劉凡銘,王琪,錢昱臻,張葉軍,2,張炳強,李洪艷,2,鄒偉,2,
?
腺苷酸活化蛋白激酶在糖脂代謝調(diào)控中的研究進展
劉凡銘1*,王琪1*,錢昱臻1,張葉軍1,2,張炳強3,李洪艷1,2,鄒偉1,2,3
1 遼寧師范大學(xué) 生命科學(xué)學(xué)院,遼寧 大連 116081 2 遼寧省生物技術(shù)與分子藥物研發(fā)重點實驗室,遼寧 大連 116081 3 衛(wèi)生部細胞移植重點實驗室臨床中心,山東 青島 266000
AMP激活的蛋白激酶 (AMP-activated protein kinase,AMPK) 是一種異源三聚體復(fù)合物,作為機體能量平衡和糖脂代謝的重要激酶參與多種生理過程的調(diào)節(jié)。研究表明,炎癥、糖尿病和癌癥等多種慢性疾病也與AMPK功能和活性調(diào)節(jié)有密切關(guān)系。新近發(fā)現(xiàn),糖尿病一線用藥二甲雙胍抑制肝糖產(chǎn)生改善病人高血糖的作用與AMPK激活有關(guān),提示靶向AMPK可能是預(yù)防和治療多種慢性疾病的有效策略之一。文中從AMPK的結(jié)構(gòu)與活性、AMPK在糖代謝調(diào)控中的作用和AMPK在血脂代謝調(diào)控中的作用3個方面綜述了AMPK研究的進展,旨在為糖脂代謝調(diào)控的基礎(chǔ)和臨床研究提供依據(jù)。
AMP激活的蛋白激酶,糖尿病,糖代謝,脂代謝
國際糖尿病聯(lián)盟(IDF) 發(fā)布的數(shù)據(jù)顯示,2010年全球約2.85億人患有糖尿病。如果以當前速度增長而不加以控制的話,預(yù)計到2040年糖尿病患病總數(shù)將超過6.42億,其中Ⅱ型糖尿病約占其中的90%[1]。目前我國已有超過9 000萬的糖尿病患者,是全球糖尿病第一大國。值得人們關(guān)注的是,糖尿病的發(fā)病年齡越來越趨向年輕化,其引發(fā)的長期糖、脂等代謝紊亂會導(dǎo)致機體多器官損傷,進而產(chǎn)生人腦[2]、腎[3]等器官病變,具有很高的致殘率和致死率。
腺苷酸活化蛋白激酶(Adenosine 5?- monophosphate (AMP)-activated protein kinase,AMPK) 是生物能量代謝調(diào)節(jié)的關(guān)鍵分子。研究表明,AMPK是機體保持葡萄糖平衡所必需的,其激活能改善由Ⅱ型糖尿病引起的代謝失衡;體內(nèi)脂肪組織含量的變化與胰島素敏感性關(guān)系密切,而AMPK能通過多種途徑調(diào)控血脂代謝。因此,AMPK有望作為Ⅱ型糖尿病及肥胖癥等疾病的潛在治療靶標。
AMPK是由α、β和γ三個亞基按1︰1︰1比例組成的異源三聚體復(fù)合物,其中α亞基(63 kDa)是催化亞基,β (30 kDa) 和γ (38-63 kDa) 為調(diào)節(jié)亞基[4]。脯乳動物AMPK結(jié)構(gòu)解析圖如圖1所示。
AMPK α亞基肽鏈N端具有保守的絲氨酸/蘇氨酸激酶結(jié)構(gòu)域,肽鏈中段是激酶的自抑制區(qū)(Auto-inhibitory domain),而肽鏈C端包含與β和γ亞基結(jié)合的結(jié)構(gòu)域[4]。
AMPK β亞基對異源三聚體的組裝和AMPK復(fù)合物的細胞定位起著非常重要的作用。AMPK β亞基有兩個特殊的結(jié)構(gòu)域,分別是C端錨定α和γ亞基的結(jié)構(gòu)域(Tethering domain),以及肽鏈中部與糖原結(jié)合的結(jié)構(gòu)域(Glycogen binding domain, GBD)[4]。生理水平上,已有研究發(fā)現(xiàn)β亞基在AMPK活性調(diào)節(jié)中具有重要作用。一方面,β亞基豆蔻酰化是AMPK被上游激酶磷酸化所必需的[5]。另一方面,肌肉特異性β1和β2亞基雙敲除的小鼠,由于不能形成AMPK三聚體,而徹底喪失了AMPK的活性;這些小鼠肌肉中生理性收縮引起的葡萄糖攝取作用顯著減弱,小鼠表現(xiàn)出運動能力障礙[6]。
