国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

中國(guó)煤型鈾地質(zhì)–地球化學(xué)研究進(jìn)展

2019-09-03 09:47:10周賢青
煤田地質(zhì)與勘探 2019年4期
關(guān)鍵詞:泥炭鈾礦礦化

周賢青,秦 勇,陸 鹿

中國(guó)煤型鈾地質(zhì)–地球化學(xué)研究進(jìn)展

周賢青,秦 勇,陸 鹿

(中國(guó)礦業(yè)大學(xué)資源與地球科學(xué)學(xué)院,江蘇 徐州 221116)

中國(guó)鈾礦資源缺口巨大,僅靠開發(fā)傳統(tǒng)鈾礦資源無(wú)法滿足能源和國(guó)防建設(shè)不斷增長(zhǎng)對(duì)鈾資源的需求,煤型鈾資源的開發(fā)利用可一定程度上緩解對(duì)鈾資源的需求壓力。通過(guò)總結(jié)近些年煤型鈾的研究成果,對(duì)我國(guó)主要煤型鈾礦的含礦點(diǎn)、鈾含量范圍、含煤地層的形成時(shí)代及分布范圍進(jìn)行了歸納,并給出了煤型鈾的界定標(biāo)準(zhǔn)(大于或等于40 mg/kg),為劃分煤型鈾礦提供依據(jù);對(duì)煤型鈾的賦存狀態(tài)、成礦機(jī)制及影響因素進(jìn)行了較為全面的闡述。綜合分析認(rèn)為我國(guó)對(duì)煤型鈾研究較不足,其中對(duì)于微觀地質(zhì)選擇過(guò)程著力不夠,而查明煤中鈾富集的微觀地質(zhì)選擇過(guò)程對(duì)于成礦機(jī)制的理解至關(guān)重要;煤型鈾礦化時(shí)間和期次研究有待進(jìn)一步加深,有利于分析煤型鈾的礦化模式、揭示煤型鈾與伴生砂巖型鈾礦之間的成因聯(lián)系,進(jìn)而深化對(duì)煤型鈾礦化機(jī)制的理解。

煤型鈾;進(jìn)展;礦化機(jī)制;影響因素;中國(guó)

2017年我國(guó)鈾礦資源對(duì)外依存度高達(dá)77%左右[1]。煤型鈾作為一種重要的非常規(guī)鈾礦資源[2-3],開發(fā)利用對(duì)保障我國(guó)鈾礦資源供給有重要意義。中國(guó)煤炭資源儲(chǔ)量豐富,2017年探明儲(chǔ)量為16 833億t[4],同時(shí)也是世界上最大的煤炭生產(chǎn)和消費(fèi)國(guó)。我國(guó)2017年原煤生產(chǎn)總量為35.2億t,其中近一半用于火力發(fā)電[5]。如此大的煤炭資源儲(chǔ)量,加之煤炭形成時(shí)期和地質(zhì)背景的多樣性,使得我國(guó)在發(fā)展煤型鈾礦資源方面具有良好的物質(zhì)基礎(chǔ)。同時(shí),中國(guó)巨大的煤炭資源消費(fèi)量和能源結(jié)構(gòu)特征使得發(fā)展和利用煤型鈾礦資源具有緊迫性,如果對(duì)煤中鈾不加以利用或利用率過(guò)低,將會(huì)造成巨大的資源浪費(fèi),并且未經(jīng)放射性處理的煤灰拋撒和利用(如用于建材等)將會(huì)引發(fā)嚴(yán)重的環(huán)境污染問(wèn)題[6-8]。通過(guò)對(duì)煤型鈾礦的合理開發(fā)利用,既可避免資源浪費(fèi),也可一定程度上緩解對(duì)鈾資源的需求壓力。

1 煤型鈾資源的界定標(biāo)準(zhǔn)

早期研究認(rèn)為,煤中元素鈾含量超過(guò)200 mg/kg就可作為共伴生礦產(chǎn)進(jìn)行開采[9-10]。后續(xù)研究對(duì)此又先后提出過(guò)不同的界定標(biāo)準(zhǔn)(表1)。

煤炭燃燒后煤中鈾將明顯富集于粉煤灰之中,其含量平均可提高至6~8倍[14]。歷史上對(duì)于煤中鈾資源的利用主要是從粉煤灰中提取[15-16]。如果以6~8倍的富集系數(shù)進(jìn)行計(jì)算,按照目前常規(guī)鈾礦資源勘探標(biāo)準(zhǔn)(質(zhì)量分?jǐn)?shù)大于或等于0.03%),當(dāng)煤中鈾含量達(dá)到40~50 mg/kg時(shí),即可認(rèn)為具有潛在的鈾礦資源儲(chǔ)備價(jià)值。

綜上認(rèn)為,煤型鈾的界定標(biāo)準(zhǔn)可初步設(shè)定為鈾含量大于或等于40 mg/kg。

表1 煤中鈾資源的界定標(biāo)準(zhǔn)

2 中國(guó)煤型鈾礦分布

煤型鈾在中國(guó)境內(nèi)很多地區(qū)均有分布,包括云南、貴州、廣西、新疆、內(nèi)蒙、重慶等[7](表2,圖1)。這些地區(qū)煤中元素鈾含量為每千克煤中從數(shù)十到數(shù)千毫克不等,其中部分地區(qū)達(dá)到甚至遠(yuǎn)超過(guò)常規(guī)鈾礦資源的最低工業(yè)品位[15,17]。中國(guó)西部和北部煤型鈾礦的空間分布與砂巖型鈾礦具有明顯耦合關(guān)系,共同鈾源為晚古生代火山熔巖、火山碎屑巖及花崗巖[18];南部煤型鈾的成因主要與高溫?zé)嵋毫黧w相關(guān)[19-21]。

