王娟 關(guān)海英 董瑞 劉春曉 劉強(qiáng) 劉鐵山 汪黎明 何春梅
摘要:玉米是對(duì)土壤鹽漬化中度敏感的作物,易受鹽堿危害。甘氨酸甜菜堿作為一種主要的滲透保護(hù)物質(zhì),能夠提高植物對(duì)多種非生物脅迫(如鹽堿、干旱、低溫等)的抗性。本工作前期從嗜鹽隱桿藻中克隆得到兩個(gè)參與甘氨酸甜菜堿合成的甲基轉(zhuǎn)移酶基因ApGSMT2和ApDMT2,利用農(nóng)桿菌介導(dǎo)法,將兩個(gè)基因分別在擬南芥和玉米中共同過(guò)表達(dá),獲得轉(zhuǎn)基因陽(yáng)性株,收獲T1代轉(zhuǎn)基因種子,經(jīng)自交后得到T2代種子。以擬南芥T2代種子為試材,設(shè)置0、50、100、150、200 mmol/L NaCl處理,進(jìn)行種子萌發(fā)試驗(yàn),結(jié)果顯示,不同鹽濃度處理下,轉(zhuǎn)基因擬南芥種子的萌發(fā)率顯著高于未轉(zhuǎn)基因?qū)φ罩仓?,說(shuō)明過(guò)表達(dá)ApGSMT2和ApDMT2基因?qū)τ谔岣邤M南芥的耐鹽性具有顯著效果。進(jìn)一步對(duì)T2代轉(zhuǎn)基因玉米株系幼苗的耐鹽性進(jìn)行試驗(yàn),結(jié)果表明,180 mmol/L NaCl處理后,未轉(zhuǎn)基因?qū)φ罩仓晡瑁D(zhuǎn)基因株系長(zhǎng)勢(shì)良好,其株高、根長(zhǎng)、葉片相對(duì)含水量和鮮重顯著高于對(duì)照,說(shuō)明過(guò)表達(dá)ApGSMT2和ApDMT2基因顯著提高了玉米對(duì)鹽脅迫的耐受性,為利用基因工程技術(shù)創(chuàng)制玉米耐鹽種質(zhì)提供了理論依據(jù)。
關(guān)鍵詞:玉米;擬南芥;ApGSMT2;ApDMT2;甘氨酸甜菜堿;耐鹽性
中圖分類(lèi)號(hào):S513.034+Q949.748.306??文獻(xiàn)標(biāo)識(shí)號(hào):A??文章編號(hào):1001-4942(2019)06-0010-07
Abstract?Maize is a moderately sensitive crop to soil salinization and is vulnerable to saline-alkali damage. Glycine betaine (GB), as a major osmotic protective solute, has shown the ability to improve plant resistance to a variety of abiotic stresses, such as salinity, drought and low temperature. Two methyltransferase genes, ApGSMT2 and ApDMT2, which are involved in the synthesis of GB, were cloned from Aphanothece halophytica in our previous studies. The two genes were overexpressed in Arabidopsis and maize through Agrobacterium-mediated method, and the transgenic positive strains were obtained. The T2 generation was obtained through selfing-cross from T1 generation. With the T2 seeds of Arabidopsis as materials, the germination test was conducted by setting the treatments of 0, 50, 100, 150 and 200 mmol/L NaCl. The germination rate of transgenic Arabidopsis seeds was significantly higher than that of wild-type plants under various concentrations of salt treatment. It indicated that overexpressing ApGSMT2 and ApDMT2 could significantly enhance the salt tolerance of Arabidopsis. The test was further conducted on the salt tolerance of T2 maize seedlings. Under the treatment of 180 mmol/L NaCl, the transgenic maize seedlings developed better, while the control plants wilting. The plant height, root length, leaf relative water content and fresh weight of transgenic lines were significantly higher than those of untransformed control plants. These results demonstrated that ApGSMT2 and ApDMT2 overexpression significantly increased the tolerance of Arabidopsis and maize to salt stress.
