唐又紅 王志敏 武美萍
摘 要:利用層次分析法(AHP)和逼近理想點(diǎn)排序法(TOPSIS),建立了起重設(shè)備的風(fēng)險(xiǎn)評(píng)估模型,依據(jù)人員、機(jī)器、環(huán)境和管理四個(gè)評(píng)判指標(biāo),構(gòu)造出風(fēng)險(xiǎn)評(píng)估的判斷矩陣并建立綜合評(píng)判指標(biāo)體系。利用AHP法科學(xué)地確定各個(gè)指標(biāo)的權(quán)重,結(jié)合TOPSIS理論方法計(jì)算逼近度并計(jì)算風(fēng)險(xiǎn)安全等級(jí)。通過應(yīng)用案例表明,基于AHP-TOPSIS的起重設(shè)備風(fēng)險(xiǎn)評(píng)估的預(yù)測(cè)結(jié)果與實(shí)際使用情況相一致。該方法從多種方面考慮了影響風(fēng)險(xiǎn)安全的因素,有效避免了把單因素作為判據(jù)的局限性與片面性,且預(yù)測(cè)結(jié)果較科學(xué)、準(zhǔn)確,能夠進(jìn)一步揭示各因素的影響程度。同時(shí)該方法可作為安全風(fēng)險(xiǎn)評(píng)估的一種預(yù)測(cè)方法,也可應(yīng)用于其他系統(tǒng)工程中。
關(guān)鍵詞:層次分析法;逼近理想解排序法;起重設(shè)備;風(fēng)險(xiǎn)評(píng)估
中圖分類號(hào):TH215 文獻(xiàn)標(biāo)識(shí)碼:A
doi:10.14031/j.cnki.njwx.2019.03.003
Abstract: The risk assessment model of the lifting equipment was established by using AHP and TOPSIS. The risk - safety - related evaluation indexes were selected from four aspects: person, machine, environment and management. Based on the comprehensive evaluation index system, the AHI method is used to determine the weight of each index, and the AOPSIS theory is used to calculate the approximation degree and calculate the risk and safety level. The application results show that the prediction results of FEMA risk assessment based on AHP-TOPSIS are consistent with the actual use. This method considers the factors that affect the risk and safety from various aspects, which effectively avoids the limitation and one-sidedness of the single factor as the criterion, and makes the prediction result more scientific and accurate, and can further reveal the influence degree of each factor. At the same time, this method can be used as a prediction method of safety risk assessment and can be applied to other systems engineering.
Keywords: AHP-TOPSIS;lifting equipment;risk evaluation
0 引言
據(jù)統(tǒng)計(jì),起重設(shè)備事故類別有機(jī)構(gòu)失控事故、拆裝事故、頂升降節(jié)事故、墜物事故、群塔碰撞事故、墜人事故、其他事故七種,如圖1所示,為兩件常見起重設(shè)備事故。 從圖2國內(nèi)外塔機(jī)事故案例的事故整體分布 [1-4]可以看出,多數(shù)事故發(fā)生的原因是:傾翻、頂升降節(jié)、安拆等,這其中既有人員和管理層面的影響因素,同時(shí)與機(jī)器零部件狀態(tài)和環(huán)境因素也密切相關(guān)。因此,提出一種全面有效的起重設(shè)備風(fēng)險(xiǎn)評(píng)估方法是十分有必要的。