表2 中國(guó)煤型鈾礦分布

注:表中503~5 720/992表示最小值~最大值/平均值;“—”表示煤層編號(hào)或地層未知;bdl表示檢測(cè)限以下。

圖1 煤型鈾礦的分布

中國(guó)煤型鈾主要賦存于3個(gè)地質(zhì)時(shí)代的煤系中。石炭–二疊紀(jì)和新生代煤型鈾主要分布在貴州和云南地區(qū),侏羅紀(jì)煤型鈾以新疆和內(nèi)蒙古地區(qū)為代表。煤型鈾的載體煤儲(chǔ)層以低階褐煤和長(zhǎng)焰煤為主[7,12],總體上與世界范圍內(nèi)煤型鈾的產(chǎn)出規(guī)律相同[15,22]。只有少量的高階煙煤發(fā)生鈾礦化,如貴州省東南部晚二疊世含碳酸鹽巖煤系中的煙煤,平均鈾含量為211 mg/kg[23]。

3 煤中鈾的賦存狀態(tài)

煤中鈾的賦存態(tài)包括無(wú)機(jī)態(tài)和有機(jī)態(tài)[15],R. B. Finkelman[46]綜合分析認(rèn)為,低階煤中鈾主要以有機(jī)態(tài)賦存,高階煤中則主要賦存在無(wú)機(jī)礦物中。 V. V. Seredin等[15]研究認(rèn)為,煤中鈾主要是與有機(jī)質(zhì)結(jié)合,其次才是以無(wú)機(jī)賦存形式存在,即存在于鈾礦物或其他無(wú)機(jī)礦物中。

目前,煤中發(fā)現(xiàn)的鈾礦物種類很多,名稱及分子式如表3所示。這些鈾礦物分別屬于含水的硅酸鹽、磷酸鹽、硫酸鹽、砷酸鹽、釩酸鹽礦物以及氧化物,其中以磷酸鹽和氧化物最為常見[15]。此外,鋯石、金紅石、磷灰石、獨(dú)居石、磷釔礦、碳酸鹽礦物及鋁硅酸鹽礦物(如,高嶺石、伊蒙混層黏土礦物)等也含少量鈾。Dai Shifeng等[47-48]在織金煤礦低溫硅質(zhì)熱液來(lái)源石英脈中檢測(cè)到顯著富集的鈾。

有機(jī)態(tài)是煤中鈾的主要賦存狀態(tài)[49]。I. A. Breger等[50]發(fā)現(xiàn),美國(guó)懷俄明紅沙漠地區(qū)次煙煤中有機(jī)結(jié)合態(tài)鈾占總量的98%。J. D. Ilger等[51]發(fā)現(xiàn),美國(guó)德克薩斯州南部含鈾褐煤中鈾含量與腐植質(zhì)之間呈現(xiàn)出明顯的正相關(guān)關(guān)系。有機(jī)質(zhì)與鈾的結(jié)合主要出現(xiàn)在泥炭沼澤化晚期和成巖作用早期[52],這是因?yàn)榇穗A段泥炭、褐煤、長(zhǎng)焰煤的孔隙較發(fā)育,對(duì)溶液中的鈾酰離子具有一定的物理吸附作用,并使鈾酰離子富集在有機(jī)質(zhì)的表面;另外,此階段煤中富含的腐植質(zhì)會(huì)與鈾酰離子(UO22+)在一定地質(zhì)條件下配位絡(luò)合(化學(xué)吸附),使得鈾酰離子以絡(luò)合物的形式在煤中滯留和富集[52]。楊志遠(yuǎn)等[53]通過(guò)低煤級(jí)煤的吸附和脫附實(shí)驗(yàn),認(rèn)為煤對(duì)鈾的吸附主要為化學(xué)吸附,并且主要是鈾酰離子與煤中活性官能團(tuán)發(fā)生化學(xué)絡(luò)合。

鈾與腐植酸的結(jié)合是煤中元素鈾非常重要的賦存狀態(tài)。低階煤和泥炭通常含有豐富的大分子腐植酸,其中的活性官能團(tuán),尤其是羧基(–COOH),對(duì)溶液中的鈾具有明顯的絡(luò)合作用,甚至是在鈾含量?jī)H為1 mg/kg的情況下[54]。A. Szalay[55]測(cè)試發(fā)現(xiàn),固態(tài)的腐植酸對(duì)鈾酰離子表現(xiàn)出非常強(qiáng)的結(jié)合傾向,并證實(shí)了這種結(jié)合是陽(yáng)離子交換的結(jié)果,計(jì)算出泥炭腐植酸中鈾的地球化學(xué)富集系數(shù)(有機(jī)質(zhì)中鈾含量與溶液中鈾含量之比),該系數(shù)高達(dá)105。E. Koglin等[56]和E. F. Idiz等[57]研究也得出同樣結(jié)論,即鈾以鈾酰離子的形式與腐植酸結(jié)合,腐殖酸中的羧基起著雙齒狀配位體的作用。

表3 煤中發(fā)現(xiàn)的鈾礦物[15,20,47]

4 煤型鈾礦化機(jī)制和影響因素

4.1 礦化機(jī)制

V. V. Seredin等[15]對(duì)煤型鈾的礦化機(jī)制進(jìn)行了系統(tǒng)總結(jié)。按礦化時(shí)期,將煤型鈾礦化劃分為“同生礦化”、“成巖礦化”及“后生礦化”3種類型(圖2)。同生礦化發(fā)生在泥炭堆積階段,成巖礦化發(fā)生在泥炭埋藏之后的腐植化和凝膠化階段,后生礦化發(fā)生于泥炭固結(jié)之后。不同階段的礦化過(guò)程受控于泥炭或煤的基本屬性。例如,從泥炭到煙煤,孔隙度和滲透性逐漸降低,對(duì)元素鈾具有明顯富集作用的腐植酸也將明顯減少,則對(duì)鈾的絡(luò)合作用降低。

圖2 煤型鈾礦化的典型模式[15,58-59]

圖2a為泥炭沼澤中鈾的同生礦化,屬“同生–滲入”型鈾礦化模式;圖2b發(fā)生了層間水的滲入作用[15],以哈薩克斯坦境內(nèi)Koldzhatsk大型煤型鈾礦床[59]為代表,屬“后生–滲入”型鈾礦化模式;圖2c發(fā)生了潛水滲入作用[15],形成哈薩克斯坦境內(nèi)Nizhneillisk大型煤型鈾礦床[59],屬“后生–滲入”型鈾礦化模式;圖2d為流體沿花崗巖基底斷裂滲入上覆煤層,使煤層中元素鈾發(fā)生富集,屬“后生–滲出”型鈾礦化模式。