每個γ亞基具有4個由胱硫醚-β-合酶(Cystathionine-β-synthase,CBS) 組成的結(jié)構(gòu)高度保守的串聯(lián)重復(fù)序列(這里簡稱為CBS1–4),每兩個CBS組成一個貝特曼結(jié)構(gòu)域(Bateman domains)。早期研究發(fā)現(xiàn),AMPK γ3的225位精氨酸突變?yōu)楣劝滨0?R225Q) 可引起豬骨骼肌中糖原含量顯著增加,原因是突變導(dǎo)致γ3亞基的CBS1不能與AMP結(jié)合從而阻礙了AMPK的激活[7]。研究發(fā)現(xiàn)AMP和ATP可與細菌表達的γ2亞基CBS區(qū)結(jié)合,參與AMPK的變構(gòu)調(diào)節(jié);而CBS區(qū)確實是AMPK復(fù)合物與AMP和ATP等腺嘌呤核苷酸結(jié)合的結(jié)構(gòu)基礎(chǔ)[8]。
圖1 哺乳動物AMPK結(jié)構(gòu)解析圖
組成AMPK的α、β、γ三個亞基各自具有不同亞型,包括α1、α2、β1、β2、γ1、γ2、γ3;這些亞型有的是由不同的基因編碼,有的含有不同的剪接體(Splice variants);因此理論上來講,AMPK三聚體復(fù)合物至少存在12種不同的結(jié)構(gòu)。通過AMPK不同亞基間的組合,使得AMPK復(fù)合物的細胞定位和信號轉(zhuǎn)導(dǎo)機制不盡相同,從而賦予了其不同的特性和功能[9]。
Ⅱ型糖尿病是機體內(nèi)葡萄糖產(chǎn)生和攝取利用發(fā)生不平衡所導(dǎo)致的。肝臟是機體產(chǎn)生葡萄糖的主要場所,也是控制血糖穩(wěn)態(tài)的重要器官。肝糖生成增加是空腹血糖升高主要原因[10]。糖異生是體內(nèi)將丙酮酸、乳酸、甘油和生糖氨基酸等非糖物質(zhì)轉(zhuǎn)變?yōu)槠咸烟堑拇x過程。在肝臟中,AMPK通過調(diào)節(jié)多個下游效應(yīng)因子,抑制糖異生作用而控制肝糖產(chǎn)生。研究報道,給普通小鼠或肥胖的胰島素抵抗小鼠靜脈灌注AMPK激活劑AICAR (5-Aminoimidazole-4-carboxamide-1-β-D-ribofuranoside),都可以抑制肝糖的生成[11]。最近Hughey等對組織特異性α1/α2KO小鼠的研究為AMPK和糖原的功能性相互作用提供了支持。具有肝臟特異性AMPKα1/α2的KO小鼠由于糖原分解減少導(dǎo)致肝葡萄糖輸出減少,維持正常運動的能力受損[12]。具體表現(xiàn)為,在禁食和運動后,KO小鼠的肝糖原含量降低。當受到長期快速攻擊時,這些小鼠的肝臟糖原分解減少,并且在沒有AMPK活性的情況下無法維持肝臟ATP濃度,這支持了AMPK在肝臟中作為能量傳感器的作用[13]。近年來有研究發(fā)現(xiàn),AMPK磷酸化并抑制一種轉(zhuǎn)錄輔助激活因子TORC2 (Transducer of regulated CREB activity 2),使其停留在胞漿,不能轉(zhuǎn)位到細胞核與環(huán)磷腺苷效應(yīng)元件結(jié)合蛋白CREB (cAMP-response element binding protein) 共同作用而轉(zhuǎn)錄表達過氧化物酶體增殖物激活受體γ (Peroxisome proliferator activated receptorγ, PPARγ) 輔助激活因子-1α (PPARγcoactivator-1α,PGC1α),阻礙了PGC1α對磷酸烯醇丙酮酸羧激酶(Phosphoenolpyruvate carboxykinase,PEPCK)和葡萄糖-6-磷酸酶 (Glucose-6-phosphatase,G6Pase) 的轉(zhuǎn)錄,最終導(dǎo)致肝糖異生受到抑制[14]。