近年來,國內(nèi)外許多學(xué)者和工程師針對(duì)起重設(shè)備提出了大量的風(fēng)險(xiǎn)評(píng)估方法。國內(nèi)趙鑫等[5]指出目前行業(yè)內(nèi)普遍采用的法定定期檢驗(yàn)制度來實(shí)現(xiàn)起重機(jī)械的安全運(yùn)行和事故預(yù)防很容易造成對(duì)一般設(shè)備的過度檢驗(yàn)和高風(fēng)險(xiǎn)設(shè)備的檢驗(yàn)不足,并建立了起重機(jī)械零部件失效分析數(shù)據(jù)庫,提出了基于Bayes理論的起重機(jī)零部件小樣本可靠壽命預(yù)測(cè)方法,對(duì)起重機(jī)零部件進(jìn)行定量分析;李波等[6]模糊綜合評(píng)判數(shù)學(xué)法對(duì)橋式起重機(jī)金屬結(jié)構(gòu)進(jìn)行風(fēng)險(xiǎn)評(píng)估,進(jìn)而得到風(fēng)險(xiǎn)度量值;應(yīng)法明等[7]采用模糊數(shù)學(xué)方法對(duì)門式起重機(jī)潛在風(fēng)險(xiǎn)因素(腐蝕、裂紋、強(qiáng)度及變形)導(dǎo)致的金屬結(jié)構(gòu)破壞進(jìn)行風(fēng)險(xiǎn)評(píng)估。從主梁和支腿兩個(gè)角度出發(fā),建立了不同金屬結(jié)構(gòu)風(fēng)險(xiǎn)影響因素為子系統(tǒng)的多層次評(píng)判系統(tǒng)。國外的Q.Dong等[8]針對(duì)再制造起重機(jī)臂結(jié)構(gòu)構(gòu)建了風(fēng)險(xiǎn)評(píng)估模型,并依據(jù)懸臂結(jié)構(gòu)潛在的失效模式,開發(fā)了風(fēng)險(xiǎn)評(píng)估系統(tǒng);B Yu等[9]提出針對(duì)FPSO起重機(jī)的墜落物體進(jìn)行風(fēng)險(xiǎn)評(píng)估的方法;Li Qi等[10]模擬風(fēng)險(xiǎn)場(chǎng)景并利用有限元時(shí)程方法計(jì)算結(jié)構(gòu)損傷的程度,再采用“當(dāng)量法”進(jìn)行定量的風(fēng)險(xiǎn)評(píng)估。
而近年來,層次分析法[11](AHP)、BP神經(jīng)網(wǎng)絡(luò)[12-13]、灰色優(yōu)化理論[14-15]、逼近理想點(diǎn)的排序方法[16](TOPSIS)等在多屬性的決策問題中應(yīng)用廣泛,且都取得了不錯(cuò)的效果。其中層次分析法(AHP)是一種多屬性問題的層次權(quán)重決策分析方法,通過將問題分層遞階,逐級(jí)剖析,確定每層及屬性的權(quán)重。而逼近理想點(diǎn)排序法(TOPSIS)顧名思義是一種通過對(duì)有限個(gè)評(píng)價(jià)對(duì)象與理想化目標(biāo)的接近程度進(jìn)行排序,從而達(dá)到尋求最優(yōu)解的求解方法,其計(jì)算過程簡便、評(píng)估合理,近年來應(yīng)用較為廣泛、靈活。
綜上所述,盡管這些年來國內(nèi)外專家學(xué)者提出的針對(duì)起重設(shè)備的風(fēng)險(xiǎn)評(píng)估方法有很多,但大部分都是針對(duì)起重設(shè)備的某一零部件或者某些零部件進(jìn)行研究,很少有人考慮到零部件之外的一些失效因素,比如:人員操作、工作環(huán)境、管理制度等。本文綜合利用AHP與TOPSIS的方法對(duì)起重設(shè)備從業(yè)人員、機(jī)器、環(huán)境和管理四個(gè)方面進(jìn)行綜合風(fēng)險(xiǎn)安全評(píng)估,并結(jié)合實(shí)例印證模型的科學(xué)性、合理性。
1 AHP方法與原理
層次分析法(Analytic Hierarchy Process,簡稱AHP)是將與決策總是有關(guān)的元素分解成目標(biāo)、準(zhǔn)則、方案等層次,在此基礎(chǔ)之上進(jìn)行定性和定量分析的決策方法。具體方法和原理如下:
1.1 構(gòu)造判斷矩陣
3 實(shí)例應(yīng)用
3.1 指標(biāo)體系的構(gòu)建
如圖3所示,以塔式起重機(jī)(又稱塔機(jī))為分析案例。影響塔機(jī)的安全因素有很多,建立科學(xué)的評(píng)判體系可以確保評(píng)價(jià)結(jié)果的準(zhǔn)確性。在評(píng)價(jià)指標(biāo)體系中,定量的參數(shù)和定性的參數(shù)互相影響、制約,但為了計(jì)算方便,盡可能少地選取評(píng)判指標(biāo)來呈現(xiàn)最重要、最全面的信息。