目前,世界范圍內(nèi)發(fā)現(xiàn)的煤型鈾礦資源主要形成于后生礦化階段,相比而言,無(wú)論在規(guī)模還是品位上,同生或早成巖期形成的煤型鈾均較后生富集型差[12,15]。富鈾流體的滲入是煤中元素鈾礦化的重要過(guò)程,也是目前世界范圍內(nèi)發(fā)現(xiàn)的煤型鈾的主體礦化方式。根據(jù)富鈾流體的來(lái)源及其運(yùn)移方式,煤中鈾的富集模式大致劃分為“滲入型”和“滲出型”兩種(圖2)。前者為地表大氣水在重力作用下以潛水或?qū)娱g水的形式,沿著粗粒砂巖等透水層由盆地周緣向中心運(yùn)移;后者為深部流體通過(guò)基底斷裂或破碎帶由深到淺滲出,并進(jìn)入上覆沉積蓋層。無(wú)論是“滲入型”還是“滲出型”,在同生、成巖和后生礦化階段均可發(fā)生,甚至可以相互疊加。

4.2 影響因素

綜合前人觀點(diǎn),煤型鈾礦化的影響因素主要包括以下幾種,即煤階、水文地質(zhì)特征、鈾的來(lái)源、沉積環(huán)境或沉積相、古氣候、煤巖顯微組分和礦物及含煤盆地構(gòu)造背景。

①煤階

煤階的影響主要表現(xiàn)為富鈾煤多為褐煤和長(zhǎng)焰煤,煙煤富鈾程度相對(duì)有限[15,22]。這主要是因?yàn)楹置汉烷L(zhǎng)焰煤的結(jié)構(gòu)較為疏松,孔隙較為發(fā)育,有助于吸附作用的發(fā)生。更為重要的是,褐煤和長(zhǎng)焰煤中的腐植酸對(duì)鈾酰離子具有明顯的絡(luò)合和還原作用,而在較高變質(zhì)程度的煤中,腐植酸則發(fā)生降解和消失。

②水文地質(zhì)條件

影響煤中鈾礦化的水文地質(zhì)條件主要包括地表水和地下水的徑流以及化學(xué)成分。Huang Wenhui等[12]認(rèn)為,煤中元素鈾主要源自于匯入泥炭沼澤的地表水或是后期與煤層相互作用的地下水。因此,地表水和地下水,尤其是在富氧的情況下,可作為流體介質(zhì)對(duì)鈾離子進(jìn)行搬運(yùn)。另外,富氧地下水可對(duì)巖石中原始預(yù)富集的鈾進(jìn)行后期遷移和改造,從而促使后生成礦作用的發(fā)生,形成高品位的鈾礦資源[60-61]。

③鈾的來(lái)源

鈾的來(lái)源是煤型鈾形成的關(guān)鍵因素和先決條件,主要包括物源區(qū)富鈾花崗巖或長(zhǎng)英質(zhì)巖漿巖的風(fēng)化、火山噴發(fā)和巖漿侵入、海水侵入以及盆內(nèi)熱液流體的注入。

物源區(qū)富鈾花崗巖或長(zhǎng)英質(zhì)巖漿巖的風(fēng)化是煤中鈾的主要來(lái)源[41,62],一般包括2個(gè)過(guò)程,即含鈾碎屑物質(zhì)的直接輸入和溶解態(tài)鈾的隨水遷入。相比前一過(guò)程,后一過(guò)程在鈾遷移中更為重要[15]。

同沉積的火山噴發(fā)作用,尤其是富鈾中酸性巖漿的噴發(fā),可導(dǎo)致火山碎屑物質(zhì)直接混入到泥炭沼澤的物質(zhì)組成當(dāng)中,使得元素鈾在煤中富集[63-64]。同樣,巖漿侵入作用,尤其是富鈾酸性花崗質(zhì)巖漿的侵入,可通過(guò)富鈾巖漿期后熱液流體的注入使元素鈾在煤中富集,但其富集樣式往往受控于侵入體的形態(tài),不同于火山噴發(fā)影響下的(近)層狀分布特征[65-66]。

相比淡水,海水中鈾的含量相對(duì)較高,海水中鈾的含量平均約為淡水的80倍[67],因此,侵入泥炭沼澤的海水可起到有效的富鈾作用,尤其是與海相碳酸鹽巖伴生的煤層[68]。另外,海水侵入影響泥炭沼澤水介質(zhì)的pH、Eh以及H2S濃度,可形成有利于鈾富集的環(huán)境[69]。熱液流體在鈾成礦過(guò)程中起到重要作用[19,37]。一方面,深部來(lái)源或巖漿期后熱液流體自身往往含有豐富的鈾;另一方面,熱液流體穿過(guò)圍巖時(shí),尤其是富鈾花崗巖,可浸出其中的元素鈾,然后將其遷入并富集在煤層中。

④沉積環(huán)境

沉積環(huán)境和沉積相對(duì)于煤型鈾礦化的影響目前研究程度非常有限,值得深入探索。一方面,沉積環(huán)境直接影響元素鈾在同沉積階段的匯聚和沉淀,另一方面,沉積環(huán)境影響煤系巖性組合及沉積序列,進(jìn)而影響鈾的后生礦化作用。

例如,濱湖三角洲沉積體系為河水匯入的場(chǎng)所,來(lái)自物源區(qū)的元素鈾將通過(guò)富氧河水匯聚于此,為富鈾煤的形成提供重要的物質(zhì)基礎(chǔ),同時(shí)也是煤型鈾同生礦化的有利相帶[70]。另外,整個(gè)三角洲體系涵蓋水上氧化條件與水下較還原條件以及兩者之間的地球化學(xué)過(guò)渡環(huán)境,這種過(guò)渡部位有利于發(fā)生大量的膠體絮凝作用,有利于鈾的還原與沉淀,發(fā)生較高程度的鈾同生礦化。