Keywords?Maize; Arabidopsis; ApGSMT2;ApDMT2; Glycine betaine; Salt tolerance
土壤鹽漬化是造成作物減產(chǎn)的主要因素之一[1]。玉米既是重要的糧食和飼料作物,又可作為醫(yī)藥和工業(yè)原料。由于玉米屬于中度鹽敏感植物,耐鹽能力比較低,因此其種植面積和產(chǎn)量受到一定的限制[2, 3]。隨著生物技術(shù)的迅速發(fā)展,利用基因工程技術(shù)培育轉(zhuǎn)基因玉米已成為提高玉米耐鹽性和解決其在鹽堿化土壤上種植的有效途徑之一[4, 5]。
甘氨酸甜菜堿(glycine betaine,GB)作為一種主要的滲透保護(hù)物質(zhì),能夠提高植物對(duì)多種非生物脅迫(如鹽堿、干旱、低溫等)的抗性[6-10]。在自然界中,已知的甘氨酸甜菜堿的生物合成途徑主要有兩種,即膽堿氧化途徑和甘氨酸甲基化途徑[11-13]。以甘氨酸為底物合成甜菜堿的途徑首先是在兩種極嗜鹽的微生物中發(fā)現(xiàn)的,由甘氨酸經(jīng)過(guò)連續(xù)三步N-甲基化生成甜菜堿,該途徑由依賴S-腺苷甲硫氨酸(SAM)的甘氨酸肌氨酸甲基轉(zhuǎn)移酶(glycine sarcosine methyltransferase,GSMT)和依賴SAM的肌氨酸二甲基甘氨酸甲基轉(zhuǎn)移酶(sarcosine dimethylglycine methyltransferase,SDMT)分別催化完成[13]。將該甘氨酸甲基化途徑引入作物中可顯著增加GB的累積并提高作物的耐逆性[14-17]。2005年,Waditee等從耐鹽藻青菌(Aphanothece halophytica)中克隆出ApGSMT和ApDMT基因并共轉(zhuǎn)化到淡水藻青菌(Synechococcus sp. PCC7942)和擬南芥中,發(fā)現(xiàn)在0.5 mol/L NaCl脅迫下,轉(zhuǎn)ApGSMT和ApDMT基因的淡水藻青菌細(xì)胞內(nèi)的GB濃度高達(dá)200 mmol/L,比轉(zhuǎn)膽堿氧化途徑基因的細(xì)胞GB含量高了5倍,使其耐鹽能力足夠在海水中生活;GB在轉(zhuǎn)ApGSMT/ApDMT基因擬南芥的根、莖、葉和花等中都有積累,轉(zhuǎn)基因植株的耐鹽、耐冷和抗旱性與轉(zhuǎn)膽堿氧化途徑基因的擬南芥相比都有明顯提高[15]。Niu等在水稻中共表達(dá)ApGSMT和ApDMT基因,轉(zhuǎn)基因株系體內(nèi)積累了較高的GB含量且耐鹽耐冷性得到了顯著性提高[18]。山東大學(xué)He等從南京大學(xué)提供的一株被命名為Aphanothece halophytica GR20的嗜鹽隱桿藻中克隆出ApGSMT2和ApDMT2基因,并在煙草中驗(yàn)證了其功能,確定了共表達(dá)ApGSMT2和ApDMT2的轉(zhuǎn)基因煙草耐旱性大幅度提高[19]。Song等的研究表明,共表達(dá)密碼子經(jīng)過(guò)優(yōu)化的ApGSMT2g和ApDMT2g基因顯著提高了轉(zhuǎn)基因棉花在鹽堿地的抗性及產(chǎn)量[20]。此外,共表達(dá)ApGSMT2和ApDMT2的轉(zhuǎn)基因玉米體內(nèi)積累了較高的GB含量且耐旱性得到顯著提高[21],目前,關(guān)于引入甘氨酸甲基化途徑基因ApGSMT2和ApDMT2對(duì)玉米耐鹽性的影響還未見(jiàn)相關(guān)報(bào)道。
本試驗(yàn)將ApGSMT2和ApDMT2基因重組到植物表達(dá)載體中,利用農(nóng)桿菌介導(dǎo)法分別轉(zhuǎn)化擬南芥和玉米,以T2代轉(zhuǎn)基因株系為材料,通過(guò)分析不同濃度NaCl處理下擬南芥種子的萌發(fā)率來(lái)明確過(guò)表達(dá)ApGSMT2和ApDMT2基因的耐鹽效果,并進(jìn)一步對(duì)NaCl脅迫下轉(zhuǎn)基因玉米幼苗的生長(zhǎng)發(fā)育和基因表達(dá)情況進(jìn)行分析,探討過(guò)表達(dá)ApGSMT2和ApDMT2基因與玉米耐鹽性的關(guān)系,以期為玉米耐鹽育種提供理論基礎(chǔ)和潛在優(yōu)異耐鹽種質(zhì)資源。
