唐青原,王曉磊
火星作為我國(guó)深空探測(cè)的下一階段主要目標(biāo),也是人類(lèi)最有可能展開(kāi)大規(guī)模探測(cè)的大行星,其軌道捕獲制動(dòng)所需的速度增量超過(guò)2 km/s,燃料消耗占比很高,這一問(wèn)題在未來(lái)的采樣返回或載人任務(wù)中顯得尤為突出.因此,如何在火星軌道捕獲環(huán)節(jié)節(jié)省燃料的同時(shí)實(shí)現(xiàn)準(zhǔn)確安全入軌成為了火星探測(cè)的關(guān)鍵問(wèn)題之一.相較于傳統(tǒng)化學(xué)燃料脈沖變軌,氣動(dòng)捕獲技術(shù)在節(jié)省燃料方面具有相當(dāng)大的優(yōu)勢(shì).早期的研究[1]中就對(duì)氣動(dòng)捕獲制導(dǎo)與控制精度和軌道特性進(jìn)行了分析,認(rèn)為利用氣動(dòng)輔助實(shí)現(xiàn)軌道捕獲是可行的,并且設(shè)計(jì)高升阻比氣動(dòng)參數(shù)可以做到變軌精度與脈沖變軌精度在同一數(shù)量級(jí).馬歇爾航天飛行中心在文獻(xiàn)[2]中對(duì)氣動(dòng)捕獲和純推力制動(dòng)兩種方式的優(yōu)缺點(diǎn)進(jìn)行了研究,在對(duì)攜帶4臺(tái)890 N軌道機(jī)動(dòng)發(fā)動(dòng)機(jī)的地球返回艙進(jìn)行模擬分析后,得出結(jié)論:純推力制動(dòng)、一次性大氣制動(dòng)需要的發(fā)動(dòng)機(jī)開(kāi)機(jī)時(shí)間分別是51 min和6 min,相當(dāng)于節(jié)省了88%的燃料.文獻(xiàn)[3]則就不同的應(yīng)用場(chǎng)景論述了氣動(dòng)捕獲制動(dòng)在節(jié)省燃料方面的優(yōu)勢(shì).
關(guān)于氣動(dòng)捕獲技術(shù)的研究始于20世紀(jì)80年代[4],通常是指使探測(cè)器接近段雙曲線軌道進(jìn)入天體大氣中,通過(guò)傾側(cè)角的變化合理利用氣動(dòng)力,使探測(cè)器在飛出大氣后進(jìn)入目標(biāo)環(huán)繞軌道.早期的氣動(dòng)捕獲制導(dǎo)律[5]是在阿波羅進(jìn)入制導(dǎo)律[6]的基礎(chǔ)上演變而來(lái)的一種解析制導(dǎo)律.但純解析制導(dǎo)很難滿足精度和魯棒性的要求,因此后續(xù)發(fā)展出了以阻力平面跟蹤[7]為代表的混合預(yù)測(cè)校正制導(dǎo),該方法使探測(cè)器姿態(tài)在一定階段跟蹤某一阻力平面,而后以一恒定的下降速率飛出大氣.近些年,因?yàn)榫哂休^高的制導(dǎo)精度以及較強(qiáng)魯棒性,數(shù)值預(yù)測(cè)校正制導(dǎo)成為了解決氣動(dòng)捕獲問(wèn)題的常見(jiàn)方法[8].其中文獻(xiàn)[9]為了提高控制能力,在控制量中加入了攻角,不過(guò)在工程實(shí)踐中攻角控制還存在實(shí)現(xiàn)難度.