再如,在河流沉積體系中,由于河流改道和河道沖刷作用,往往可形成典型的砂–煤–泥沉積序列,這一巖性組合非常有利于煤型鈾的后生礦化[47]。除了河流體系,三角洲體系也同樣可形成類似的巖性組合。

⑤古氣候

古氣候主要通過(guò)影響源區(qū)母巖風(fēng)化作用、地表與地下水的徑流和化學(xué)成分特征、植物生長(zhǎng)與泥炭沼澤的演化、鈾元素活化遷移等來(lái)影響煤型鈾的礦化[7]。

例如,源區(qū)母巖風(fēng)化產(chǎn)物要在特定的古氣候環(huán)境下才能形成,古氣候條件不同,形成的產(chǎn)物也就不同;在干旱、半干旱條件下,地表富氧水的搬運(yùn)使得母巖中的鈾元素發(fā)生充分遷移,因而對(duì)徑流末端的成礦作用較為有利;在潮濕條件下,源區(qū)各種有機(jī)質(zhì)、黏土礦物等吸附劑和還原劑增多,鈾元素容易被吸附和還原,并且被固定在源區(qū)。

又如,對(duì)于后生改造成礦作用,炎熱干旱的古氣候條件更有利于地表和淺部鈾的氧化和活化遷移,為在一定深度的氧化還原過(guò)渡部位富集成礦提供足夠的成礦物質(zhì)[17]。值得注意的是,古氣候特征還可通過(guò)影響植物生長(zhǎng)和水源補(bǔ)給特征來(lái)影響泥炭沼澤的類型和演化,進(jìn)一步影響煤巖特征。

⑥煤巖顯微組分和礦物

不同類型泥炭沼澤形成的煤,其顯微煤巖組成明顯不同,低位沼澤煤富含鏡質(zhì)組。不同顯微煤巖組分富鈾能力存在差異,因此不同類型泥炭沼澤形成的煤,其富鈾能力也自然不同。

另外,由地下水補(bǔ)給的低位富營(yíng)養(yǎng)型沼澤含礦物質(zhì)較多,而由大氣降水補(bǔ)給的高位貧營(yíng)養(yǎng)型沼澤含礦物質(zhì)則較少,后者由植物組織分解合成的腐植酸不易轉(zhuǎn)化成腐殖酸鹽而沉淀,相反則是大量積累在泥炭沼澤之中并使其介質(zhì)的酸度逐漸增加,而腐植酸在鈾的富集中起到非常重要的作用。

⑦構(gòu)造背景

構(gòu)造背景作為一個(gè)綜合性因素,控制盆地的形成演化、盆地或區(qū)域范圍內(nèi)的沉積作用和巖漿作用。此外,煤質(zhì)煤階、鈾的來(lái)源、水文地質(zhì)特征同樣受控于含煤盆地的構(gòu)造背景。

構(gòu)造作用可以從不同尺度對(duì)煤型鈾礦化產(chǎn)生影響,大到殼–幔相互作用和板塊運(yùn)動(dòng),小到含煤盆地內(nèi)的地形起伏和斷裂作用。大尺度的殼–幔相互作用對(duì)于煤型鈾形成的影響主要體現(xiàn)在中國(guó)西南地區(qū),煤型鈾的分布主體受控于二疊紀(jì)的地幔柱作用[71]。

與砂巖型鈾礦相似,煤型鈾礦資源在中國(guó)北方諸多陸相沉積盆地中均有分布,并且產(chǎn)出于同一時(shí)期(侏羅紀(jì))的煤系中,整體呈近東西向帶狀分布,例如南天山褶皺帶(薩瓦布其)、伊犁盆地、吐哈盆地、準(zhǔn)格爾盆地、鄂爾多斯盆地北部、二連盆地、松遼盆地[7,72]。此外,伊犁地區(qū)西鄰的哈薩克斯坦、吉爾吉斯斯坦、烏茲別克斯坦等中亞國(guó)家境內(nèi)也有大型高品位煤型鈾礦床分布??梢?,整個(gè)中亞地區(qū)如此大范圍分布的煤型鈾礦資源受控于統(tǒng)一的大地構(gòu)造背景。

小尺度的構(gòu)造作用通??赏ㄟ^(guò)形成含礦流體的運(yùn)移通道對(duì)煤型鈾礦化產(chǎn)生影響。例如,安徽淮北煤田海子礦煤中鈾含量隨著構(gòu)造作用的活躍程度增加而增加[73],南天山褶皺帶薩瓦布其地區(qū)煤型鈾的分布與斷裂密切相關(guān)[21]。

5 結(jié)語(yǔ)

煤型鈾礦資源作為新的鈾礦資源,正越來(lái)越受到人們的關(guān)注。煤型鈾的界定近年有多位學(xué)者提出了自己的觀點(diǎn),結(jié)合鈾元素一定程度上富集于煤灰中,本文提出將煤型鈾礦資源的界定標(biāo)準(zhǔn)可初步設(shè)定為鈾含量大于或等于40 mg/kg。根據(jù)這個(gè)標(biāo)準(zhǔn),發(fā)現(xiàn)煤型鈾礦在我國(guó)多地均有分布,并通過(guò)進(jìn)一步歸納總結(jié)我國(guó)主要煤型鈾礦分布與砂巖型鈾礦分布范圍,發(fā)現(xiàn)中國(guó)北部和西部的煤型鈾礦空間分布與砂巖型鈾礦具有明顯的耦合關(guān)系。煤中鈾多以有機(jī)態(tài)形式賦存,其中鈾與腐植酸的結(jié)合是煤中元素鈾非常重要的賦存狀態(tài)。已知大型煤型鈾礦主要形成于后生礦化階段,結(jié)合富鈾流體運(yùn)移方式,認(rèn)為“后生–滲入”型是有利于形成大型煤型鈾的成礦機(jī)制。

近些年,我國(guó)對(duì)外鈾礦資源的依存度居高不下,主要是因?yàn)槲覈?guó)對(duì)鈾資源需求量大,但鈾礦資源量有限。雖然煤中鈾的異常富集為解決鈾資源短缺提供了新的思路,且煤炭燃燒后其中的鈾會(huì)很大程度富集于煤灰中,但對(duì)于加工利用過(guò)程中,如何更合理有效地利用還需要繼續(xù)深入研究。而進(jìn)一步完善煤型鈾礦化時(shí)間和期次研究,對(duì)于揭示煤型鈾與伴生砂巖型鈾礦之間的成因聯(lián)系有重要的意義。

[1] World Nuclear Association. World nuclear power reactors and uranium requirements[EB/OL]. (2019-03) [2019-04-25]. http:// www.world-nuclear.org/information-library/facts-and-figures/uranium-production-figures.aspx

[2] OECD/NEA-IAEA. Uranium 2007:Resources,production and demand[M]. Paris:OECD Publishing,2008.