脂肪細胞因子脂聯(lián)素可以抑制糖異生[15]。脂聯(lián)素能夠激活A(yù)MPK,抑制G6Pase的活性,從而減少肝糖輸出,起到降糖的功能[16]。本實驗室前期研究發(fā)現(xiàn),小檗堿(Berberine,BBR) 的降糖作用與AMPK密切相關(guān),BBR通過激活A(yù)MPK抑制細胞肝糖異生。我們選用小鼠原代肝實質(zhì)細胞為研究對象,RNAi技術(shù)抑制AMPKα表達后,BBR抑制小鼠肝癌細胞糖生成的作用減弱(結(jié)果尚未發(fā)表)。這些實驗證明,肝臟中AMPK通路能抑制糖異生,減少肝糖生成而降低血糖。
骨骼肌是機體內(nèi)葡萄糖攝取和支配的主要場所,也是除肝臟外另一個維持血糖穩(wěn)定的重要器官[17]。人們發(fā)現(xiàn),體育鍛煉時骨骼肌中的AMPK會被激活,從而增加了葡萄糖的攝取。這時人們提出用AMPK激活劑來治療Ⅱ型糖尿病(T2DM)[18]。AMPK激活后,會刺激葡萄糖轉(zhuǎn)運蛋白4型(GLUT4) 易位至質(zhì)膜,從而主動促進骨骼肌中葡萄糖的攝取增加,從而通過糖酵解產(chǎn)生ATP[19]。
Treebak等認為GLUT4從骨骼肌向質(zhì)膜的易位是通過TBC1D1的磷酸化介導(dǎo)的[20],TBC1D1的磷酸化增加Rab家族G蛋白的活性并誘導(dǎo)GLUT4囊泡與質(zhì)膜的融合。激活肌肉中的AMPK,增加葡萄糖攝取,彌補受損的胰島素通路,為Ⅱ型糖尿病藥物的研發(fā)提供了新思路。
以往的研究表明,胰島素激活蛋白激酶B (Protein kinase B,Akt/PKB) 信號通路的下游蛋白TBC1D4 (TBC (Tre-2/Bub2/Cdc16) 1 domain family member 4) 能使GLUT4轉(zhuǎn)位到細胞膜,增加肌肉對葡萄糖的攝取利用[21]。TBC1D4屬于Rab-GTPase蛋白家族,可以發(fā)揮其GTP酶活性使Rab處于GDP結(jié)合狀態(tài),從而阻止GLUT4由細胞內(nèi)囊泡向細胞膜轉(zhuǎn)位。而TBC1D4特異位點磷酸化后失去GTP酶活性,GLUT4囊泡因此轉(zhuǎn)位到細胞膜上發(fā)揮葡萄糖轉(zhuǎn)運功能[22]。另外,TBC1D4被胰島素介導(dǎo)的Akt磷酸化后與14-3-3蛋白結(jié)合,進一步幫助了GLUT4的釋放與轉(zhuǎn)位[23]。表達TBC1D4位點T649A突變的轉(zhuǎn)基因小鼠表現(xiàn)出胰島素敏感性下降和糖耐量異常,其分離的肌肉中,胰島素刺激的糖攝取功能受損[24]。
迄今為止,AMPK通路調(diào)控葡萄糖轉(zhuǎn)運的機理還沒有完全搞清。研究顯示,TBC1D1同樣屬于Rab-GTPase蛋白家族,與TBC1D4序列具有高度的同源性,但TBC1D4具有更多的Akt磷酸化位點,這提示我們胰島素通路主要通過TBC1D4發(fā)揮糖轉(zhuǎn)運作用。然而,TBC1D1有一個不存在于TBC1D4的重要的AMPK磷酸化位點Ser237;AMPK能誘導(dǎo)人TBC1D1上的Ser237磷酸化,以及TBX1D1與14-3-3結(jié)合。為了進一步證明AMPK的作用,Christian等敲除了小鼠AMPKα2基因,發(fā)現(xiàn)小鼠肌肉中的TBC1D1含量降低,Ser237磷酸化水平以及14-3-3蛋白結(jié)合能力均顯著降低[25]。還有研究發(fā)現(xiàn),在小鼠中把TBC1D1蛋白的4個位點突變(包括Ser231,相當于人TBC1D1的Ser237位點),則肌肉收縮引起的糖攝取減少[26]。這些實驗說明,TBC1D1的Ser237位點磷酸化,可能對AMPK增加肌肉糖攝取具有重要作用;但目前還沒有TBC1D1突變或敲除小鼠的研究證實,AMPK僅依賴于TBC1D1起糖攝取作用。有研究表明,除了GLUT4,AMPK也可以增加GLUT1對葡萄糖的攝取,機制與提高細胞膜上GLUT1的活性有關(guān)[27]。