不同于已經(jīng)成功實(shí)施了4次的氣動(dòng)減速技術(shù),氣動(dòng)捕獲技術(shù)依然處于研究和地面試驗(yàn)階段.這主要是因?yàn)橐揽繂未螝鈩?dòng)減速實(shí)現(xiàn)捕獲需要的速度增量遠(yuǎn)遠(yuǎn)大于氣動(dòng)減速單圈的速度增量,使得飛行風(fēng)險(xiǎn)大大提高;而火星大氣稀薄,大氣密度不確定性強(qiáng),伴有偶發(fā)性全球風(fēng)暴.并且軌道射入任務(wù)本身關(guān)系著整個(gè)任務(wù)的成敗,一旦失敗更是沒(méi)有補(bǔ)救措施,因而對(duì)于氣動(dòng)捕獲任務(wù)而言,重中之重是制導(dǎo)方法具有較強(qiáng)的魯棒性以適應(yīng)環(huán)境不確定性和初始條件的不確定性,使得探測(cè)器在極限工況下也能安全入軌.
因此本文提出一種結(jié)合了數(shù)值預(yù)測(cè)校正和高度跟蹤解析制導(dǎo)的分段氣動(dòng)捕獲制導(dǎo)算法,其中數(shù)值預(yù)測(cè)校正部分應(yīng)用通過(guò)動(dòng)態(tài)輸入增益變換的全系數(shù)自適應(yīng)控制算法,以退出大氣后的遠(yuǎn)拱點(diǎn)高度為控制目標(biāo),以求實(shí)現(xiàn)精確入軌;而高度跟蹤制導(dǎo)則保證飛行器的主減速段軌道高度不會(huì)過(guò)低的同時(shí)下降速率也幾乎為0,彌補(bǔ)了全系數(shù)自適應(yīng)算法所缺少的邊界條件控制.最后對(duì)標(biāo)稱(chēng)條件下及各類(lèi)極限工況下該制導(dǎo)律的表現(xiàn)進(jìn)行了仿真驗(yàn)證,結(jié)果表明,氣動(dòng)捕獲制動(dòng)可以有效地減少燃料消耗,該制導(dǎo)算法具有較強(qiáng)的魯棒性,可以在各類(lèi)極限工況下實(shí)現(xiàn)準(zhǔn)確安全入軌.
旋轉(zhuǎn)大氣模型下探測(cè)器大氣內(nèi)飛行的三自由度動(dòng)力學(xué)方程為:
(1)
(2)
(3)
(4)
2ωmVsinψcosφ+
(5)
2ωmV(cosφtanγcosψ-sinφ)+
(6)
其中,r為火星中心距,θ和φ為經(jīng)緯度,V為速度大小,γ為飛行路徑角,進(jìn)入大氣時(shí)的該角度又稱(chēng)為進(jìn)入角,ψ為航向角,此處指北為0,ωm為火星自轉(zhuǎn)角速度,σ為傾側(cè)角,L和D為升力和阻力,其表達(dá)式如下:
(7)
其中,ρ為火星大氣密度,S為飛行器的氣動(dòng)參考面積,CL、CD分別為升力系數(shù)和阻力系數(shù).
實(shí)際上在進(jìn)行制導(dǎo)律設(shè)計(jì)時(shí)可簡(jiǎn)化使用非旋轉(zhuǎn)的大氣模型,令式(1)~(6)中ωm=0,這樣就實(shí)現(xiàn)而來(lái)飛行狀態(tài)方程縱橫向解耦,如下式所示:
縱向運(yùn)動(dòng)方程:
(8)
(9)
(10)
橫向運(yùn)動(dòng)方程:
(11)
(12)
(13)
在縱橫向解耦的前提下可以對(duì)縱橫向軌跡分開(kāi)進(jìn)行設(shè)計(jì).其中縱向運(yùn)動(dòng)方程只和傾側(cè)角σ的大小有關(guān),和符號(hào)無(wú)關(guān),主要影響的是軌道的形狀和大小,是控制律設(shè)計(jì)的關(guān)鍵;而橫向運(yùn)動(dòng)方程還受到傾側(cè)角σ的符號(hào)影響,橫向運(yùn)動(dòng)主要影響的是軌道平面,即角動(dòng)量的方向.