[3] OECD/NEA-IAEA. Uranium 2009:Resources,production and demand[M]. Paris:OECD Publishing,2010.

[4] 焦思穎. 2017中國(guó)土地礦產(chǎn)海洋資源統(tǒng)計(jì)公報(bào)發(fā)布[N]. 中國(guó)自然資源報(bào). 2018-05-18.

[5] 佚名. 中華人民共和國(guó)2017年國(guó)民經(jīng)濟(jì)和社會(huì)發(fā)展統(tǒng)計(jì)公報(bào)[N]. 人民日?qǐng)?bào). 2018-03-01.

[6] DAI Shifeng,REN Deyi,CHOU Chenlin,et al. Geochemistry of trace elements in Chinese coals:A review of abundances,genetic types,impacts on human health,and industrial utilization[J]. International Journal of Coal Geology,2012,94(3):3–21.

[7] CHEN Jian,CHEN Ping,YAO Duoxi,et al. Geochemistry of uranium in Chinese coals and the emission inventory of coal-fired power plants in China[J]. International Geology Review,2018,60.

[8] LAUER N,VENGOSH A,DAI Shifeng. Naturally occurring radioactive materials in uranium-rich coals and associated coal combustion residues from China[J]. Environmental Science & Technology,2017,51(22):13487–13493.

[9] 袁三畏. 中國(guó)煤質(zhì)論評(píng)[M]. 北京:煤炭工業(yè)出版社,1999.

[10] 代世峰,任德貽,孫玉壯,等. 鄂爾多斯盆地晚古生代煤中鈾和釷的含量與逐級(jí)化學(xué)提取[J]. 煤炭學(xué)報(bào),2004(增刊0):56–60. DAI Shifeng,REN Deyi,SUN Yuzhuang,et al. Concentration and the sequential chemical extraction procedures of U and Th in the Paleozoic coals from the Ordos basin[J]. Journal of China Coal Science,2004(S0):56–60.

[11] 漆富成,張字龍,李治興,等. 中國(guó)非常規(guī)鈾資源[J]. 鈾礦地質(zhì),2011,27(4):193–199. QI Fucheng,ZHANG Zilong,LI Zhixing,et al. Unconventional uranium resources in China[J]. Uranium Geology,2011,27(4):193–199.

[12] HUANG Wenhui,WAN Huan,F(xiàn)INKELMAN R B,et al. Distribution of uranium in the main coalfields of China[J]. Energy Exploration and Exploitation,2012,30(5):819–836.

[13] 孫玉壯,趙存良,李彥恒,等. 煤中某些伴生金屬元素的綜合利用指標(biāo)探討[J]. 煤炭學(xué)報(bào),2014,39(4):744–748. SUN Yuzhuang,ZHAO Cunliang,LI Yanheng,et al. Minimum mining grade of the selected trace elements in Chinese coal[J]. Journal of China Coal Society,2014,39(4):744–748.

[14] KETRIS M P,YUDOVICH Y E. Estimations of clarkes for Carbonaceous biolithes:World averages for trace element contents in black shales and coals[J]. International Journal of Coal Geology,2009,78(2):135–148.

[15] SEREDIN V V,F(xiàn)INKELMAN R B. Metalliferous coals:A review of the main genetic and geochemical types[J]. International Journal of Coal Geology,2008,76(4):253–289.

[16] SEREDIN V V. From coal science to metal production and environmental protection:A new story of success[J]. International Journal of Coal Geology,2012,90–91:1–3.

[17] 王毛毛,李華,邱余波. 新疆伊犁盆地洪海溝地區(qū)煤巖型鈾成礦分析[J]. 中國(guó)煤炭地質(zhì),2015,27(12):12–16. WANG Maomao,LI Hua,QIU Yubo. Coal-type uranium metallogenic analysis in Honghaigou area,Ili basin,Xinjiang[J]. Coal Geology of China,2015,27(12):12–16.

[18] BONNETTI C,CUNEY M,BOURLANGE S,et al. Primary uranium sources for sedimentary-hosted uranium deposits in NE China:Insight from basement igneous rocks of the Erlian basin[J]. Mineralium Deposita,2016,52(3):1–19.

[19] DAI Shifeng,XIE Panpan,WARD C R,et al. Anomalies of rare metals in Lopingian super-high-organic-sulfur coals from the Yishan coalfield,Guangxi,China[J]. Ore Geology Reviews,2017,88:235–250.

[20] DAI Shifeng,ZHANG Weiguo,SEREDIN V V,et al. Factors controlling geochemical and mineralogical compositions of coals preserved within marine carbonate successions:A case study from the Heshan coalfield,southern China[J]. International Journal of Coal Geology,2013,109–110:77–100.

[21] DAI Shifeng,WANG Peipei,WARD C R,et al. Elemental and mineralogical anomalies in the coal-hosted Ge ore deposit of Lincang,Yunnan,southwestern China:Key role of N2-CO2- mixed hydrothermal solutions[J]. International Journal of Coal Geology,2015,152:19–46.

[22] BREGER I A. Geochemistry of coal[J]. Economic Geology,1958,53:823–841.

[23] DAI Shifeng,SEREDIN V V,WARD C R,et al. Enrichment of U-Se-Mo-Re-V in coals preserved within marine carbonate successions:Geochemical and mineralogical data from the Late Permian Guiding coalfield,Guizhou,China[J]. Mineralium Deposita,2015,50(2):159–186.

[24] 付東葉,陳志強(qiáng),高明波,等. 新疆伊南煤田察布查爾縣脫維勒克井田勘探報(bào)告[R]. 新泰:新汶礦業(yè)集團(tuán)有限責(zé)任公司,2006.