AMPK通路是不是收縮引起的肌肉糖攝取所必需的通路?學(xué)界對這一問題存在過爭議。AMPK α2敲除的小鼠AICAR介導(dǎo)的糖攝取被抑制,但收縮引起的糖攝取卻完全正常;而AMPK α1敲除的小鼠,二者都沒有受到影響[28]。但還有研究顯示,LKB1敲除的小鼠中,肌肉收縮不能引起AMPK α1和α2的激活,且AICAR和收縮都不能增加其肌肉的糖攝取[29]。因此,人們猜測可能是AMPK α2敲除的小鼠中AMPK α1的表達代償性增加,造成了研究結(jié)果的差異[30]。最新研究發(fā)現(xiàn),肌肉特異性AMPK β1和β2亞基雙敲除的小鼠中,不能檢測到AMPK的活性,其肌肉收縮引起的糖攝取比正常小鼠明顯減少;同時這些小鼠表現(xiàn)出奔跑速度和耐力下降等運動障礙[6]。這一研究成果有力地證明AMPK通路確是介導(dǎo)肌肉收縮引起糖攝取的主要信號通路。
血脂異常是導(dǎo)致糖尿病和胰島素抵抗患者發(fā)生心血管疾病的重要危險因素。血脂異常通常表現(xiàn)為,血液中能引起動脈粥樣硬化的脂類(如膽固醇) 和脂蛋白(如低密度脂蛋白) 含量異常增高[31]。AMPK可通過多個途徑調(diào)控血脂水平。首先,AMPK在肝臟中抑制膽固醇和脂肪酸的合成。AMPK可磷酸化并抑制這兩個反應(yīng)限速酶羥甲基戊二酸單酰輔酶A合成酶(3-hydroxy-3- methylglutaryl-coenzyme A reductase, HMG-CoA)和乙酰輔酶A羧激酶(Acetyl CoA carboxylase, ACC)的活性[32]。而長期的AMPK激活還可以通過抑制膽固醇調(diào)節(jié)元件結(jié)合蛋白1 (Sterol regulatory element-binding protein-1c,SREBP1) 的表達,降低其轉(zhuǎn)錄活性進而下調(diào)抑制脂肪酸合酶(Fatty acid synthase,F(xiàn)AS)、丙酮酸激酶(Pyruvate kinase, PK)、HMG-CoA和ACC等脂質(zhì)生成相關(guān)基因表達[33]。AMPK抑制ACC間接增加了脂肪酸的氧化,機制與ACC產(chǎn)物丙二酰輔酶A (Malonyl-CoA)的減少有關(guān)。Malonyl-CoA是肉毒堿棕櫚酰轉(zhuǎn)移酶1 (Carnitine palmitoyltransferase 1,CPT1) 的抑制劑,malonyl-CoA濃度減少使CPT1活性增加,并將胞漿的長鏈脂肪酸通過脂酰肉毒堿穿梭機制轉(zhuǎn)移進入線粒體,從而進行β氧化[34]。另外,AMPK也可以直接激活肝臟中丙二酰輔酶A脫羧酶(Malonyl-CoA decarboxylase,MCD) 而進一步減少malonyl-CoA的水平[35]。
除了抑制脂肪酸的生成,AMPK也抑制甘油三酯的生成。小鼠全身和肝臟特異性敲除AMPK α2后,血液中甘油三酯水平異常升高。而給予AICAR、metformin和A-769662可以降低普通和肥胖小鼠的甘油三酯水平;同時,這些小鼠血液中的β-羥基丁酸含量增加,提示肝臟內(nèi)的脂肪氧化加強[36]。與此一致,在肝臟中特異性敲除AMPK α2則小鼠的甘油三酯含量增加,脂肪生成加強[37]。機制上,AMPK抑制ChREBP (Carbohydrate response element-binding protein) 轉(zhuǎn)錄活性進而減少糖類物質(zhì)轉(zhuǎn)化為脂肪,同時,AMPK還可以直接磷酸化ChREBP而降低其與DNA的結(jié)合能力[38]。另外,AMPK還可以通過磷酸化抑制肝臟線粒體的甘油三磷酸?;D(zhuǎn)移酶(Glycerol-3- phosphate acyltransferase,GPAT) 而減少甘油三酯的體內(nèi)合成[39]。上述研究說明,AMPK通過減少脂肪(脂肪酸和甘油酯類) 生成,促進脂肪氧化而調(diào)控肝臟的脂肪沉積,改善Ⅱ型糖尿病患者的血脂狀況。