火星大氣密度ρ的不確定度很大,現(xiàn)階段人類(lèi)對(duì)火星大氣的了解有限,大氣模型的建立主要基于不同的大氣數(shù)據(jù)庫(kù),比較常用的有NASA建立的一系列火星全球大氣數(shù)據(jù)庫(kù)和歐空局建立的歐洲火星氣候數(shù)據(jù)庫(kù),二者都是給定飛行器的經(jīng)緯度、軌道高度以及時(shí)間,可得到包括大氣密度在內(nèi)的一系列數(shù)據(jù).但這種方式對(duì)于星上自主軌道控制系統(tǒng)來(lái)說(shuō)過(guò)于復(fù)雜,并且大氣模型本身也不夠成熟,因此設(shè)計(jì)制導(dǎo)律時(shí)通常使用簡(jiǎn)化的數(shù)學(xué)模型.常用的大氣模型是指數(shù)模型,其最為簡(jiǎn)潔的形式如下[10]:
ρ=ρ0e-h/hs
(14)
式中,h為探測(cè)器軌道高度,ρ0=1.474×107kg/km2為火星大氣參考密度,hs=8.8057 km為火星大氣比例高度.
式(14)描述的大氣模型僅與軌道高度有關(guān),而實(shí)際上,同一高度不同緯度,大氣密度不一致,時(shí)間不同,同一軌道高度上的大氣密度也會(huì)發(fā)生變化,故有如下更為精確的密度模型[11]:
(15)
由雙曲線軌道到橢圓環(huán)繞軌道的氣動(dòng)捕獲問(wèn)題,根據(jù)控制目標(biāo)可分為目標(biāo)遠(yuǎn)拱點(diǎn)控制和能量最優(yōu)控制.若令rexit、Vexit、γexit分別表示探測(cè)器退出大氣后軌道半徑、速度和飛行路徑角,則目標(biāo)遠(yuǎn)拱點(diǎn)控制可表示為:
(16)
(17)
(18)
探測(cè)器由雙曲線軌道經(jīng)氣動(dòng)捕獲制動(dòng)最終入軌目標(biāo)停泊軌道的過(guò)程如圖1所示.探測(cè)器飛出大氣后,橢圓軌道近拱點(diǎn)位于大氣內(nèi),需要在遠(yuǎn)拱點(diǎn)進(jìn)行軌道機(jī)動(dòng)抬升近點(diǎn)高度,需要速度增量ΔV1;當(dāng)探測(cè)器再次飛至近拱點(diǎn)時(shí),還需要再次進(jìn)行軌道機(jī)動(dòng),調(diào)整遠(yuǎn)拱點(diǎn)控制誤差,需要速度增量為ΔV2.因此能量最優(yōu)控制的目標(biāo)是使ΔV2最小或者|ΔV1|+|ΔV2|最小.
圖1 氣動(dòng)捕獲過(guò)程示意圖Fig.1 Overall approach of aerocapture
以上兩種控制目標(biāo)的氣動(dòng)捕獲問(wèn)題的最終評(píng)價(jià)標(biāo)準(zhǔn)都是飛出大氣后進(jìn)行的軌道平面內(nèi)機(jī)動(dòng)所需的速度增量.從雙曲線到橢圓軌道變化過(guò)程中,探測(cè)器軌道的遠(yuǎn)拱點(diǎn)變化范圍可以達(dá)到數(shù)千公里,范圍極大;相比而言由于退出大氣后的軌道近點(diǎn)一定在大氣內(nèi),即大概在10~130 km范圍內(nèi),較遠(yuǎn)拱點(diǎn)的變化范圍小很多.同樣的誤差率,發(fā)生在遠(yuǎn)拱點(diǎn)造成的絕對(duì)誤差遠(yuǎn)遠(yuǎn)大于在近拱點(diǎn)造成的誤差,此外近點(diǎn)抬升制動(dòng)是不可避免的,優(yōu)化空間不大,而遠(yuǎn)拱點(diǎn)若將控制精度提高到一定程度,理論上可以避免遠(yuǎn)拱點(diǎn)調(diào)整制動(dòng).因此在考慮控制目標(biāo)時(shí),優(yōu)先考慮遠(yuǎn)拱點(diǎn)控制精度.相應(yīng)地,評(píng)價(jià)氣動(dòng)捕獲效果的速度增量也分為抬升近拱點(diǎn)速度增量ΔV1和總速度增量|ΔV1|+|ΔV2|.
