国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

轉(zhuǎn)錄因子GATA6在心血管疾病中的作用及其調(diào)控機制

2019-05-21 10:11孫兆慶閆波
遺傳 2019年5期
關(guān)鍵詞:心肌病心血管心臟

孫兆慶,閆波

?

轉(zhuǎn)錄因子GATA6在心血管疾病中的作用及其調(diào)控機制

孫兆慶1,閆波2,3,4

1. 山東大學(xué)齊魯醫(yī)學(xué)院,濟(jì)南 250012 2. 濟(jì)寧醫(yī)學(xué)院附屬醫(yī)院,山東省心臟疾病診療重點實驗室,濟(jì)寧 272029 3. 濟(jì)寧醫(yī)學(xué)院附屬醫(yī)院,心血管疾病分子遺傳學(xué)中心,濟(jì)寧 272029 4. 濟(jì)寧醫(yī)學(xué)院附屬醫(yī)院,山東省中美轉(zhuǎn)化醫(yī)學(xué)合作研究中心,濟(jì)寧 272029

GATA 轉(zhuǎn)錄因子家族由6個成員組成(GATA1~GATA6),在參與調(diào)節(jié)多種細(xì)胞的生長和分化、細(xì)胞的存活以及機體功能的維持等方面具有著重要作用。轉(zhuǎn)錄因子GATA6屬于GATA家族的一員,目前的研究已經(jīng)證實GATA6在人類心臟分化發(fā)育過程中起著至關(guān)重要的作用。其基因突變不僅能引起多種先天性心臟疾病,還能干擾心臟傳導(dǎo)系統(tǒng)而促發(fā)心律失常,同時也是擴張性、肥厚性心肌病發(fā)病的遺傳因素。此外,轉(zhuǎn)錄因子GATA6與臨床中最為常見的冠心病也有一定的關(guān)聯(lián)性,由于體內(nèi)存在多基因聯(lián)合作用,使得兩者之間的關(guān)系變得更為復(fù)雜。本文主要綜述了轉(zhuǎn)錄因子GATA6在先天性心臟病、心臟傳導(dǎo)系統(tǒng)、心肌病、心血管病相關(guān)危險因素以及其他類心血管疾病等方面的研究進(jìn)展,以期為未來的個體化基因治療提供遺傳學(xué)基礎(chǔ),并能促進(jìn)基礎(chǔ)研究向臨床醫(yī)學(xué)轉(zhuǎn)化的發(fā)展。

轉(zhuǎn)錄因子GATA6;心血管疾病;基因突變;分子遺傳學(xué)

目前,心血管疾病(cardiovascular disease, CVD)已經(jīng)成為一類嚴(yán)重威脅全球人類生命健康的疾病。在中國,隨著社會人口老齡化以及多種危險因素水平上升致使CVD患病率持續(xù)增長,且發(fā)病年齡提前[1]。如今,我國CVD患者已超過 2.9 億例,因其死亡人數(shù)占居民疾病死亡構(gòu)成40%以上,高于腫瘤及其他疾病,居死因譜第一位[2],給社會發(fā)展和家庭帶來了沉重的負(fù)擔(dān)。目前,針對CVD的發(fā)病機制的研究主要包括遺傳和后天環(huán)境兩大方面,而基因組測序技術(shù)的提高極大地推動了CVD分子遺傳學(xué)方面的相關(guān)研究,加深了人們對基因表達(dá)失調(diào)在CVD發(fā)病過程中作用的認(rèn)識。轉(zhuǎn)錄因子GATA6從屬于GATA家族,在哺乳動物的心臟分化發(fā)育過程中起著重要的作用[3],且基因表達(dá)有時空特異性。近年來,有關(guān)基因序列和功能的變異與人類疾病相關(guān)的報道越來越多。本文將對轉(zhuǎn)錄因子GATA6在CVD中的研究進(jìn)展進(jìn)行綜述,以期為未來的個體化基因治療提供遺傳學(xué)基礎(chǔ),并促進(jìn)基礎(chǔ)研究向臨床醫(yī)學(xué)轉(zhuǎn)化的發(fā)展。

1 GATA轉(zhuǎn)錄因子家族與GATA6

GATA轉(zhuǎn)錄因子家族由6個成員組成(GATA1~ GATA6),每個成員都含有一個高度保守的DNA結(jié)合域,可優(yōu)先結(jié)合靶基因啟動子的核苷酸序列片段為5¢-(A/T) GATA(A/GA)-3¢,并因此而得名[4]。此家族不僅能調(diào)節(jié)多種細(xì)胞的生長和分化,還對細(xì)胞的存活以及機體功能的維持有著至關(guān)重要的作用[5]。GATA家族中某些基因堿基位點的突變的與人類發(fā)育障礙疾病有關(guān),如貧血、甲狀旁腺功能減退、耳聾和不孕以及腎和心臟缺陷等[6]。人類的基因克隆最初是于1996年從胎心cDNA文庫中分離得到,其基因定位于染色體 18q11.1-q11.2,由7個外顯子(5¢端第一個為非編碼外顯子)和6個內(nèi)含子相互間隔組成,序列長34 812 bp,共計編碼595個氨基酸[7]。基因啟動區(qū)或編碼區(qū)堿基的突變可通過影響轉(zhuǎn)錄和翻譯水平,來導(dǎo)致人類某些心血管疾病的發(fā)生。