1?材料與方法
1.1?試驗(yàn)材料與試劑
以本實(shí)驗(yàn)室前期構(gòu)建的植物雙元表達(dá)載體p3300-ApGSMT2-ApDMT2-bar為基礎(chǔ),通過(guò)農(nóng)桿菌介導(dǎo)的幼胚遺傳轉(zhuǎn)化方法分別轉(zhuǎn)化擬南芥Col-0和玉米自交系HiII,獲得轉(zhuǎn)基因陽(yáng)性植株,收獲T1代轉(zhuǎn)基因種子,經(jīng)自交后得到T2代種子,以此為材料,進(jìn)行耐鹽性鑒定。
RNAiso Plus和PrimeScript RT reagent Kit with gDNA Eraser試劑盒購(gòu)自大連寶生物工程公司;2×Taq Plus Master Mix購(gòu)自南京諾唯贊生物科技有限公司;其余試劑均為進(jìn)口或國(guó)產(chǎn)分析純。
1.2?試驗(yàn)方法
1.2.1?轉(zhuǎn)基因陽(yáng)性植株的PCR鑒定?采用CTAB法提取擬南芥或玉米葉片基因組DNA[22],進(jìn)行PCR檢測(cè),以確定轉(zhuǎn)基因陽(yáng)性植株。PCR鑒定所用引物為UBI-F:5′-CTTTTTGTTCGCTTGGTTGTGATGA-3′和G-R:5′-CGCGCTTGCCAATTGATTAAC-3′(擴(kuò)增產(chǎn)物560 bp)。PCR反應(yīng)體系為20 μL,包括:2×Taq Plus Master Mix 10 μL,上下游引物(10 μmol/L)各0.8 μL,基因組DNA(50 ng/μL)2 μL,滅菌水6.4 μL。PCR反應(yīng)程序?yàn)椋?4℃預(yù)變性5 min;94℃變性30 s,56℃退火30 s,72℃延伸30 s,循環(huán)35次;72℃過(guò)度延伸5 min。
1.2.2?鹽脅迫下擬南芥轉(zhuǎn)基因株系的種子萌發(fā)試驗(yàn)?隨機(jī)選取5個(gè)擬南芥T2代轉(zhuǎn)ApGSMT2和ApDMT2基因株系(L2~L6),以擬南芥Col-0為對(duì)照(WT),種子置于4℃處理48 h,然后經(jīng)次氯酸鈉消毒后,分別播種于含0、50、100、150、200 mmol/L NaCl的1/2MS固體培養(yǎng)基(pH 5.8)上。培養(yǎng)溫度為22℃,光周期為16 h光照、8 h黑暗。每個(gè)處理重復(fù)3次。處理12 d后,統(tǒng)計(jì)種子萌發(fā)率。
1.2.3?玉米轉(zhuǎn)基因株系的基因表達(dá)量鑒定?取轉(zhuǎn)ApGSMT2和ApDMT2玉米T2代株系及對(duì)照HiII(WT)的幼苗葉片,液氮速凍,按照RNAiso Plus試劑盒說(shuō)明書(shū)提取總RNA,參照PrimeScript RT reagent Kit with gDNA Eraser試劑盒說(shuō)明書(shū)進(jìn)行反轉(zhuǎn)錄合成cDNA。
表達(dá)量鑒定采用半定量RT-PCR方法,PCR所用ApGSMT2引物為GT-F: 5′-GCAAGCGCG
ATCGACCAGTGA-3′和GT-R: 5′-CCCGTTCCCGTGGCAGCATCT-3′;ApDMT2引物為DT-F: 5′-TGCGAGTGTGCGTACCGTTGC-3′和DT-R: 5′-TGCCATATAACGAGCGGAGCC-3′;內(nèi)參FPGS[23]引物為:FP-F: 5′-ATCTCGTTGGGGATGTCTTG-3′ 和FP-R: 5′-AGCACCGTTCAAATGTCTCC-3′。半定量PCR反應(yīng)程序?yàn)椋?4℃預(yù)變性5 min;94℃變性30 s,56℃退火30 s,72℃延伸15 s,循環(huán)28次;72℃過(guò)度延伸5 min。
