan Y, Mei G, et al. Effect of aerial spray adjuvant applying on the efficiency of small unmanned aerial vehicle for wheat aphids control[J]. International Journal of Agricultural and Biological Engineering, 2018, 11(5): 46-53.
[59] Severtson D, Callow N, Flower K, et al. Unmanned aerial vehicle canopy reflectance data detects potassium deficiency and green peach aphid susceptibility in canola[J]. Precision Agriculture, 2016, 17(6): 659-677.
[60] Kumar S, R?der M S, Singh R P, et al. Mapping of spot blotch disease resistance using NDVI as a substitute to visual observation in wheat (Triticumaestivum L.)[J]. Molecular Breeding, 2016, 36(7): no.95,1-11.
[61] Albetis J, Jacquin A, Goulard M, et al. On the potentiality of UAV multispectral imagery to detect flavescence dorée and grapevine trunk diseases[J]. Remote Sensing, 2019, 11(1): 23.
[62] Li X, Andaloro J T, Lang E B, et al. Best Management Practices for Unmanned Aerial Vehicles (UAVs) Application of Insecticide Products on Rice[C]// 2019 ASABE Annual International Meeting. American Society of Agricultural and Biological Engineers, 2019.
[63] Mutanga O, Dube T, Galal O. Remote sensing of crop health for food security in Africa: Potentials and constraints[J]. Remote Sensing Applications: Society and Environment, 2017, 8: 231-239.
[64] Cao F, Liu F, Guo H, et al. Fast detection of sclerotinia sclerotiorum on oilseed rape leaves using low-altitude remote sensing technology[J]. Sensors, 2018, 18(12): 4464.
[65] Zhang P, Wang K, Lyu Q, et al. Droplet distribution and control against citrus leafminer with UAV spraying[J]. International Journal of Robotics and Automation, 2017, 32(3): 299-307.
[66] Schultink A, Qi T, Bally J, et al. Using forward genetics in Nicotiana benthamiana to uncover the immune signaling pathway mediating recognition of the Xanthomonas perforans effector XopJ4[J]. New Phytologist, 2019, 221(2): 1001-1009.
[67] Altas Z, Ozguven M M, Yanar Y. Determination of sugar beet leaf spot disease level (cercospora beticola sacc) with image processing technique by using drone[J]. Current Investigations in Agriculture and Current Research, 2018, 5(3): 669-678.
[68] Chen D, Shi Y, Huang W, et al. Mapping wheat rust based on high spatial resolution satellite imagery[J]. Computers and Electronics in Agriculture, 2018, 152: 109-116.
[69] Du X, Li Q, Shang J, et al. Detecting advanced stages of winter wheat yellow rust and aphid infection using RapidEye data in North China Plain[J]. GIScience & Remote Sensing, 2019, 56(7): 1093-1113.
[70] Yuan L, Pu R, Zhang J, et al. Using high spatial resolution satellite imagery for mapping powdery mildew at a regional scale[J]. Precision Agriculture, 2016, 17(3): 332-348.
[71] Skawsang S, Nagai M, Tripathi N K, et al. Predicting rice pest population occurrence with satellite-derived crop phenology, ground meteorological observation, and machine learning: A case study for the central plain of thailand[J]. Applied Sciences, 2019, 9(22): 4846.
[72] Shi Y, Huang W, Ye H, et al. Partial least square discriminant analysis based on normalized two-stage vegetation indices for mapping damage from rice diseases using planetscope datasets[J]. Sensors, 2018, 18(6): 1901.
[73] Song X, Yang C, Wu M, et al. Evaluation of sentinel-2A satellite imagery for mapping cotton root rot[J]. Remote Sensing, 2017, 9(9): 906, 1-17.
[74] Staggenborg S A, Lascano R J, Krieg D R. Determining cotton water use in a semiarid climate with the GOSSYM cotton simulation model[J]. Agronomy Journal, 1996, 88(5): 740-745.
[75] Saunders D G O, Pretorius Z A, Hovm?ller M S. Tackling the re-emergence of wheat stem rust in Western Europe[J]. Communications Biology, 2019, 2(1): 51, 1-3.