體內(nèi)脂肪組織含量的變化與胰島素敏感性關(guān)系密切。脂肪總量是脂肪組織內(nèi)脂肪生成和脂肪水解兩個過程的動態(tài)平衡,AMPK同時參與這兩個過程的調(diào)控。上述研究表明,一方面,AMPK抑制白色脂肪組織中脂肪生成相關(guān)基因的表達,導(dǎo)致脂肪酸及甘油三酯合成減少;另一方面,AMPK調(diào)控脂肪水解過程,但作用機制還存在爭議。研究表明,脂肪組織甘油三酯脂肪酶(Adipose triglyceride lipase,ATGL) Ser406可被AMPK磷酸化激活,引起脂肪細胞和動物體內(nèi)脂肪水解的增加,而AMPK對脂肪水解酶(Hormone-sensitive lipase,HSL) 的活性卻起負調(diào)控作用[40]。以往的研究顯示,兒茶酚胺與β腎上腺素受體結(jié)合后,通過G蛋白提高cAMP水平并激活PKA,引起脂肪水解。而在白色脂肪組織中,AICAR抑制β腎上腺素誘導(dǎo)的脂肪水解[41]。水解過程中HSL的Ser563、Ser659和Ser660被PKA磷酸化而激活[42];而AMPK可以通過磷酸化Ser565降低HSL的活性[43]。另有研究發(fā)現(xiàn),PKA可以磷酸化AMPKα1的Ser173使其Thr172不能磷酸化從而抑制AMPK的激活,促進脂肪水解,因此,AMPK在脂肪水解過程中起負調(diào)控作用[44]。
上述研究表明,AMPK在脂肪水解的不同階段似乎起著相反的調(diào)控作用。Ahmadian等認為,AMPK促進外周組織對脂肪酸的氧化作用,因此在脂肪動員過程中,AMPK起促進作用更合乎情理,這樣才能為其他組織提供足夠的游離脂肪酸[40]。但也有研究表明,AMPK激活會限制脂肪動員過程。AMPK在一定程度抑制HSL,保證了脂肪水解釋放脂肪酸的速率不會超過骨骼肌、肝臟和心臟等組織攝取利用的能力和脂肪組織自身氧化的需要;否則血液中過多的游離脂肪酸(FFA) 將給骨骼肌和肝臟等造成負擔(dān),脂肪組織也將浪費能量進行游離脂肪酸的酯化反應(yīng)[45]。AMPK在脂肪動員中的作用尚需進一步研究予以證實。
許多研究已經(jīng)證明,調(diào)控AMPK的激活可以抑制炎癥過程,也可以改善由Ⅱ型糖尿病引起的代謝失衡,其機制部分是與其調(diào)節(jié)FA代謝(FAO↑/FAS↓) 有關(guān),為治療這些疾病提供了一個策略[46]。但由于AMPK激活和調(diào)控的分子機制十分復(fù)雜,使用藥物分子激活A(yù)MP治療疾病是一個巨大的挑戰(zhàn)。AMPK 一方面可以通過調(diào)節(jié)FA代謝來抑制炎癥,從而有益于預(yù)防糖尿病和癌癥,另一方面,也可以通過調(diào)節(jié)腫瘤微環(huán)境的FA代謝誘導(dǎo)癌細胞存活的代謝適應(yīng)從而促進腫瘤發(fā)生和發(fā)展。因此,AMPK活化可能是用于預(yù)防糖尿病和癌癥的有前景的策略,而AMPK抑制是治療已發(fā)生的癌癥新型治療策略。
由于體內(nèi)AMP/ATP比例的升高能激活A(yù)MPK,任何通過干擾ATP合成來擾亂能量平衡的代謝壓力都會激活A(yù)MPK。因此,AMPK活化在預(yù)防糖尿病和癌癥中是具有前景的策略,AMPK有望成為Ⅱ型糖尿病、肥胖癥和癌癥的潛在治療靶標。
[1] Reusch JEB, Manson JE. Management of type 2 diabetes in 2017: getting to goal. JAMA, 2017, 317(10): 1015–1016.