1.2.4?玉米轉(zhuǎn)基因株系苗期的耐鹽性鑒定?選取3個(gè)T2代轉(zhuǎn)ApGSMT2和ApDMT2基因玉米株系(D1~D3),以玉米自交系HiII(WT)為對(duì)照,幼苗經(jīng)1/2MS營(yíng)養(yǎng)液水培一周后,轉(zhuǎn)移至含180 mmol/L NaCl的1/2MS營(yíng)養(yǎng)液中鹽處理7 d。分別對(duì)處理前后的玉米株系拍照并測(cè)量株高、根長(zhǎng)、葉片相對(duì)含水量和單株鮮重,取3株植株進(jìn)行重復(fù)。
葉片相對(duì)含水量的測(cè)定:稱取玉米幼苗第二片全展葉約0.1 g,浸入去離子水中約4 h至恒重,取出用濾紙吸去表面水分,稱飽和鮮重;再將葉片放入烘箱于70℃烘干至恒重,稱干重。
1.3?數(shù)據(jù)處理與統(tǒng)計(jì)分析
利用軟件Microsoft Excel 2019和SigmaPlot 12.5進(jìn)行數(shù)據(jù)的統(tǒng)計(jì)分析和作圖,采用One-Way ANOVA方法進(jìn)行差異顯著性分析。數(shù)據(jù)結(jié)果以3次重復(fù)的平均值±標(biāo)準(zhǔn)差表示。
2?結(jié)果與分析
2.1?轉(zhuǎn)基因陽(yáng)性植株的分子鑒定
通過(guò)農(nóng)桿菌介導(dǎo)法將植物雙元表達(dá)載體p3300-ApGSMT2-ApDMT2-bar分別轉(zhuǎn)化擬南芥Col-0和玉米自交系HiII,ApGSMT2基因由玉米Ubiquitin1啟動(dòng)子pUbi驅(qū)動(dòng)表達(dá),而ApDMT2基因由煙草花葉病毒(CaMV)35S啟動(dòng)子驅(qū)動(dòng)表達(dá)。根據(jù)載體T-DNA區(qū)結(jié)構(gòu)圖(圖1A),設(shè)計(jì)載體啟動(dòng)子pUbi上的正向引物和ApGSMT2基因特異反向引物進(jìn)行PCR鑒定。擬南芥轉(zhuǎn)基因PCR鑒定結(jié)果如圖1B所示,玉米轉(zhuǎn)基因鑒定結(jié)果如圖3A所示。結(jié)果表明,擬南芥轉(zhuǎn)基因株系L2~L6和玉米轉(zhuǎn)基因株系D1~D3均擴(kuò)增出與重組質(zhì)粒同等大小的基因片段,而對(duì)照(WT)則未擴(kuò)增出目的基因片段,說(shuō)明以上株系均為轉(zhuǎn)基因陽(yáng)性株系。
2.2?不同濃度NaCl處理對(duì)轉(zhuǎn)ApGSMT2和ApDMT2擬南芥種子萌發(fā)率的影響
將轉(zhuǎn)ApGSMT2和ApDMT2基因擬南芥株系和WT種子播于含不同濃度NaCl(0、50、100、150、200 mmol/L)的1/2MS培養(yǎng)基上培養(yǎng)12 d,觀察各株系表型。結(jié)果表明,在不含NaCl的1/2MS培養(yǎng)基上進(jìn)行培養(yǎng)時(shí),轉(zhuǎn)基因擬南芥與WT均萌發(fā)和生長(zhǎng)正常;但隨著鹽濃度的提高,各株系的生長(zhǎng)均受到明顯抑制,與WT相比,轉(zhuǎn)基因株系生長(zhǎng)受抑制程度較低,在100、150 mmol/L NaCl處理時(shí)差異非常明顯(圖1C)。
2.3?玉米轉(zhuǎn)基因株系中ApGSMT2和ApDMT2基因的表達(dá)豐度分析
利用半定量RT-PCR方法對(duì)玉米轉(zhuǎn)基因株系中ApGSMT2和ApDMT2基因表達(dá)豐度的鑒定結(jié)果(圖3A、B)表明,WT中無(wú)目的基因表達(dá),而各轉(zhuǎn)基因株系中ApGSMT2和ApDMT2均有較高表達(dá);內(nèi)參基因FPGS在WT及各轉(zhuǎn)基因株系中表達(dá)穩(wěn)定,無(wú)差異,說(shuō)明ApGSMT2和ApDMT2基因在各個(gè)轉(zhuǎn)基因株系中均成功表達(dá)。
2.4?NaCl處理對(duì)轉(zhuǎn)ApGSMT2和ApDMT2基因玉米表型的影響