(19)
|ΔV1|+|ΔV2|=
(20)
氣動(dòng)捕獲預(yù)測(cè)校正制導(dǎo)的一般思想是,不斷計(jì)算以當(dāng)前傾側(cè)角飛行時(shí),出大氣后軌道與目標(biāo)軌道的誤差來(lái)產(chǎn)生傾側(cè)角增量控制指令,再根據(jù)新的飛行狀態(tài)預(yù)報(bào)出大氣后軌道參數(shù)新的誤差,如此往復(fù),直到滿足控制需求為止.具體到本文,控制量是傾側(cè)角序列,輸出量是預(yù)報(bào)的出大氣后終端軌道遠(yuǎn)拱點(diǎn)半徑誤差,控制系統(tǒng)框圖如圖2所示.
圖2 氣動(dòng)捕獲制導(dǎo)系統(tǒng)框圖Fig.2 System flowchart of aerocapture guidance system
如1.1節(jié)所述,設(shè)計(jì)制導(dǎo)律時(shí)三自由度動(dòng)力學(xué)模型通過(guò)簡(jiǎn)化實(shí)現(xiàn)縱橫向解耦后,分別進(jìn)行制導(dǎo)律設(shè)計(jì).其中縱向運(yùn)動(dòng)方程只受傾側(cè)角大小影響,縱向制導(dǎo)律中的控制量?jī)H大小變化;橫向制導(dǎo)律同時(shí)受傾側(cè)角大小和符號(hào)影響,可使用傾側(cè)角翻轉(zhuǎn)策略,使得橫向速度分量逐步收斂.本節(jié)將設(shè)計(jì)完整的探測(cè)器氣動(dòng)飛行制導(dǎo)律,以同時(shí)實(shí)現(xiàn)軌道的形狀和軌道面控制.
一般認(rèn)為火星大氣接口在火星平均表面150 km高空處,大于150 km的高空可近似認(rèn)為沒(méi)有氣動(dòng)力作用,此時(shí)氣動(dòng)加速度大約為10-9數(shù)量級(jí),氣動(dòng)力作用很有限.隨著軌道高度降低,火星大氣密度將大幅升高,而較低層高密度大氣的不確定性也大大降低,因此中低層大氣是用于實(shí)現(xiàn)降低軌道能量的主要軌道段.
本文所使用的全系數(shù)自適應(yīng)算法屬于一種數(shù)值預(yù)測(cè)校正模型,通過(guò)不斷預(yù)測(cè)當(dāng)前輸入下軌道的遠(yuǎn)拱點(diǎn)半徑和目標(biāo)遠(yuǎn)拱點(diǎn)半徑的誤差,反饋產(chǎn)生控制指令.該方法是通過(guò)建立單輸入單輸出間的一階特征模型關(guān)系,實(shí)時(shí)估計(jì)參數(shù),從而求取控制修正量的.文獻(xiàn)[12]中通過(guò)將特征模型看作一種特殊的線性時(shí)變系統(tǒng)來(lái)證明穩(wěn)定性,進(jìn)而證明了該算法的收斂性,即保證了遠(yuǎn)拱點(diǎn)制導(dǎo)誤差的收斂性.但這種方法無(wú)法保證軌道最大下降速率、最大過(guò)載、熱流密度等多約束條件;此外該方法的目的是提高Δra的制導(dǎo)精度,但要進(jìn)一步提高1.3節(jié)中所述的評(píng)價(jià)標(biāo)注|ΔV1|+|ΔV2|,還需要進(jìn)一步設(shè)計(jì).
根據(jù)以上對(duì)制導(dǎo)算法和火星大氣密度特性的分析,可以考慮將整個(gè)氣動(dòng)捕獲任務(wù)分成不同的子任務(wù)段,分別用不同的制導(dǎo)律進(jìn)行控制,具體如下.