[2] Chen DD. Oxovanadium complex intervention on learning and memory damage of diabetic mice and Caveolin-1 expression[D]. Dalian: Liaoning Normal University, 2009 (in Chinese). 陳冬冬. 新型釩氧配合物對糖尿病小鼠學(xué)習(xí)記憶功能損傷的干預(yù)及與Caveolin-1表達的關(guān)系[D]. 大連: 遼寧師范大學(xué), 2009.
[3] Liu Y, Chen DD, Xing YH, et al. A new oxovanadium complex enhances renal function by improving insulin signaling pathway in diabetic mice. J Diabetes Its Complicati, 2014, 28(3): 265–272.
[4] Wang SB, Song P, Zou MH. AMP-activated protein kinase, stress responses and cardiovascular diseases. Clin Sci (Lond), 2012, 122(12): 555–573.
[5] Ali N, Ling NM, Krishnamurthy S, et al. β-subunit myristoylation functions as an energy sensor by modulating the dynamics of AMP-activated protein kinase. Sci Rep, 2016, 6: 39417.
[6] O’Neill HM, Maarbjerg SJ, Crane JD, et al. AMP-activated protein kinase (AMPK) β1β2 muscle null mice reveal an essential role for AMPK in maintaining mitochondrial content and glucose uptake during exercise. Proc Natl Acad Sci USA, 2011, 108(38): 16092–16097.
[7] Granlund A, Jensen-Waern M, Essén-Gustavsson B. The influence of themutation on glycogen, enzyme activities and fibre types in different skeletal muscles of exercise trained pigs. Acta Vet Scand, 2011, 53: 20.
[8] Hardie DG. AMP-activated protein kinase—an energy sensor that regulates all aspects of cell function. Genes Dev, 2011, 25(18): 1895–1908.
[9] Marín-Aguilar F, Pavillard LE, Giampieri F, et al. Adenosine monophosphate (AMP)-activated protein kinase: a new target for nutraceutical compounds. Int J Mol Sci, 2017, 18(2): 288.
[10] Saltiel AR, Kahn CR. Insulin signalling and the regulation of glucose and lipid metabolism. Nature, 2001, 414(6865): 799–806.
[11] Abdelazim A, Khater S, Ali H, et al. Panax ginseng improves glucose metabolism in streptozotocin-induced diabetic rats through 5? Adenosine monophosphate kinase up-regulation. Saudi J Biol Sci, 2018, doi:10.1016/j.sjbs.2018.06.001.
[12] Hughey CC, James FD, Bracy DP, et al. Loss of hepatic AMP-activated protein kinase impedes the rate of glycogenolysis but not gluconeogenic fluxes in exercising mice. J Biol Chem, 2017, 292(49): 20215–20140.
[13] Hasenour CM, Ridley DE, James FD, et al. Liver AMP-activated protein kinase is unnecessary for gluconeogenesis but protects energy state during nutrient deprivation. PLoS ONE, 2017, 12(1): e0170382.
[14] Sato M, Dehvari N, ?berg AI, et al. Improving type 2 diabetes through a distinct adrenergic signaling pathway involving mTORC2 that mediates glucose uptake in skeletal muscle. Diabetes, 2014, 63(12): 4115–4129.
[15] Akingbemi BT. Adiponectin receptors in energy homeostasis and obesity pathogenesis. Prog Mol Biol Transl Sci, 2013, 114: 317–342.
[16] Ma Y, Liu D. Hydrodynamic delivery of adiponectin and adiponectin receptor 2 gene blocks high-fat diet-induced obesity and insulin resistance. Gene Ther, 2013, 20(8): 846–852.
[17] Kappel VD, Zanatta L, Postal BG, et al. Rutin potentiates calcium uptake via voltage-dependent calcium channel associated with stimulation of glucose uptake in skeletal muscle. Arch Biochem Biophys, 2013, 532(2): 55–60.
[18] Friedrichsen M, Mortensen B, Pehm?ller C, et al. Exercise-induced AMPK activity in skeletal muscle: role in glucose uptake and insulin sensitivity. Mol Cell Endocrinol, 2013, 366(2): 204–214.