[25] 楊建業(yè),狄永強(qiáng),張衛(wèi)國(guó),等. 伊犁盆地ZK0161井褐煤中鈾及其它元素的地球化學(xué)研究[J]. 煤炭學(xué)報(bào),2011,36(6):945–952. YANG Jianye,DI Yongqiang,ZHANG Weiguo,et al. Geochemistry study of its uranium and other element of brown coal of ZK0161 well in Yili basin[J]. Journal of China Coal Society,2011,36(6):945–952.

[26] DAI Shifeng,YANG Jianye,WARD C R,et al. Geochemical and mineralogical evidence for a coal-hosted uranium deposit in the Yili basin,Xinjiang,northwestern China[J]. Ore Geology Reviews,2015,70:1–30.

[27] 劉章月,董文明,劉紅旭. 新疆薩瓦布其地區(qū)含鈾煤成因分析[J].鈾礦地質(zhì),2011,27(6):345–351. LIU Zhangyue,DONG Wenming,LIU Hongxu. Analysis on gensis of uranium-bearing coal in Sawabuqi area,Xinjiang[J]. Uranium Geology,2011,27(6):345–351.

[28] QI Huawen,HU Ruizhong,ZHANG Qi. Concentration and distribution of trace elements in lignite from the Shengli coalfield,Inner Mongolia,China:Implications on origin of the associated Wulantuga germanium deposit[J]. International Journal of Coal Geology,2007,71(2/3):129–152.

[29] ZHUANG Xinguo,QUEROL X,ALASTUEY A,et al. Geochemistry and mineralogy of the Cretaceous Wulantuga high-germanium coal deposit in Shengli coal field,Inner Mongolia,northeastern China[J]. International Journal of Coal Geology,2006,66(1/2):119–136.

[30] 楊仁超,韓作振,柳益群,等. 鄂爾多斯盆地東勝地區(qū)侏羅系煤與鈾礦關(guān)系[J]. 地球科學(xué)與環(huán)境學(xué)報(bào),2006,28(4):31–37. YANG Renchao,HAN Zuozhen,LIU Yiqun,et al. Relationship between Jurassic coal measures and uranium deposits in Dongsheng area,Ordos basin[J]. Journal of Earth Sciences and Environment,2006,28(4):31–37.

[31] 王鈞漪,王文峰,李健,等. 元素鍺鎵鈾在大同煤田北部煤中的賦存特征[J]. 煤炭科學(xué)技術(shù),2010,38(2):117–121. WANG Junyi,WANG Wenfeng,LI Jian,et al. Deposit features of Ge,Ga and U elements in northern part of Datong coalfield[J]. Coal Science and Technology,2010,38(2):117–121.

[32] 劉貝,黃文輝,敖衛(wèi)華,等. 沁水盆地晚古生代煤中硫的地球化學(xué)特征及其對(duì)有害微量元素富集的影響[J]. 地學(xué)前緣,2016,23(3):59–67. LIU Bei,HUANG Wenhui,AO Weihua,et al. Geochemistry characteristics of sulfur and its effect on hazardous elements in the Late Paleozoic coal from the Qinshui basin[J]. Earth Science Frontiers,2016,23(3):59–67.

[33] 楊磊,劉池洋,李洪英. 陳家山礦煤中微量元素和稀土元素地球化學(xué)特征[J]. 煤田地質(zhì)與勘探,2008,36(2):10–14.YANG Lei,LIU Chiyang,LI Hongying. Geochemistry of trace elements and rare earth elements of coal in Chenjiashan coal mine[J]. Coal Geology & Exploration,2008,36(2):10–14.

[34] DAI Shifeng,LIU Jingjing,WARD C R,et al. Mineralogical and geochemical compositions of Late Permian coals and host rocks from the Guxu coalfield,Sichuan Province,China,with emphasis on enrichment of rare metals[J]. International Journal of Coal Geology,2016,166:71–95.

[35] LUO Yangbing,ZHENG Mianping. Origin of minerals and elements in the Late Permian coal seams of the Shiping mine,Sichuan,southwestern China[J]. Minerals,2016,6(3):74.

[36] DAI Sshifeng,XIE Panan,JIA Shaohui,et al. Enrichment of U-Re-V-Cr-Se and rare earth elements in the Late Permian coals of the Moxinpo coalfield,Chongqing,China:Genetic implications from geochemical and mineralogical data[J]. Ore Geology Reviews,2017,80:1–17.

[37] ZENG Rongshu,ZHUANG Xinguo,KOUKOUZAS N,et al. Characterization of trace elements in sulphur-rich Late Permian coals in the Heshan coal field,Guangxi,south China[J]. International Journal of Coal Geology,2005,61(1):87–95.

[38] 邵龍義,魯靜,JONES Tim,等. 桂中晚二疊世碳酸鹽巖型煤系高有機(jī)硫煤的礦物學(xué)和地球化學(xué)研究[J]. 煤炭學(xué)報(bào),2006,31(6):770–775. SHAO Longyi,LU Jing,JONES Tim,et al. Mineralogy and geochemistry of the high-organic sulphur coals from the carbonate coal measures of the Late Permian in central Guangxi[J]. Journal of China Coal Society,2006,31(6):770–775.

[39] 席維實(shí). 云南部分地區(qū)煤中鈾含量概況[J]. 中國(guó)煤炭地質(zhì),1992(3):30. XI Weishi. Survey of uranium content in coal in part of Yunnan[J]. Coal Geology of China,1992(3):30.

[40] LIU Jingjing,YANG Zong,YAN Xiaoyun,et al. Modes of occurrence of highly-elevated trace elements in superhigh-organic-sulfur coals[J]. Fuel,2015,156(4):190–197.

[41] DAI Shifeng,REN Deyi,ZHOU Yiping,et al. Mineralogy and geochemistry of a superhigh-organic-sulfur coal,Yanshan coalfield,Yunnan,China:Evidence for a volcanic ash component and influence by submarine exhalation[J]. Chemical Geology,2008,255(1):182–194.