基于層次分析法建立塔機(jī)安全風(fēng)險(xiǎn)評(píng)估指標(biāo)體系,如圖4所示,共包含四個(gè)準(zhǔn)則層:人員指標(biāo),分為從業(yè)資格、安全意識(shí)、應(yīng)變能力;機(jī)器指標(biāo),分為起重臂、平衡臂、機(jī)身、安全裝置;環(huán)境指標(biāo),分為設(shè)備基礎(chǔ)、天氣狀況、安全距離;管理指標(biāo),分為管理制度完善性、管理制度可執(zhí)行性、檢修維護(hù)。
綜上可知,起重設(shè)備的風(fēng)險(xiǎn)安全系數(shù)為:F1=51.7%,F(xiàn)2=53.5%,F(xiàn)3=55.3%,F(xiàn)=51.8%,而F∈(F1,F(xiàn)2),根據(jù)預(yù)測(cè)結(jié)果判斷該起重設(shè)備的綜合安全系數(shù)為51.8%屬中等風(fēng)險(xiǎn)等級(jí),其中機(jī)器風(fēng)險(xiǎn)最大、人員和管理風(fēng)險(xiǎn)次之、環(huán)境風(fēng)險(xiǎn)最?。ㄈ鐖D5所示),與實(shí)際使用狀態(tài)相符。這說明了利用AHP-TOPSIS對(duì)起重設(shè)備的風(fēng)險(xiǎn)評(píng)估的評(píng)價(jià)預(yù)測(cè)模型是合理且可靠的,此外該種方法過程簡單,計(jì)算量小,能夠鑒別出人員指標(biāo)、機(jī)器指標(biāo)、環(huán)境指標(biāo)和管理指標(biāo)等準(zhǔn)則層的安全等級(jí),對(duì)起重設(shè)備做出綜合評(píng)估,提前預(yù)測(cè)潛在風(fēng)險(xiǎn)并可提前采取措施把風(fēng)險(xiǎn)降低到最小值或消除潛在風(fēng)險(xiǎn)。
5 結(jié)論
本文利用AHP方法構(gòu)建了起重設(shè)備風(fēng)險(xiǎn)安全預(yù)測(cè)評(píng)判指標(biāo)體系,并利用TOPSIS理論,建立了AHP-TOPSIS綜合評(píng)判模型。通過與起重設(shè)備的實(shí)例對(duì)比分析,驗(yàn)證了AHP-TOPSIS綜合評(píng)判模型的可靠性。該綜合評(píng)判模型具有方法簡潔、計(jì)算方便、預(yù)測(cè)準(zhǔn)確等諸多優(yōu)點(diǎn),且能夠避免單因素決策的片面性,能夠提供準(zhǔn)確、全面的判斷,同時(shí)該模型也可為其他工程領(lǐng)域的風(fēng)險(xiǎn)評(píng)估提供參考。
參考文獻(xiàn):
[1] 顧迪民, 王懷建, 金光振. 起重機(jī)械事故分析和對(duì)策[M]. 北京:人民交通出版社,2001:147-188.
Gu Dimin, Wang Huaijian, Jin Guangzhen. Analysis and countermeasures of crane accidents[M].Beijing: China Communications Press,2001:147-188.
[2] 田復(fù)興. 起重機(jī)械事故案例分析與預(yù)防[M]. 北京:中國水利水電出版社,2005,60-121.
Tian Fuxing. Case analysis and prevention of crane accident[M].Beijing: China Water & Power Press,2005,60-121.
[3] 楊遠(yuǎn)程. 地鐵施工安全事故分析與評(píng)價(jià)方法研究[D]. 武漢: 華中科技大學(xué), 2009.
Yang Yuancheng. Study on analysis and evaluation methods of subway construction safety accidents[D].Wuhan: Huazhong University of Science and Technology,2009.
[4] 郭寒竹. 起重機(jī)械事故統(tǒng)計(jì)分析與風(fēng)險(xiǎn)控制[J]. 建筑機(jī)械化, 2007, 28(1): 17-20.
Guo Hanzhu. Statistical analysis and risk control of crane accidents[J]. Construction Mechanization, 2007, 28(1): 17-20.
[5] 趙鑫. 起重機(jī)械風(fēng)險(xiǎn)評(píng)估方法與預(yù)防性檢修策略研究[D]. 沈陽:東北大學(xué), 2013.
Zhao Xin. Study on risk assessment method and preventive maintenance strategy of hoisting machinery [D]. Northeastern University, 2013.