[19] Hunter RW, Treebak JT, Wojtaszewski JFP, et al. Molecular mechanism by which AMP-activated protein kinase activation promotes glycogen accumulation in muscle. Diabetes, 2011, 60(3): 766–774.
[20] Treebak JT, Pehm?ller C, Kristensen JM, et al. Acute exercise and physiological insulin induce distinct phosphorylation signatures on TBC1D1 and TBC1D4 proteins in human skeletal muscle. J Physiol, 2014, 592(2): 351–375.
[21] O’Neill HM. AMPK and exercise: glucose uptake and insulin sensitivity. Diabetes Metab J, 2013, 37(1): 1–21.
[22] Richter EA, Hargreaves M. Exercise, GLUT4, and skeletal muscle glucose uptake. Physiol Rev, 2013, 93(3): 993–1017.
[23] Hardie DG, Ross FA, Hawley SA. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol, 2012, 13(4): 251–262.
[24] Hardie DG. AMPK: positive and negative regulation, and its role in whole-body energy homeostasis. Curr Opin Cell Biol, 2015, 33: 1–7.
[25] Fr?sig C, Pehm?ller C, Birk JB, et al. Exercise-induced TBC1D1 Ser237 phosphorylation and 14-3-3 protein binding capacity in human skeletal muscle. J Physiol, 2010, 588(22): 4539–4548.
[26] An D, Toyoda T, Taylor EB, et al. TBC1D1 regulates insulin- and contraction-induced glucose transport in mouse skeletal muscle. Diabetes, 2010, 59(6): 1358–1365.
[27] Naimi M, Vlavcheski F, Murphy B, et al. Carnosic acid as a component of rosemary extract stimulates skeletal muscle cell glucose uptake via AMPK activation. Clin Exp Pharmacol Physiol, 2017, 44(1): 94–102.
[28] J?rgensen SB, Viollet B, Andreelli F, et al. Knockout of the α2but not α15'-AMP-activated protein kinase isoform abolishes 5-aminoimidazole-4-carboxamide- 1-β-4-ribofuranoside- but not contraction-induced glucose uptake in skeletal muscle. J Biol Chem, 2004, 279(2): 1070–1079.
[29] Brown JD, Hancock CR, Mongillo AD, et al. Effect of LKB1 deficiency on mitochondrial content, fibre type and muscle performance in the mouse diaphragm. Acta Physiol, 2011, 201(4): 457–466.
[30] Gong HJ, Zhang Y. GLUT4 is not essential for exercise-induced exaggerated muscle glycogen degradation in AMPKα2 knockout mice. J Exerc Sci Fit, 2012, 10(1): 16–22.
[31] Quehenberger O, Dennis EA. The human plasma lipidome. N Engl J Med, 2011, 365(19): 1812–1823.
[32] Han JS, Sung JH, Lee SK. Inhibition of cholesterol synthesis in HepG2 cells by GINST—Decreasing HMG-CoA reductase expression via AMP-activated protein kinase. J Food Sci, 2017, 82(11): 2700–2705.
[33] Stahmann N, Woods A, Carling D, et al. Thrombin activates AMP-activated protein kinase in endothelial cells via a pathway involving Ca2+/calmodulin- dependent protein kinase kinase β. Mol Cell Biol, 2006, 26(16): 5933–5945.
[34] Merrill GF, Kurth EJ, Hardie DG, et al. AICA riboside increases AMP-activated protein kinase, fatty acid oxidation, and glucose uptake in rat muscle. Am J Physiol, 1997, 273(6): E1107–E1112.
[35] Paoli A, Bosco G, Camporesi EM, et al. Ketosis, ketogenic diet and food intake control: a complex relationship. Front Psychol, 2015, 6: 27.
[36] Cool B, Zinker B, Chiou W, et al. Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome. Cell Metab, 2006, 3(6): 403–416.
[37] Lieberthal W, Tang MY, Zhang LQ, et al. Susceptibility to ATP depletion of primary proximal tubular cell cultures derived from mice lacking either the α1 or the α2 isoform of the catalytic domain of AMPK. BMC Nephrol, 2013, 14: 251.
[38] Pinkosky SL, Filippov S, Srivastava RAK, et al. AMP-activated protein kinase and ATP-citrate lyase are two distinct molecular targets for ETC-1002, a novel small molecule regulator of lipid and carbohydrate metabolism. J Lipid Res, 2013, 54(1): 134–151.