[42] HU Ruizhong,QI Huawen,ZHOU Meifu,et al. Geological and geochemical constraints on the origin of the giant Lincang coal seam-hosted germanium deposit,Yunnan,SW China:A review[J]. Ore Geology Reviews,2009,36(1/2/3):221–234.

[43] YANG Jianye. Concentrations and modes of occurrence of trace elements in the Late Permian coals from the Pu’an coalfield,southwestern Guizhou,China[J]. Environmental Geochemistry & Health,2006,28(6):567–576.

[44] LI Baoqing,ZHUANG Xinguo,LI Jing,et al. Enrichment and distribution of elements in the Late Permian coals from the Zhina coalfield,Guizhou Province,southwest China[J]. International Journal of Coal Geology,2017,171:111–129.

[45] DAI Shifeng,REN Deyi,TANG Yuegang,et al. Concentration and distribution of elements in Late Permian coals from western Guizhou province,China[J]. International Journal of Coal Geology,2005,61(1):119–137.

[46] FINKELMAN R B. Modes of occurrence of environmentally-sensitive trace elements in coal[M]//SWAINE D J,GOODARZI F. Environmental aspects of trace elements in coal. Netherlands:Springer Netherlands,1995:24–50.

[47] DAI Shifeng,F(xiàn)INKELMAN R B. Coal as a promising source of critical elements:Progress and future prospects[J]. International Journal of Coal Geology,2018,186:155–164.

[48] DAI Shifeng,LI Dahua,REN Deyi,et al. Geochemistry of the Late Permian No.30 coal seam,Zhijin coalfield of southwest China:influence of a siliceous low-temperature hydrothermal fluid[J]. Applied Geochemistry,2004,19(8):1315–1330.

[49] 張淑苓,陳功,唐玉衡. 我國(guó)含鈾煤礦床的某些地球化學(xué)特征[J]. 沉積學(xué)報(bào),1984(4):77–87. ZHANG Shuling,CHEN Gong,TANG Yuheng. Some Geochemical characteristics of uranium-bearing coal deposits in China[J]. Acta Sedimentologica Sinica,1984(4):77–87.

[50] BREGER I A,DEUL M,MEYROWITZ R,et al. Mineralogy and geochemistry of an uraniferous coal from the Red Desert Area,Sweetwater County,Wyoming[R]. Wyoming:U.S. Geology Survey,1953.

[51] ILGER J D,ILGER W A,ZINGARO R A,et al. Modes of occurrence of uranium in carbonaceous uranium deposits:Characterization of uranium in a south Texas(U S A) lignite[J]. Chemical Geology,1987,63(3):197–216.

[52] ARBUZOV S I,MASLOV S G,VOLOSTNOV A V,et al. Modes of occurrence of uranium and thorium in coals and peats of northern Asia[J]. Solid Fuel Chemistry,2012,46(1):52–66.

[53] 楊志遠(yuǎn),張泓,張群,等. 低煤級(jí)煤與UO22+的吸附絡(luò)合及親煤型鈾礦成礦過(guò)程[J]. 煤田地質(zhì)與勘探,2009,37(5):1–5. YANG Zhiyuan,ZHANG Hong,ZHANG Qun,et al. Mechanism of uranyl ion adsorbing and complexing onto low-rank coal andore-forming process of uranium associated coal measures[J]. Coal Geology & Exploration,2009,37(5):1–5.

[54] LANDAIS P. Organic geochemistry of sedimentary uranium ore deposits[J]. Ore Geology Reviews,1996,11(1/2/3):33–51.

[55] SZALAY A. Cation exchange properties of humic acids and their importance in the geochemical enrichment of UO22 +,and other cations[J]. Geochimica et Cosmochimica Acta,1964,28(10):1605–1614.

[56] KOGLIN E,SCHENK H J,SCHWOCHAU K. Spectroscopic studies on the binding of uranium by brown coal[J]. Applied Spectroscopy,1978,32(5):486–489.

[57] IDIZ E F,CARLISLE D,KAPLAN I R. Interaction between organic matter and trace metals in a uranium rich bog,Kern County,California,U.S.A[J]. Applied Geochemistry,1986,1(5):573–590.

[58] KOCHENOV A,ZINEV'YEV V,LOVALEVA S. Some features of the accumulation of uranium in peat bogs[J]. Geochemistry International,1965.

[59] KISLYAKOV Y M,SHCHETOCHKIN V N. Hydrogenic ore-forming systems[J]. Geology of Ore Deposits,2000,42(5):369–396.

[60] MIN Maozhong,XU Huifang,CHEN Jian,et al. Evidence of uranium biomineralization in sandstone-hosted roll-front uranium deposits,northwestern China[J]. Ore Geology Reviews,2005,26(3):198–206.

[61] MIN Maozhong,CHEN Jian,WANG Jinpeng,et al. Mineral paragenesis and textures associated with sandstone-hosted roll-front uranium deposits,NW China[J]. Ore Geology Reviews,2005,26(1):51–69.

[62] 陳健,陳萍,姚多喜,等. 云南省臨滄市勐托新近系褐煤的微量元素地球化學(xué)特征[J]. 地學(xué)前緣,2016,23(3):83–89. CHEN Jian,CHEN Ping,YAO Duoxi,et al. Geochemistry of trace elements in the Mengtuo Neogene lignite of Lincang,western Yunnan[J]. Earth Science Frontiers,2016,23(3):83–89.

[63] DAI Shifeng,WANG Xibo,CHEN Wenmei,et al. A high-pyrite semianthracite of Late Permian age in the Songzao coalfield,southwestern China:Mineralogical and geochemical relations with underlying mafic tuffs[J]. International Journal of Coal Geology,2010,83(4):430–445.

[64] ZHUANG Xinguo,SU Sicai,XIAO Mingguo,et al. Mineralogy and geochemistry of the Late Permian coals in the Huayingshan coal-bearing area,Sichuan Province,China[J]. International Journal of Coal Geology,2012,94(94):271–282.

[65] DAI Shifeng,REN Deyi. Effects of Magmatic intrusion on mineralogy and geochemistry of coals from the Fengfeng-Handan coalfield,Hebei,China[J]. Energy & Fuels,2007,21(3):1663–1673.