2 GATA6在心血管疾病中的作用

近年來,隨著轉(zhuǎn)錄因子GATA6在人類心血管疾病方面的深入研究,越來越多的報道表明,基因的變異(以啟動子區(qū)和外顯子區(qū)突變?yōu)橹?與多種心血管疾病的發(fā)生及發(fā)展密切相關(guān)(表1)。

2.1 GATA6與先天性心臟病

先天性心臟病(congenital heart disease, CHD)是常見的出生缺陷之一,是多基因參與和相關(guān)環(huán)境因素共同作用的復(fù)雜性先天性畸形疾病,每1000名活產(chǎn)嬰兒中有5~15名患病[8]。目前,已有大量的研究證實在胚胎期心臟的發(fā)育和分化中表達(dá),CHD中與基因突變相關(guān)的表征主要包括:房間隔缺損(atrial septal defect, ASD)、室間隔缺損(ventricular septal defect, VSD)、二葉式主動脈瓣(bicuspid aortic valve, BAV)、動脈導(dǎo)管未閉(patent ductus arteriosus, PDA)、法洛四聯(lián)癥(tetralogy of Fallot, TOF)和永久性動脈干(permanent trunk of artery, PTA)等[9~19]。這些研究,大多是發(fā)現(xiàn)基因中某一關(guān)鍵位點發(fā)生突變,從而導(dǎo)致其轉(zhuǎn)錄活性下降,進(jìn)而影響下游基因轉(zhuǎn)錄而致病。另外,由于體內(nèi)存在多基因聯(lián)合作用方式,也可與其他基因,如和MADS家族和NF-AT家族等一起發(fā)揮調(diào)控心臟發(fā)育的作用[20]。例如,轉(zhuǎn)錄因子GATA6和GATA4因具有高度同源性,在聯(lián)合作用后可經(jīng)Ca2+依賴通道與的增強子區(qū)域直接結(jié)合進(jìn)而調(diào)控心臟發(fā)育[21,22]。已有研究發(fā)現(xiàn),兩者之間可能存在某種互促作用,即單純的和基因突變并不引起表型變化,但當(dāng)兩者同時發(fā)生突變后能導(dǎo)致轉(zhuǎn)錄活性下降,而引起先天性心臟病[23]。除了互促增效的作用外,轉(zhuǎn)錄因子GATA6與其他轉(zhuǎn)錄因子結(jié)合作用還具有多樣性,如基因的N段結(jié)構(gòu)域發(fā)生突變后可以通過其鋅指結(jié)構(gòu)正常與結(jié)合,但會抑制下游靶基因的表達(dá),從而間接調(diào)控心臟發(fā)育[24]。這些圍繞轉(zhuǎn)錄因子GATA6的研究不僅對人類先天性心臟病多種類型,也對體內(nèi)其他轉(zhuǎn)錄因子之間的相互作用進(jìn)行了分子遺傳學(xué)方面的探討,為揭示遺傳表型和疾病表型的關(guān)系提供了新的見解。

表1 GATA6基因變異在不同心血管疾病中的發(fā)病機制

CHD:先天性心臟?。籄SD:房間隔缺損;VSD:室間隔缺損;BAV:二葉式主動脈瓣;TOF:法洛四聯(lián)癥;PTA:永久性動脈干;CCS:心臟傳導(dǎo)系統(tǒng);AF:房顫;DCM:擴張性心肌??;HCM:肥厚性心肌病。