(1)捕獲過(guò)渡段
捕獲過(guò)渡段是從飛行器進(jìn)入大氣開(kāi)始,控制飛行器到達(dá)一個(gè)目標(biāo)軌道高度結(jié)束.這一階段的目的是使飛行器的軌道高度降低到下一階段需要的特定巡航高度,因此采用預(yù)測(cè)校正算法.
首先對(duì)軌道高度誤差hm相對(duì)傾側(cè)角控制量σc做泰勒展開(kāi)有:
(21)
保留一階項(xiàng),可得控制律:
(22)
其中:
(23)
Δσp是用于預(yù)測(cè)的一個(gè)傾側(cè)角增量,hf1、hf2是依次預(yù)測(cè)的軌道高度誤差.
hm1=hf1-hcruise
(24)
hcruise即為預(yù)設(shè)的巡航高度.
(25)
(2)平衡滑翔段
當(dāng)探測(cè)器軌道降低到一定高度后,氣動(dòng)力矩作用開(kāi)始顯著,大氣密度不確定性也較低,此時(shí)適用于利用氣動(dòng)力降低軌道能量保證形成環(huán)繞,同時(shí)也是需要考慮多約束條件主要階段.
氣動(dòng)捕獲問(wèn)題的多約束條件主要包括最大過(guò)載、最大熱流密度,以及保證安全飛行的最低軌道高度,具體表達(dá)式為:
(26)
(27)
通過(guò)優(yōu)化巡航高度hcruise等參數(shù),還可以在后續(xù)階段保證遠(yuǎn)拱點(diǎn)入軌精度的基礎(chǔ)上進(jìn)一步優(yōu)化總體燃料消耗量,關(guān)于參數(shù)優(yōu)化問(wèn)題將在2.3節(jié)具體討論.
(28)
為跟蹤巡航高度,制導(dǎo)律為
(29)
將制導(dǎo)律代入有
(30)
(3)逸出大氣段
針對(duì)地球返回制導(dǎo)問(wèn)題,胡軍提出的全系數(shù)自適應(yīng)預(yù)測(cè)校正制導(dǎo)算法[13]已經(jīng)得到了在軌驗(yàn)證.和地球返回再入任務(wù)類(lèi)似,火星氣動(dòng)捕獲任務(wù)也是一類(lèi)大氣輔助變軌任務(wù),且在縱向通道控制律設(shè)計(jì)過(guò)程中都可以簡(jiǎn)化為單一量的控制目標(biāo).因此本文借鑒載人飛船全系數(shù)自適應(yīng)再入升力控制的方法,將全系數(shù)自適應(yīng)控制理論首次引入氣動(dòng)捕獲預(yù)測(cè)校正算法領(lǐng)域.
全系數(shù)自適應(yīng)控制理論的原理是:系統(tǒng)一般能用n階定常差分方程來(lái)近似描述,若允許差分方程的系數(shù)是時(shí)變的,則可將系統(tǒng)看作一個(gè)小于n階的變系數(shù)模型,其建立的基礎(chǔ)是全系數(shù)之和等于1[14],或接近于1.因此,不同于傳統(tǒng)預(yù)測(cè)校正算法,每個(gè)制導(dǎo)周期內(nèi),自適應(yīng)算法不需要進(jìn)行迭代求控制量,而是根據(jù)輸入輸出關(guān)系辨識(shí)出系統(tǒng)此刻的輸入輸出關(guān)系,再根據(jù)線性反饋或黃金分割控制等方法得到控制量.這種方法一方面避免了在每個(gè)制導(dǎo)周期內(nèi)多次進(jìn)行遞推預(yù)測(cè),大大提高了計(jì)算效率;另一方面該方法根據(jù)系統(tǒng)誤差反饋,每個(gè)周期不斷根據(jù)新的預(yù)測(cè)信息修正制導(dǎo)控制量,逐漸逼近控制目標(biāo),屬于閉環(huán)無(wú)差系統(tǒng).系統(tǒng)初始誤差和制導(dǎo)過(guò)程中產(chǎn)生的誤差一起均勻分布在整個(gè)制導(dǎo)過(guò)程中,因此可以期望得到較高的魯棒性.