對(duì)萌發(fā)后水培一周的轉(zhuǎn)基因玉米株系及WT幼苗進(jìn)行鹽脅迫(180 mmol/L NaCl)處理,結(jié)果(圖3C、圖4A)表明,處理前各株系長(zhǎng)勢(shì)良好,轉(zhuǎn)基因株系稍高于對(duì)照植株,說(shuō)明轉(zhuǎn)ApGSMT2和ApDMT2基因?qū)τ衩椎纳L(zhǎng)具有促進(jìn)作用。鹽處理7 d后,WT葉片黃化和萎蔫嚴(yán)重,莖稈因失水而變細(xì)倒伏,且根部生長(zhǎng)受到抑制;而轉(zhuǎn)基因株系葉片僅出現(xiàn)輕微黃化和萎蔫,莖稈較粗壯,根系發(fā)達(dá),整體長(zhǎng)勢(shì)仍然良好。
3?討論與結(jié)論
鹽脅迫能顯著影響植物的生長(zhǎng)和發(fā)育。本試驗(yàn)中,隨著鹽濃度的增加,未轉(zhuǎn)基因擬南芥種子的萌發(fā)率降低,而過(guò)表達(dá)ApGSMT2和ApDMT2基因顯著提高了不同鹽濃度處理下擬南芥種子的萌發(fā)率,對(duì)提高擬南芥的耐鹽性具有明顯效果。比較鹽處理前后玉米轉(zhuǎn)ApGSMT2和ApDMT2基因株系與未轉(zhuǎn)基因?qū)φ盏谋硇图吧碇笜?biāo)發(fā)現(xiàn),NaCl處理前,除株高外,根長(zhǎng)、葉片相對(duì)含水量和鮮重兩者間均沒(méi)有顯著差異;但是在鹽脅迫條件下,轉(zhuǎn)基因株系的株高和鮮重極顯著高于對(duì)照,葉片相對(duì)含水量和D1株系的根長(zhǎng)顯著高于對(duì)照,說(shuō)明轉(zhuǎn)ApGSMT2和ApDMT2基因玉米株系在鹽脅迫條件下維持了較好的長(zhǎng)勢(shì)。
玉米是易受鹽堿危害的作物,由于玉米種質(zhì)資源缺乏和田間選擇困難等原因,常規(guī)育種選育玉米耐鹽品種的工作收效不大。本研究發(fā)現(xiàn)轉(zhuǎn)ApGSMT2和ApDMT2基因可以顯著提高玉米對(duì)鹽脅迫的耐受性,利用基因工程技術(shù)結(jié)合常規(guī)育種有望在較短時(shí)間內(nèi)創(chuàng)造出玉米耐鹽新種質(zhì)[24, 25],這不僅可以擴(kuò)大玉米的種植面積,而且可以提高玉米的穩(wěn)產(chǎn)性,對(duì)于我國(guó)農(nóng)業(yè)生產(chǎn)有重大意義。
參?考?文?獻(xiàn):
[1]?Deinlein U, Stephan A B, Horie T, et al. Plant salt-tolerance mechanisms [J]. Trends in Plant Science, 2014, 19(6): 371-379.
[2]?Farooq M, Hussain M, Wakeel A, et al. Salt stress in maize: effects, resistance mechanisms, and management. A review [J]. Agronomy for Sustainable Development, 2015, 35(2): 461-481.
[3]?趙韋. 土壤鹽堿化對(duì)玉米脅迫的研究進(jìn)展[J]. 黑龍江農(nóng)業(yè)科學(xué),2019(1): 140-142.
[4]?Sakamoto A, Murata N. The role of glycinebetaine in the protection of plants from stress: clues from transgenic plants [J]. Plant Cell and Environment, 2002, 25(2): 163-171.
[5]?郭嘉,孫傳波,楊向東,等. 耐鹽堿轉(zhuǎn)基因玉米的獲得及其抗性分析[J]. 玉米科學(xué),2016,24(6): 24-29.
[6]?Hayashi H, Alia A, Mustardy L A, et al. Transformation of Arabidopsis thaliana with the codA gene for choline oxidase; accumulation of glycinebetaine and enhanced tolerance to salt and cold stress [J]. The Plant Journal, 1997, 12(1): 133-142.