2.2 GATA6與心臟傳導(dǎo)系統(tǒng)

心臟傳導(dǎo)系統(tǒng)(cardiac conduction system, CCS)是由位于心肌內(nèi)能夠產(chǎn)生和傳導(dǎo)沖動的特殊心肌細(xì)胞構(gòu)成,其系統(tǒng)中任何一部位或環(huán)節(jié)出現(xiàn)了問題均有可能引起心律失常癥狀。臨床中,常見的水電解質(zhì)失衡、結(jié)構(gòu)性心臟畸形和藥物不良副作用等情況均可能促進(jìn)心律失常的發(fā)生。此外,也可能由于基因遺傳突變而導(dǎo)致心律失常,如長QT綜合征[25]。先前的研究已經(jīng)證實在心臟早期發(fā)育中表達(dá),如房室管心肌細(xì)胞、心臟神經(jīng)嵴(neural crest,NC)細(xì)胞和心臟成纖維細(xì)胞等。在Liu等[26]的一項研究中,不僅發(fā)現(xiàn)除了在心臟形態(tài)發(fā)生中的關(guān)鍵作用外,還需要用于房室結(jié)(atrioventricular node,AVN)的正常發(fā)育和功能維持。為確定是否有助于CCS,他們建立了一個在肌球蛋白輕鏈2V(mlc2v)啟動子控制下產(chǎn)生心肌特異性缺失羧基鋅指域的小鼠模型,導(dǎo)致在心室心肌、右心室流出道和房室環(huán)中被截斷。對幼年動物進(jìn)行的心電圖分析結(jié)果顯示,這些突變小鼠的P-R間期延長,AVN缺損。這項研究工作首次提供了將與AVN形成和功能聯(lián)系起來的實驗證據(jù)。在另外一項臨床研究中[27],研究者評估了1個有16個家庭成員的譜系,其中1個患有ASD,1個患有VSD,3個患有房顫(atrial fibrillation, AF),對3個受影響的家庭成員的基因組進(jìn)行了全外顯子測序,并采用檢測熒光素酶活性的方法對得到的變異體進(jìn)行了功能鑒定,最終發(fā)現(xiàn)在所有的研究對象中,以及在散發(fā)性、早發(fā)型房顫中,都有功能突變。此外,據(jù)報道GATA4/5/6蛋白可調(diào)控許多傳導(dǎo)相關(guān)基因,如縫隙連接和離子通道的基因。它們還與NKx2.5和TBX2/3/5在物理和功能上相互作用,調(diào)節(jié)其對靶基因的活性,因此可作為引起心律失常的基因的遺傳修飾劑[28~30]。目前,對人類基因與CCS的相關(guān)研究,不僅讓人們在疾病方面對CCS的認(rèn)識和理解更上一層樓,并為進(jìn)一步闡明心律失常的發(fā)病機制提供了幫助,也為未來的個體化的基因治療打下基礎(chǔ)。

2.3 GATA6與心肌病

心肌病(cardiomyopathies)是一組異質(zhì)性心肌疾病,由不同病因引起心臟機械和電活動的異常,嚴(yán)重心肌病會引起心血管性死亡或進(jìn)展性心力衰竭。其中,擴張型心肌病(dilated cardiomyopathy, DCM)是最常見的原發(fā)性心肌疾病,是心力衰竭的第三大常見原因,也是心臟移植最常見的原因[31]。DCM的病因是多種多樣的,其中就包括環(huán)境和遺傳兩方面的致病因素。有數(shù)據(jù)顯示,大約25%~50%的DCM患者有家族性疾病,表明遺傳缺陷在DCM發(fā)病機制中的重要作用[32]。此前,有研究者對140例不相關(guān)的DCM患者的基因編碼外顯子和側(cè)翼內(nèi)含子進(jìn)行了序列測定,并在2例DCM患者中分別鑒定出兩個新的雜合子突變p.Cys447Tyr和p.His475Arg。他們在對家系的分析中發(fā)現(xiàn),在每個家族中,與DCM共分離的突變以常染色體顯性模式傳播,具有完全外顯率[33]。在對變異體進(jìn)行功能分析后表明,突變的GATA6蛋白與野生型的GATA6蛋白相比,與轉(zhuǎn)錄激活顯著降低相關(guān)。這是關(guān)于功能缺失突變與家族性DCM易感性增強之間關(guān)系的首次研究,此報道不僅豐富了DCM發(fā)病的分子遺傳學(xué)機制,也為DCM的產(chǎn)前預(yù)防和等位基因特異性治療提供了新的思路。另外,肥厚性心肌病(hypertrophic cardiomyopathy, HCM)是遺傳性心肌病最常見的形式,且相關(guān)基因的突變可以解釋約60%病例[34]。先前有報道稱基因敲除可以抑制心臟肥大的發(fā)生,而另有研究者在512份臨床樣本中(HCM組212例,健康組300例)把作為篩選基因之一,進(jìn)行分析研究以檢測其遺傳變異是否與HCM相關(guān),并試圖發(fā)現(xiàn)轉(zhuǎn)錄因子中可能與該疾病的病理生理學(xué)或表型異質(zhì)性相關(guān)的遺傳變異[35]。最終研究結(jié)果表明,中的罕見變異p.Pro555Ala (rs146243018)與HCM的較大的最大后壁厚度相關(guān),該變異體可改變其相關(guān)靶基因的表達(dá)而改變肥厚反應(yīng)。此項研究既增加了人們對HCM發(fā)病的相關(guān)分子機制的新認(rèn)識,又豐富了與心肌病相關(guān)的群體遺傳學(xué)資料。