[6] 李波. 橋式起重機(jī)金屬結(jié)構(gòu)風(fēng)險(xiǎn)評(píng)估及其可靠性分析[D]. 上海:上海交通大學(xué), 2010.
Li Bo. Risk assessment and reliability analysis of metal structure of bridge crane[D]. Shanghai Jiao Tong University, 2010.
[7] 應(yīng)法明, 陳勇鑫, 孫亞良,等. 基于模糊數(shù)學(xué)方法的門式起重機(jī)風(fēng)險(xiǎn)評(píng)估研究[J]. 中國特種設(shè)備安全, 2014(12):43-46.
Ying Faming, Chen Yongxin, Sun Yaliang. Risk assessment of portal crane based on fuzzy mathematics method[J]. Chinese special equipment safety, 2014(12):43-46.
[8] Dong Q, Xu G, Ren H. Risk assessment of remanufacturing arm structure for crane based on potential failure mode[J]. Journal of Mechanical Science & Technology, 2015, 29(12):5345-5357.
[9] B Yu , L Sun , S Li , X Zhang. The Improved Method of Risk Assessment for Falling Objects from the Crane of FPSO[C]. ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering. Busan, Ocean, Offshore and Arctic Engineering Division, 2016.
[10] Li Qi, Xiang Zhongfu, Liu Changbo. Quantitative Risk Assessment of Deck Crane Falling Based on Scene Simulation[J]. Technology of Highway and Transport, 2018.
[11] Ho W, Xu X, Dey P K. Multi-criteria decision making approaches for supplier evaluation and selection [J]. European Journal of operational research, 2010, 202(1): 16-24.
[12] Elhag T M S, Wang Y M. Risk assessment for bridge maintenance projects: Neural networks versus regression techniques[J]. Journal of computing in civil engineering, 2007, 21(6): 402-409.
[13] Jin X H, Zhang G. Modelling optimal risk allocation in PPP projects using artificial neural networks[J]. International journal of project management, 2011, 29(5): 591-603.
[14] 孫麗萍, 康濟(jì)川, 劉子健, 等. 海上風(fēng)機(jī)的模糊關(guān)聯(lián)失效模式及其影響分析[J]. 哈爾濱工程大學(xué)學(xué)報(bào), 2016, 37(4): 487-491.
Sun Liping, Kang Jichuan, Liu Zijian. Fuzzy correlation failure mode of offshore fan and its influence analysis[J]. Journal of Harbin Engineering University, 2016, 37(4): 487-491.
[15] Büyükzkan G,ifi G. A novel hybrid MCDM approach based on fuzzy DEMATEL, fuzzy ANP and fuzzy TOPSIS to evaluate green suppliers[J]. Expert Systems with Applications, 2012, 39(3): 3000-3011.
[16] Behzadian M, Khanmohammadi Otaghsara S, Yazdani M, et al. A state-of the-art survey of TOPSIS applications[J]. Expert Systems with Applications, 2012, 39(17):13051-13069.
Behzadian M, Khanmohammadi Otaghsara S, Yazdani M等,對(duì)TOPSIS應(yīng)用的一項(xiàng)最新調(diào)查[J]. 專家系統(tǒng)與應(yīng)用程序, 2012, 39(17):13051-13069.
[17] 許寶田, 閻長虹, 許宏發(fā), 等. 基于模糊理論的軟巖彈性模型識(shí)別及參數(shù)反分析[J]. 巖石力學(xué)與工程學(xué)報(bào), 2006, 25(11):2280-2286.
Xu Baotian, Yan Changhong, Xu Hongfa. Soft rock elastic model identification and parameter inverse analysis based on fuzzy theory[J]. chinese journal of rock mechanics and engineering, 2006, 25(11):2280-2286.
[18] 洪惠坤, 廖和平, 魏朝富, 等. 基于改進(jìn) TOPSIS 方法的三峽庫區(qū)生態(tài)敏感區(qū)土地利用系統(tǒng)健康評(píng)價(jià)[J]. 生態(tài)學(xué)報(bào), 2015, 35(24): 8016-8027.
Hong Huikun, Liao Heping, Wei Chaofu. Health assessment of land use system in ecological sensitive area of three gorges reservoir area based on improved TOPSIS method[J]. Acta Ecologica Sinica, 2015, 35(24): 8016-8027.