曾貴平 方保龍
(合肥學(xué)院數(shù)學(xué)與物理系 安徽 合肥 230601)
*合肥學(xué)院教學(xué)研究項目,項目編號:2017jyzd002,2018hfjyxm55
為加深學(xué)生對物理概念、定義、理論的理解與應(yīng)用,大學(xué)物理教材都會設(shè)計或提煉出相關(guān)的練習(xí)題供學(xué)生訓(xùn)練. 然而,在設(shè)計題時不能想當然,否則會出現(xiàn)難以發(fā)現(xiàn)的錯誤.下面這道題就是這種情況.
【例題】光滑的水平板中央開一小孔,質(zhì)量為m的小球用細線系住,細線穿過光滑的小孔后掛一質(zhì)量為m1的物體.小球做勻速圓周運動,當半徑為r0時與m1物體達到平衡.今在m1的下方再掛一質(zhì)量為m2的物體,如圖1所示.試問這時小球做勻速圓周運動的角速度ω′和半徑r′為多少[1]?
圖1 運動系統(tǒng)示意圖
解析:在只掛重物m1時,小球做圓周運動的向心力為m1g,即
(1)
掛上m2后,則有
(m1+m2)g=mr′ω′2
(2)
重力對圓心的力矩為零,故小球?qū)A心的角動量守恒.即
r0mv0=r′mv′
(3)
聯(lián)立式(1)~(3)得
(4)
(5)
以上的解題過程似乎正確,然而題目是有問題的,問題在于題目中已經(jīng)預(yù)先設(shè)想小球還能達到“勻速圓周運動”狀態(tài),實際運動并非如此.下面通過兩種方法來處理問題.
如圖2所示,建立柱坐標系,圓孔O為極點,z軸正向垂直于平板向上.
圖2 受力分析
(6)
(7)
對m1與m2進行受力分析,其動力學(xué)方程為
T-(m1+m2)g=(m1+m2)az=
(8)
式(7)反映m在橫向不受力、徑向受力,角動量守恒. 由式(7)得
(9)
(10)
(11)
積分得
(12)
常數(shù)c可由初始時刻u=0,r=r0確定
(13)
則m的徑向速度或m1與m2的速度為
(14)
(15)
式中
要確定vr=0對應(yīng)的r,可求解
f(r)=ar2-br3-c=0
其兩個真實根可由圖3所示求出. 另外,vr的最大值對應(yīng)的r處于r1~r0之間,可由
得到
由此可見,vr在零至最大值之間變化,即掛上物體m2后,實際上m1與m2隨后將做上下的振動,而m將做繞圓孔O點的非圓周運動.
圖3 vr= 0時r的兩個真實根
以桌面為勢能零點,由于3個物體構(gòu)成的系統(tǒng)機械能守恒,有
(16)
在極坐標系中m的速度為
則
(17)
結(jié)果與前相同.
一個置于水平面上做勻速圓周運動的物體,通過線連接著另一個下垂物體,在極端情況下,當下垂物體掛上大質(zhì)量物體后,下垂的物體隨后將做近似自由落體運動. 一般情況,下掛物體的質(zhì)量不是很大時,下垂的物體隨后將做上下的振動,水平面上的物體將做繞圓孔的非圓周運動.