2.4 GATA6與心血管疾病相關(guān)危險因素

冠狀動脈粥樣硬化心臟病簡稱冠心病(coronary artery disease, CAD)是臨床上極為常見的,由遺傳因素和后天環(huán)境共同作用的一類復(fù)雜心血管疾病[36]。后天環(huán)境中重要的因素有高血壓、血脂異常、糖代謝異常、吸煙、肥胖、缺少運動和心理壓力等[37]。此前,有研究者在探討組蛋白脫乙?;?histone deacetylase, HDAC)選擇性抑制劑是否能調(diào)節(jié)高血壓及潛在作用機制中發(fā)現(xiàn),血管緊張素II (angiotensin II, Ang II)增強了磷酸化HDAC4和GATA6蛋白的表達(dá),這些蛋白特異性地定位在腎臟動脈和主動脈的細(xì)胞胞質(zhì)中[38]。HDAC4的強制表達(dá)或敲除分別會增加或減少血管平滑肌細(xì)胞(vascular smooth muscle cell, VSMC)的增殖,而GATA6是HDAC4的一個新的結(jié)合伴侶,能顯著促進(jìn)VSMCs增殖。最終研究結(jié)果表明,HDAC抑制劑可通過Ca2+/鈣調(diào)蛋白依賴激酶IIa/蛋白激酶d1/HDAC4/GATA6途徑負(fù)性調(diào)節(jié)室間隔細(xì)胞肥大和增生,從而減輕高血壓。這為治療高血壓,預(yù)防冠心病提供了新的臨床治療思路。另外,動脈粥樣硬化是動脈壁的一種慢性炎癥反應(yīng),是心血管疾病的主要病理基礎(chǔ)[39]。血管細(xì)胞粘附分子-1 (vascular cell adhesion molecule-1, VCAM-1)可通過與α4β1整合素結(jié)合,介導(dǎo)活化單核細(xì)胞與動脈壁的牢固粘附,從而在動脈粥樣硬化的發(fā)生中起到中心作用[40,41]。一項關(guān)于雷帕霉素(mammalian target of rapamycin, mTOR)在TNFα誘導(dǎo)的血管內(nèi)皮細(xì)胞VCAM-1表達(dá)中的作用機制研究表明,mTOR通過轉(zhuǎn)錄因子GATA6的作用后,mTOR的抑制顯著抑制了TNF誘導(dǎo)的VCAM-1轉(zhuǎn)錄[42]。也有研究報道m(xù)TOR可抑制VSMCs增生,促進(jìn)VSMCs分化,并需要轉(zhuǎn)錄因子GATA6[43]。雷帕霉素復(fù)合物1 ( mechanistic target of rapamycin complex 1, mTORC1)的抑制穩(wěn)定了GATA6,促進(jìn)了GATA6的在細(xì)胞核中的積累、與DNA的結(jié)合、編碼收縮蛋白的啟動子的激活和抑制增殖。此項研究還表明,GATA6和AKT2 (一種在VSMCs中被激活的激酶)參與了mTORC1介導(dǎo)的VSMCs增殖和分化的調(diào)節(jié)。若能確定mTORC1的下游轉(zhuǎn)錄靶點并能提供細(xì)胞類型特異性藥物靶點,來對抗與過度增殖VSMCs相關(guān)的心血管疾病,這將大大促進(jìn)基礎(chǔ)醫(yī)學(xué)向臨床轉(zhuǎn)化的發(fā)展。然而,轉(zhuǎn)錄因子GATA6在CAD發(fā)生過程中的作用是不唯一的。眾所周知,糖尿病(diabetes mellitus, DM)是CAD致病的高危因素。而胰腺發(fā)育不全是一種罕見的人類疾病,由胚胎發(fā)育過程中胰腺形成缺陷引起,其患者出生時沒有胰腺,可發(fā)展為永久性新生兒糖尿病和胰腺酶功能不全[44]。大量研究已經(jīng)證實,GATA鋅指轉(zhuǎn)錄家族成員對人和小鼠胰腺器官發(fā)生至關(guān)重要[45,46],而外顯子測序研究表明雜合子突變是胰腺發(fā)育不全的最常見原因[47,48]。據(jù)報道,GATA6轉(zhuǎn)錄因子的表達(dá)并不局限于胰腺形成的胚胎階段,GATA6突變也與亞臨床或無外分泌不足的成年發(fā)病糖尿病有關(guān),在成年期胰腺功能中也起著重要作用[49]。因此,基因突變不僅在心臟發(fā)育過程中致病,也能影響新生兒或成人胰腺的發(fā)育和功能,以DM的形式增加著患者患CAD的風(fēng)險。

2.5 GATA6在其他類心血管疾病中的相關(guān)研究

在人類心臟分化發(fā)育的初期階段,不同多能干細(xì)胞(pluripotent stem cells, PSC)之間的差異會造成心臟分化效率的顯著不同。據(jù)報道,是唯一一個在PSC向心肌細(xì)胞分化早期階段被大量誘導(dǎo)的基因,其水平與心肌細(xì)胞分化效率呈正相關(guān),PSC中的基因敲除降低了心肌細(xì)胞的產(chǎn)生效率[50]。在心臟與系統(tǒng)循環(huán)的聯(lián)系中,心臟間隔形成以及胚胎循環(huán)的復(fù)雜重塑是兩個關(guān)鍵的發(fā)育事件。其中轉(zhuǎn)錄因子GATA6作為關(guān)鍵調(diào)節(jié)劑參與了主動脈弓周圍的NC細(xì)胞分化成平滑肌細(xì)胞的過程,同時還促進(jìn)應(yīng)退化的主動脈弓的保存[51]。這些發(fā)現(xiàn)為突變?nèi)绾螌?dǎo)致人類先天性心臟病提供了一個新的框架。另外,在關(guān)于中國草藥(參附和參麥注射液)聯(lián)合用藥于基因敲除小鼠的心血管保護(hù)作用效果檢測的研究中發(fā)現(xiàn),參附注射液可通過和途徑,在治療早期表現(xiàn)出較好的療效,改善了心肌功能,同時參麥注射液在慢性期具有較好的保護(hù)作用[52]。