[39] Muoio DM, Seefeld K, Witters LA, et al. AMP-activated kinase reciprocally regulates triacylglycerol synthesis and fatty acid oxidation in liver and muscle: evidence that-glycerol-3- phosphate acyltransferase is a novel target. Biochem J, 1999, 338(3): 783–791.
[40] Ahmadian M, Abbott MJ, Tang TY, et al. Desnutrin/ATGL is regulated by AMPK and is required for a brown adipose phenotype. Cell Metab, 2011, 13(6): 739–748.
[41] Gaidhu MP, Bikopoulos G, Ceddia RB. Chronic AICAR-induced AMP-kinase activation regulates adipocyte lipolysis in a time-dependent and fat depot-specific manner in rats. Am J Physiol Cell Physiol, 2012, 303(11): C1192–C1197.
[42] McDonough PM, Maciejewski-Lenoir D, Hartig SM, et al. Differential phosphorylation of perilipin 1A at the initiation of lipolysis revealed by novel monoclonal antibodies and high content analysis. PLoS ONE, 2013, 8(2): e55511.
[43] Gallo-Payet N. Adrenal and extra-adrenal functions of ACTH. J Mol Endocrinol, 2016, 56(4): T135–T156.
[44] Yang RM, Chu XX, Sun L, et al. Hypolipidemic activity and mechanisms of the total phenylpropanoid glycosides from(.) Blume by AMPK-SREBP-1c pathway in hamsters fed a high-fat diet. Phytother Res, 2018, 32(4): 715–722.
[45] B?rner S, Albrecht E, Sch?ff C, et al. Reduced AgRP activation in the hypothalamus of cows with high extent of fat mobilization after parturition. Gen Comp Endocrinol, 2013, 193: 167–177.
[46] Jeon SM. Regulation and function of AMPK in physiology and diseases. Exp Mol Med, 2016, 48(7): e245.
Research progress of Adenosine 5?-monophosphate-activated protein kinase in the regulation of glycolipid metabolism
Fanming Liu1*, Qi Wang1*, Yuzhen Qian1,2, Yejun Zhang1,2, Bingqiang Zhang3, Hongyan Li1,2, and Wei Zou1,2,3
1 College of Life Sciences, Liaoning Normal University, Dalian 116081, Liaoning, China 2 Liaoning Key Laboratory of Biotechnology and Molecular Drug Development, Dalian 116081, Liaoning, China 3 Key Laboratory of Cell Transplantation, Ministry of Health, Qingdao 266000, Shandong, China
Adenosine 5?-monophosphate-activated protein activated protein kinase (AMPK), a heterotrimeric complex, is an important kinase to regulate glycolipid metabolism and energy balance involved in a variety physiological processes in human body. Many research indicated that the function and activity of AMPK were closely related to inflammation, diabetes and cancers. Recent reports show that inhibition of metformin (a first-line drug) on hepatic glucose in patients with hyperglycemia is associated with AMPK pathway, suggesting that targeting AMPK may be one of the effective strategies for the prevention and treatment of a variety of chronic diseases. Here, we review research progress on the structure, activation and regulation of AMPK in glycolipid metabolism to provide an insight into the basic and clinical research of diabetes therapy.
AMP-activated protein kinase, diabetes, glucose metabolism, lipid metabolism
December 21, 2018;
March 25, 2019
Natural Science Foundation of Liaoning Province (No. 2015020568 ),Research Project of Liaoning Provincial Department of Education (No. L201783647).
Wei Zou. Tel/Fax: +86-411-85827080; E-mail: weizou60@126.com
*These authors contributed equally to this study.
遼寧省自然科學(xué)基金(No. 2015020568),遼寧省教育廳科研項目(No. L201783647) 資助。
2019-04-09
http://kns.cnki.net/kcms/detail/11.1998.Q.20190409.0957.001.html
10.13345/j.cjb.180529
劉凡銘, 王琪, 錢昱臻, 等. 腺苷酸活化蛋白激酶在糖脂代謝調(diào)控中的研究進展. 生物工程學(xué)報, 2019, 35(6): 1021–1028.
Liu FM, Wang Q, Qian YZ, et al. Research progress of Adenosine 5?-monophosphate-activated protein kinase in the regulation of glycolipid metabolism. Chin J Biotech, 2019, 35(6): 1021–1028.
(本文責(zé)編 陳宏宇)