[66] WANG Xibo,JIANG Yaofa,ZHOU Guoqing,et al. Behavior of minerals and trace elements during natural coking:A case study of an intruded bituminous coal in the Shuoli mine,Anhui Province,China[J]. Energy & Fuels,2015,29(7):4100?4113.

[67] REIMANN C,CARITAT P D. Chemical elements in the environment[M]. Berlin:Springer Verlag,1998.

[68] SHAO Longyi,JONES T,GAYER R,et al. Petrology and geochemistry of the high-sulphur coals from the Upper Permian carbonate coal measures in the Heshan coalfield,southern China[J]. International Journal of Coal Geology,2003,55(1):1–26.

[69] WANG Wenfeng,QIN Yong,SANG Shuxun,et al. Geochemistry of rare earth elements in a marine influenced coal and its organic solvent extracts from the Antaibao mining district,Shanxi,China[J]. International Journal of Coal Geology,2008,76(4):309–317.

[70] 李勝祥,陳戴生. 伊犁盆地含煤系地層沉積相特征及其與層間氧化帶砂巖型鈾礦成礦關(guān)系[J]. 鈾礦地質(zhì),1996(3):129–134. LI Shengxiang,CHEN Daisheng. Characteristics of sedimentary facies of coal-bearing series in Yili basin and their relation to sandstone uranium deposit of interlayered oxidation zone type[J]. Uranium Geology,1996(3):129–134.

[71] DAI Shifeng,CHEKRYZHOV I Y,SEREDIN V V,et al. Metalliferous coal deposits in East Asia(Primorye of Russia and south China):A review of geodynamic controls and styles of mineralization[J]. Gondwana Research,2016,29(1):60–82.

[72] ZHANG Yongsheng,SHI Minglei,WANG Jiawei,et al. Occurrence of uranium in Chinese coals and its emissions from coal-fired power plants[J]. Fuel,2016,166:404–409.

[73] LI Yunbo,JIANG Bo,QU Zhenghui. Controls on migration and aggregation for tectonically sensitive elements in tectonically deformed coal:An example from the Haizi mine,Huaibei coalfield,China[J]. Science China-Earth Sciences,2014,57(6):1180–1191.

Advances on geological-geochemical research of coal-type uranium in China

ZHOU Xianqing, QIN Yong, LU Lu

(Institute of Earth Resources and Geosciences, China University of Mining and Technology, Xuzhou 221116, China)

There is a huge gap in uranium resources in China. Only developing traditional uranium resources is unable to meet the increasing demand in energy and national defense construction. The exploitation and utilization of coal-type uranium resources can relieve the pressure of demand for uranium resources to a certain extent. By summarizing the research results of coal-type uranium in recent years, the ore location, uranium content range, formation time and distribution range of coal-bearing strata of major coal-type uranium deposits in China, and the definition criteria of coal-type uranium are given, which provides a basis for the classification of coal-type uranium deposits. The occurrence, metallogenic mechanism and influencing factors of coal-type uranium deposits are comprehensively expounded. Generally speaking, the research on coal-type uranium is insufficient, among which the micro-geological selection process is insufficient, and the identification of the micro-geological selection process of uranium enrichment in coal is very important for understanding the metallogenic mechanism; the study on the time and stage of coal-type uranium mineralization needs to be further deepened, which is conducive to analyzing the mineralization model of coal-type uranium and revealing the genetic association between coal-type uranium and associated sandstone-type uranium deposits. It will further deepen the understanding of the mechanism of coal-type uranium mineralization.

coal-type uranium; advance; mineralization mechanism; influence factor; China

P618.11;P619.14

A

10.3969/j.issn.1001-1986.2019.04.008

1001-1986(2019)04-045-09

2019-01-12

深部巖土力學(xué)與地下工程國(guó)家重點(diǎn)實(shí)驗(yàn)室開放基金項(xiàng)目(1UGJ1812)

State Key Laboratory for Geomechanics and Deep Underground Engineering Fund Project(1UGJ1812)

周賢青,1993年生,男,安徽蕪湖人,碩士,從事煤系礦產(chǎn)資源地質(zhì)研究工作. E-mail:zhouxqcumt@163.com

周賢青,秦勇,陸鹿. 中國(guó)煤型鈾地質(zhì)–地球化學(xué)研究進(jìn)展[J]. 煤田地質(zhì)與勘探,2019,47(4):45–53.

ZHOU Xianqing,QIN Yong,LU Lu. Advances on geological-geochemical research of coal-type uranium in China[J]. Coal Geology & Exploration,2019,47(4):45–53.

(責(zé)任編輯 范章群)

猜你喜歡
泥炭鈾礦礦化
礦化劑對(duì)硅酸鹽水泥煅燒的促進(jìn)作用
大麥蟲對(duì)聚苯乙烯塑料的生物降解和礦化作用
污泥炭的制備及其在典型行業(yè)廢水處理中的應(yīng)用
云南化工(2020年11期)2021-01-14 00:50:40
CSAMT法在柴北緣砂巖型鈾礦勘查砂體探測(cè)中的應(yīng)用
鈾礦地質(zhì)勘探設(shè)施治理分析
泥炭產(chǎn)業(yè)發(fā)展的觀察與思考
關(guān)于鈾礦地質(zhì)退役設(shè)施的長(zhǎng)期監(jiān)護(hù)
UExplore_SAR軟件在鈾礦地質(zhì)勘查中的應(yīng)用
主流媒體聚焦泥炭產(chǎn)業(yè)發(fā)展
腐植酸(2015年4期)2015-12-26 06:43:51
能做嬰兒尿布的泥炭蘚
云浮市| 徐州市| 北票市| 油尖旺区| 台南县| 福州市| 肃南| 达州市| 康平县| 从江县| 许昌市| 米脂县| 榆树市| 临澧县| 伊吾县| 东光县| 界首市| 临清市| 黑水县| 平原县| 林西县| 清涧县| 岑溪市| 利川市| 寻乌县| 天祝| 咸丰县| 平山县| 叶城县| 双峰县| 唐海县| 渝北区| 建湖县| 江门市| 高雄县| 庐江县| 临湘市| 沙湾县| 大兴区| 定兴县| 阜平县|