3 結(jié)語與展望

縱觀目前轉(zhuǎn)錄因子GATA6與心血管病的報道,多集中于CHD的相關(guān)研究?;虻膯幼訁^(qū)或外顯子區(qū)內(nèi)堿基突變除可產(chǎn)生多種類型的CHD外,還能在CCS中致病引起多種心律失常疾病,同時與心肌病和CAD的發(fā)病也有著密切的聯(lián)系,具體的信號通路圖見圖1。雖然人們對GATA6轉(zhuǎn)錄因子的結(jié)構(gòu)特征及其在心臟發(fā)育過程中的表達(dá)調(diào)控有了較深認(rèn)識[53],但CHD是一個由多基因參與的復(fù)雜先天性畸形,GATA6與其他轉(zhuǎn)錄因子間相互作用的仍不完全清楚,能否進(jìn)一步闡明心臟基因調(diào)控網(wǎng)絡(luò)及基因缺陷與表型間的關(guān)系還需要更多的基礎(chǔ)和臨床研究來證明。另外,基因在CCS、心肌病和CAD的研究雖有報道,但更多的分子遺傳學(xué)發(fā)病機制仍待探討。例如,未來的研究需要確定是否直接調(diào)節(jié)基因敲除小鼠的高血壓;轉(zhuǎn)錄因子GATA6雖已被證明能誘導(dǎo)病理性心臟肥大,但在VSMCs中,GATA6的作用是存在爭議的;基因可在成年人心肌細(xì)胞中和VSMCs表達(dá),但至今與成人心臟疾病,如CAD和急性心肌梗死(acute myocardial infarction, AMI)等的研究報道相對較少,且轉(zhuǎn)錄因子GATA6能通過多種方式參與到CAD危險因素中,其作用也存在爭議,所以更多的基因變異在成人心肌細(xì)胞及VSMCs中表達(dá)和發(fā)病機制的研究亟待探討,這不僅可以豐富人類對基因功能的認(rèn)識,也可以促進(jìn)分子遺傳學(xué)的發(fā)展以及精準(zhǔn)醫(yī)學(xué)-基因治療時代的到來!

圖1 GATA6基因變異在心血管相關(guān)疾病中的信號通路圖

CHD:先天性心臟病;ASD:房間隔缺損;VSD:室間隔缺損;BAV:二葉式主動脈瓣;PDA:動脈導(dǎo)管未閉;TOF:法洛四聯(lián)癥;PTA:永久性動脈干;AF:房顫;CCS:心臟傳導(dǎo)系統(tǒng);DCM:擴張性心肌病;HCM:肥厚性心肌病。

[1] China joint committee on cardiovascular risk assessment and management guidelines. China cardiovascular risk assessment and management guidelines., 2019, 34(1): 4–28.中國心血管病風(fēng)險評估和管理指南編寫聯(lián)合委員會. 中國心血管病風(fēng)險評估和管理指南中國循環(huán)雜志,2019, 34(1): 4–28.

[2] Chen WW, Gao RL, Liu LS, Zhu ML, Wang W, Wang YJ, Wu ZS, Li HJ, Gu DF, Yang YJ, Zheng Z, Jiang LX, Hu SS. Summary of china cardiovascular disease report 2017., 2018, 33(1): 1–8.陳偉偉, 高潤霖, 劉力生, 朱曼璐, 王文, 王擁軍, 吳兆蘇, 李惠君, 顧東風(fēng), 楊躍進(jìn), 鄭哲, 蔣立新, 胡盛壽. 《中國心血管病報告2017》概要中國循環(huán)雜志,2018, 33(1): 1–8.

[3] Afouda BA, Lynch AT, de Paiva Alves E, Hoppler S. Genome-wide transcriptomics analysis of genes regulated by GATA4, 5 and 6 during cardiomyogenesis in Xenopus laevis,2018, 17: 559–563.

[4] Lowry JA, Atchley WR. Molecular evolution of the GATA family of transcription factors: conservation within the DNA-binding domain,2000, 50(2): 103–115.

[5] Fujiwara T. GATA transcription factors: basic principles and related human disorders,2017, 242(2): 83–91.

[6] Tremblay M, Sanchez-Ferras O, Bouchard M. GATA transcription factors in development and disease,2018, 145(20) pii:dev164384.

[7] Suzuki E, Evans T, Lowry J, Truong L, Bell DW, Testa JR, Walsh K. The human GATA-6Gene: structure, chromosomal location, and regulation of expression by tissue-specific and mitogen-responsive signals,1996, 38(3): 283–290.

[8] Chou HH, Chiou MJ, Liang FW, Chen LH, Lu TH, Li CY. Association of maternal chronic disease with risk of congenital heart disease in offspring,2016, 188(17–18): E438–E446.

[9] Maitra M, Koenig SN, Srivastava D, Garg V. Identification of GATA6 sequence variants in patients with congenital heart defects.,2010, 68(4): 281–285.