[7]?Chen T H H, Murata N. Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes [J]. Current Opinion in Plant Biology, 2002, 5(3): 250-257.
[8]?Chen T H H, Murata N. Glycinebetaine: an effective protectant against abiotic stress in plants [J]. Trends in Plant Science, 2008, 13(9): 499-505.
[9]?Yang X, Liang Z, Lu C. Genetic engineering of the biosynthesis of glycinebetaine enhances photosynthesis against high temperature stress in transgenic tobacco plants [J]. Plant Physiology, 2005, 138(4): 2299-2309.
[10]?Wani S H, Singh N B, Haribhushan A, et al. Compatible solute engineering in plants for abiotic stress tolerance — role of glycine betaine [J]. Current Genomics, 2013, 14(3): 157-165.
[11]?Rhodes D, Hanson A D. Quaternary ammonium and tertiary sulfonium compounds in higher plants [J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1993, 44:357-384.
[12]?Rathinasabapathi B, Burnet M, Russell B L, et al. Choline monooxygenase, an unusual ironsulfur enzyme catalyzing the first step of glycine betaine synthesis in plants: prosthetic group characterization and cDNA cloning [J]. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(7): 3454-3458.
[13]?Nyyssola A, Kerovuo J, Kaukinen P, et al. Extreme halophiles synthesize betaine from glycine by methylation [J]. The Journal of Biological Chemistry, 2000, 275(29): 22196-22201.
[14]?Waditee R, Tanaka Y, Aoki K, et al. Isolation and functional characterization of N-methyltransferases that catalyze betaine synthesis from glycine in a halotolerant photosynthetic organism Aphanothece halophytica[J]. The Journal of Biological Chemistry, 2003, 278(7): 4932-4942.
[15]?Waditee R, Bhuiyan M N, Rai V, et al. Genes for direct methylation of glycine provide high levels of glycinebetaine and abiotic-stress tolerance in Synechococcus and Arabidopsis [J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(5): 1318-1323.
[16]?Waditee-Sirisattha R, Singh M, Kageyama H, et al. Anabaena sp. PCC7120 transformed with glycine methylation genes from Aphanothece halophytica synthesized glycine betaine showing increased tolerance to salt [J]. Archives of Microbiology, 2012, 194(11): 909-914.
[17]?Lai S J, Lai M C, Lee R J, et al. Transgenic Arabidopsis expressing osmolyte glycine betaine synthesizing enzymes from halophilic methanogen promote tolerance to drought and salt stress [J]. Plant Molecular Biology, 2014, 85(4/5): 429-441.
[18]?Niu X, Xiong F, Liu J, et al. Co-expression of ApGSMT and ApDMT promotes biosynthesis of glycine betaine in rice(Oryza sativa L.) and enhances salt and cold tolerance [J]. Environmental and Experimental Botany, 2014, 104: 16-25.
[19]?He Y,He C M,Li L H,et al.Heterologous expression of ApGSMT2 and ApDMT2 genes from Aphanothece halophytica enhanced drought tolerance in transgenic tobacco [J]. Molecular Biology Reports, 2011, 38(1): 657-666.
[20]?Song J, Zhang R, Yue D, et al. Co-expression of ApGSMT2g and ApDMT2g in cotton enhances salt tolerance and increases seed cotton yield in saline fields [J]. Plant Science, 2018, 274: 369-382.
[21]?He C, He Y, Liu Q, et al. Co-expression of genes ApGSMT2 and ApDMT2 for glycinebetaine synthesis in maize enhances the drought tolerance of plants [J]. Molecular Breeding, 2013, 31(1): 559-573.
[22]?何春梅,王娟,董瑞,等. 玉米ZmGS5基因的克隆及其對(duì)轉(zhuǎn)基因擬南芥種子發(fā)育的影響[J]. 浙江農(nóng)業(yè)學(xué)報(bào),2019,31(4): 513-518.
[23]?Manoli A, Sturaro A, Trevisan S, et al. Evaluation of candidate reference genes for qPCR in maize [J]. Journal of Plant Physiology, 2012, 169(8): 807-815.
[24]?Apse M P, Blumwald E. Engineering salt tolerance in plants [J]. Current Opinion in Biotechnology, 2002, 13(2): 146-150.
[25]?Agarwal P K, Shukla P S, Gupta K, et al. Bioengineering for salinity tolerance in plants: state of the art [J]. Molecular Biotechnology, 2013, 54(1): 102-123.