[10] Yu L, Bennett JT, Wynn J, Carvill GL, Cheung YH, Shen Y, Mychaliska GB, Azarow KS, Crombleholme TM, Chung DH, Potoka D, Warner BW, Bucher B, Lim FY, Pietsch J, Stolar C, Aspelund G, Arkovitz MS, University of Washington Center for Mendelian Genomics, Mefford H, Chung WK. Whole exome sequencing identifies de novo mutations in GATA6 associated with congenital diaphragmatic hernia,2014, 51(3): 197–202.

[11] Lin X, Huo Z, Liu X, Zhang Y, Li L, Zhao H, Yan B, Liu Y, Yang Y, Chen YH. A novel GATA6 mutation in patients with tetralogy of Fallot or atrial septal defect,2010, 55(10): 662–667.

[12] Li C, Li X, Pang S, Chen W, Qin X, Huang W, Zeng C, Yan B. Novel and functional DNA sequence variants within the GATA6 gene promoter in ventricular septal defects,2014, 15(7): 12677–12687.

[13] Zheng GF, Wei D, Zhao H, Zhou N, Yang YQ, Liu XY. A novel GATA6 mutation associated with congenital ventricular septal defect,2012, 29(6): 1065–1071.

[14] Xu YJ, Di RM, Qiao Q, Li XM, Huang RT, Xue S, Liu XY, Wang J, Yang YQ. GATA6 loss-of-function mutation contributes to congenital bicuspid aortic valve,2018, 663: 115–120.

[15] Gharibeh L, Komati H, Bossé Y, Boodhwani M, Heydarpour M, Fortier M, Hassanzadeh R, Ngu J, Mathieu P, Body S, Nemer M. GATA6 regulates aortic valve remodeling, and its haploinsufficiency leads to right-left type bicuspid aortic valve,2018, 138(10): 1025–1038.

[16] Wang J, Luo XJ, Xin YF, Liu Y, Liu ZM, Wang Q, Li RG, Fang WY, Wang XZ, Yang YQ. Novel GATA6 mutations associated with congenital ventricular septal defect or tetralogy of fallot,2012, 31(11): 1610– 1617.

[17] Huang RT, Xue S, Xu YJ, Yang YQ. Somatic mutations in the GATA6 gene underlie sporadic tetralogy of fallot,2013, 31(1): 51–58.

[18] Kodo K, Nishizawa T, Furutani M, Arai S, Yamamura E, Joo K, Takahashi T, Matsuoka R, Yamagishi H. GATA6 mutations cause human cardiac outflow tract defects by disrupting semaphorin-plexin signaling,2009, 106(33): 13933–13938.

[19] Catli G, Abaci A, Flanagan SE, De Franco E, Ellard S, Hattersley A, Guleryuz H, Bober E. A novel GATA6 mutation leading to congenital heart defects and permanent neonatal diabetes: a case report,2013, 39(4): 370–374.

[20] Xu XC, Li F, Zhou WP, Zhu DQ, Ji W, Hu JJ, Chen YW, Qian HJ, Dai K. The role of GATA6 in cardiac development and congenital atrial septal defect., 2015, 33(4): 380–382.許細(xì)財, 李奮, 周萬平, 朱荻琦, 吉煒, 胡晶晶, 陳軼維, 錢咿嬌, 戴柯. 轉(zhuǎn)錄因子GATA6在心臟發(fā)育以及先天性房間隔缺損中的作用研究進(jìn)展臨床兒科雜志,2015, 33(4): 380–382.

[21] Dodou E, Verzi MP, Anderson JP, Xu SM, Black BL. Mef2c is a direct transcriptional target of ISL1 and GATA factors in the anterior heart field during mouse embryonic development,2004, 131(16): 3931–3942.

[22] Zhao R, Watt AJ, Battle MA, Li J, Bondow BJ, Duncan SA. Loss of both GATA4 and GATA6 blocks cardiac myocyte differentiation and results in acardia in mice,2008, 317(2): 614–619.

[23] Kodo K, Nishizawa T, Furutani M, Arai S, Ishihara K, Oda M, Makino S, Fukuda K, Takahashi T, Matsuoka R, Nakanishi T, Yamagishi H. Genetic analysis of essential cardiac transcription factors in 256 patients with non-syndromic congenital heart defects,2012, 76(7): 1703–1711.

[24] Maitra M, Schluterman MK, Nichols HA, Richardson JA, Lo CW, Srivastava D, Garg V. Interaction of Gata4 and Gata6 with Tbx5 is critical for normal cardiac development,2008, 326(2): 368–377.

[25] Van Niekerk C, Van Deventer BS, du Toit-Prinsloo L. Long QT syndrome and sudden unexpected infant death,2017, 70(9): 808–813.

[26] Liu F, Lu MM, Patel NN, Schillinger KJ, Wang T, Patel VV. GATA-Binding factor 6 contributes to atrioventricular node development and function,2015, 8(2): 284–293.

[27] Tucker NR, Mahida S, Ye J, Abraham EJ, Mina JA, Parsons VA, McLellan MA, Shea MA, Hanley A, Benjamin EJ, Milan DJ, Lin H, Ellinor PT. Gain-of-function mutations in GATA6 lead to atrial fibrillation,2016, 14(2): 284–291.

[28] El-Badawi A, Schenk EA. Histochemical methods for separate, consecutive and simultaneous demonstration of acetylcholinesterase and norepinephrine in cryostat sections,1967, 15(10): 580–588.

[29] Liu P, Jenkins NA, Copeland NG. A highly efficient recombineering-based method for generating conditional knockout mutations,2003, 13(3): 476–484.

[30] Rentschler S, Vaidya DM, Tamaddon H, Degenhardt K, Sassoon D, Morley GE, Jalife J, Fishman GI. Visualization and functional characterization of the developing murine cardiac conduction system.,2001, 128(10): 1785–1792.

[31] Tabish AM, Azzimato V, Alexiadis A, Buyandelger B, Kn?ll R. Genetic epidemiology of titin-truncating variants in the etiology of dilated cardiomyopathy,2017, 9(3): 207–223.

[32] McNally EM, Golbus JR, Puckelwartz MJ. Genetic mutations and mechanisms in dilated cardiomyopathy,2013, 123(1): 19–26.

[33] Xu L, Zhao L, Yuan F, Jiang WF, Liu H, Li RG, Xu YJ, Zhang M, Fang WY, Qu XK, Yang YQ, Qiu XB. GATA6 loss-of-function mutations contribute to familial dilated cardiomyopathy,2014, 34(5): 1315–1322.

[34] Elliott PM, Anastasakis A, Borger MA, Borggrefe M, Cecchi F, Charron P, Hagege AA, Lafont A, Limongelli G, Mahrholdt H, McKenna WJ, Mogensen J, Nihoyannopoulos P, Nistri S, Pieper PG, Pieske B, Rapezzi C, Rutten FH, Tillmanns C, Watkins H. 2014 ESC guidelines on diagnosis and management of hypertrophic cardiomyopathy: the task force for the diagnosis and management of hypertrophic cardiomyopathy of the european society of cardiology (ESC),2014, 35(39): 2733–2779.

[35] Alonso-Montes C, Rodríguez-Reguero J, Martín M, Gómez J, Coto E, Naves-Díaz M, Morís C, Cannata-Andía JB, Rodríguez I. Rare genetic variants in GATA transcription factors in patients with hypertrophic cardiomyopathy,2017, 65(5): 926–934.

[36] Hamrefors V. Common genetic risk factors for coronary artery disease: new opportunities for prevention?,2015, 37(3): 243–254.

[37] Xing Z, Pei J, Tang L, Hu X. Traditional cardiovascular risk factors and coronary collateral circulation: protocol for a systematic review and meta-analysis of case-control studies,2018, 97(17): e0417.

[38] Kim GR, Cho SN, Kim HS, Yu SY, Choi SY, Ryu Y, Lin MQ, Jin L, Kee HJ, Jeong MH. Histone deacetylase and GATA-binding factor 6 regulate arterial remodeling in angiotensin II-induced hypertension,2016, 34(11): 2206–2219.

[39] Bakshi C, Vijayvergiya R, Dhawan V. Aberrant DNA methylation of M1-macrophage genes in coronary artery disease,2019, 9(1): 1429.

[40] Cybulsky MI, Iiyama K, Li H, Zhu S, Chen M, Iiyama M, Davis V, Gutierrez-Ramos JC, Connelly PW, Milstone DS. A major role for VCAM-1, but not ICAM-1, in early atherosclerosis.,2001, 107(10): 1255–1262.

[41] Ley K, Laudanna C, Cybulsky MI, Nourshargh S. Getting to the site of inflammation: the leukocyte adhesion cascade updated,2007, 7(9): 678–689.

[42] Fan X, Chen X, Feng Q, Peng K, Wu Q, Passerini AG, Simon SI, Sun C. Downregulation of GATA6 in mTOR-inhibited human aortic endothelial cells: effects on TNF-α-induced VCAM-1 expression and monocytic cell adhesion.,2019, 312(2): H408– H420.

[43] Xie Y, Jin Y, Merenick BL, Ding M, Fetalvero KM, Wagner RJ, Mai A, Gleim S, Tucker DF, Birnbaum MJ, Ballif BA, Luciano AK, Sessa WC, Rzucidlo EM, Powell RJ, Hou L, Zhao H, Hwa J, Yu J, Martin KAra. Phosphorylation of GATA-6 is required for vascular smooth muscle cell differentiation after mTORC1 inhibition.,2015, 8(376): ra44.

[44] Lorberbaum DS, Sussel L. Gotta have GATA for human pancreas development,2017, 20(5): 577–579.

[45] Carrasco M, Delgado I, Soria B, Martín F, Rojas A. GATA4 and GATA6 control mouse pancreas organogenesis,2012, 122(10): 3504–3515.

[46] Xuan S, Borok MJ, Decker KJ, Battle MA, Duncan SA, Hale MA, Macdonald RJ, Sussel L. Pancreas-specific deletion of mouse Gata4 and Gata6 causes pancreatic agenesis,2012, 122(10): 3516–3528.

[47] Allen HL, Flanagan SE, Shaw-Smith C, De Franco E, Akerman I, Caswell R, International Pancreatic Agenesis Consortium, Ferrer J, Hattersley AT, Ellard S. GATA6 haploinsufficiency causes pancreatic agenesis in humans,2011, 44(1): 20–22.

[48] De Franco E, Shaw-Smith C, Flanagan SE, Shepherd MH, International NDM Consortium, Hattersley AT, Ellard S. GATA6 mutations cause a broad phenotypic spectrum of diabetes from pancreatic agenesis to adult-onset diabetes without exocrine insufficiency.,2012, 62(3): 993–997.

[49] Villamayor L, Rodríguez-Seguel E, Araujo R, Carrasco M, Bru-Tarí E, Mellado-Gil JM, Gauthier BR, Martinelli P, Quesada I, Soria B, Martín F, Cano DA, Rojas A. GATA6 controls insulin biosynthesis and secretion in adult β-Cells.,2017, 67(3): 448–460.

[50] Yoon CH, Kim TW, Koh SJ, Choi YE, Hur J, Kwon YW, Cho HJ, Kim HS. Gata6 in pluripotent stem cells enhance the potential to differentiate into cardiomyocytes.,2018, 51(2): 85–91.

[51] Losa M, Latorre V, Andrabi M, Ladam F, Sagerstr?m C, Novoa A, Zarrineh P, Bridoux L, Hanley NA, Mallo M, Bobola N. A tissue-specific, Gata6-driven transcriptional program instructs remodeling of the mature arterial tree.,2017, 6: e31362.

[52] Qian Y, Li P, Lv B, Jiang X, Wang T, Zhang H, Wang X, Gao X. Heart function and thoracic aorta gene expression profiling studies of ginseng combined with different herbal medicines in eNOS knockout mice.,2017, 7(1): 15431.

[53] Afouda BA, Lynch AT, de Paiva Alves, EHoppler S. Genome-wide transcriptomics analysis identifies sox7 and sox18 as specifically regulated by gata4 in cardiomyogenesis.,2017, 434(1): 108–120.

The roles and regulation mechanism of transcription factor GATA6 in cardiovascular diseases

Zhaoqing Sun1, Bo Yan2,3,4

The GATA transcription factor family consists of six members, GATA1 through GATA6, which play important roles in the regulation of cell growth and differentiation, cell survival, and maintenance of body functions. Current studies regarding GATA6 transcription factor confirm that GATA6 plays a crucial role in the differentiation, development, and function of the human heart. Genetic mutations of GATA6 are associated with a variety of congenital heart diseases, dysfunction of the cardiac conduction system causing various arrhythmias, coronary artery disease, and dilated and hypertrophic cardiomyopathies. The relationship between GATA6 and the human heart is also impacted by multiple other genes and interactions in the body. In this review, we summarize the research and current knowledge of the GATA6 transcription factor related to the human heart and multiple pathologies which provides understanding of its genetic basis to enable future personalized gene therapy and to promote the development and incorporation of basic research into clinical medicine.

transcription factor GATA6; cardiovascular disease; gene mutation; molecular genetics

2019-02-21;

2019-03-18

國家自然科學(xué)基金(編號:81370271,81400291,81670341,81870279)資助[Supported by the National Natural Science Foundation of China (Nos. 81370271, 81400291, 81670341, 81870279)]

孫兆慶,在讀碩士研究生,專業(yè)方向:心血管病專業(yè)。E-mail: sunzhq01@163.com

閆波,博士,教授,研究領(lǐng)域:心血管疾病。E-mail: yanbo@mail.jnmc.edu.cn

10.16288/j.yczz.19-044

2019/5/8 9:59:33

URI: http://kns.cnki.net/kcms/detail/11.1913.R.20190508.0958.002.html

(責(zé)任編委: 劉峰)

猜你喜歡
心肌病心血管心臟
“心血管權(quán)威發(fā)布”公眾號簡介
COVID-19心血管并發(fā)癥的研究進(jìn)展
心臟
伴有心肌MRI延遲強化的應(yīng)激性心肌病1例
有八顆心臟的巴洛龍
lncRNA與心血管疾病
胱抑素C與心血管疾病的相關(guān)性
補硒治療擴張型心肌病的效果研究
丙種球蛋白治療擴張型心肌病的療效觀察
擴心寧煎劑聯(lián)合西藥治療擴張型心肌病30例
沂源县| 弥勒县| 建平县| 垦利县| 新乐市| 三穗县| 崇左市| 固镇县| SHOW| 确山县| 富宁县| 阳泉市| 吉安县| 安徽省| 化州市| 琼结县| 武邑县| 紫云| 榕江县| 巴南区| 内江市| 潮安县| 余江县| 内黄县| 平和县| 延吉市| 乌鲁木齐市| 德清县| 布尔津县| 竹山县| 翁牛特旗| 咸阳市| 资中县| 乳源| 东山县| 叶城县| 东丰县| 丰城市| 奉化市| 长汀县| 五大连池市|