本文的制導(dǎo)系統(tǒng)中輸入為遠(yuǎn)拱點(diǎn)制導(dǎo)誤差,輸出為傾側(cè)角變化,二者數(shù)量級(jí)差異巨大,要保證系數(shù)之和等于1,需要進(jìn)行輸入變化.而傾側(cè)角ΔσC對(duì)最終遠(yuǎn)拱點(diǎn)誤差的影響是一個(gè)和時(shí)間有關(guān)的函數(shù),若對(duì)當(dāng)前氣動(dòng)飛行的飛行器施加一個(gè)傾側(cè)角增量ΔσC,其縱向分量將產(chǎn)生如下變化:
cosσ=cosσ0+a×1(t)
(31)
計(jì)算ΔσC的作用時(shí)長(zhǎng)tapply對(duì)遠(yuǎn)點(diǎn)半徑誤差的影響曲線,當(dāng)a=0.1時(shí)仿真打點(diǎn)結(jié)果如圖3所示.
圖3 ΔσC的作用時(shí)長(zhǎng)對(duì)遠(yuǎn)點(diǎn)半徑誤差的影響曲線Fig.3 The increment of apoapsis range caused by the applying duration of ΔσC
圖中的縱軸是當(dāng)前軌道預(yù)報(bào)得到的遠(yuǎn)拱點(diǎn)半徑和傾側(cè)角全程為0°時(shí)的遠(yuǎn)拱點(diǎn)半徑間的誤差;橫軸是ΔσC的作用時(shí)長(zhǎng).可以看出,ΔσC的作用時(shí)間越長(zhǎng),對(duì)遠(yuǎn)拱點(diǎn)誤差的影響越大,且中間低軌道大氣稠密段加入時(shí)產(chǎn)生的影響變化較大.
定性地來(lái)說(shuō)可將這一曲線看作a×1(t)的變化到遠(yuǎn)拱點(diǎn)半徑誤差的時(shí)變放大倍數(shù).將其作為控制系統(tǒng)的輸入變換,使得變換后的系統(tǒng)放大倍數(shù)保持在1附近,可期望保證全系數(shù)之和近似為1.
定義1.t時(shí)刻施加傾側(cè)角變化量Δσ(t)后,預(yù)測(cè)的遠(yuǎn)拱點(diǎn)制導(dǎo)誤差產(chǎn)生的變化量定義為動(dòng)態(tài)輸入增益A(t).
為了減少在線進(jìn)行預(yù)測(cè)的計(jì)算量,文獻(xiàn)[13]中將圖3曲線擬合成關(guān)于作用時(shí)間的多項(xiàng)式函數(shù),但在氣動(dòng)捕獲問(wèn)題里該曲線幅值變化范圍過(guò)大,且前后高空大氣段變化微弱,中段變化極快,難以用簡(jiǎn)單函數(shù)描述.因此,本文采用事先生成標(biāo)稱(chēng)情形下的動(dòng)態(tài)輸入增益數(shù)據(jù)集A0,在線根據(jù)Δσc作用時(shí)間插值的方法生成輸入變換系數(shù).
根據(jù)以上分析,可利用全系數(shù)自適應(yīng)控制方法進(jìn)行制導(dǎo)律設(shè)計(jì).這一階段的控制目標(biāo)是瞄準(zhǔn)目標(biāo)軌道遠(yuǎn)點(diǎn)半徑,則退出大氣后環(huán)繞軌道的遠(yuǎn)點(diǎn)半徑制導(dǎo)誤差為:
(32)
則當(dāng)前時(shí)刻制導(dǎo)系統(tǒng)的輸入為:
(33)
利用一階特征模型建立系統(tǒng)輸入輸出間關(guān)系:
y(k)=ΦT(k)θ(k)+e(k)
(34)
式中,ΦT(k)=[y(k-1)u(k-1)]T,u(k-1)表示上一時(shí)刻傾側(cè)角的余弦值cosσ(k-1).
被估參數(shù)向量θ(k)=[a1(k)β0(k)]T
需保證a1(k)+β0(k)→1
參數(shù)估計(jì)公式為
θ(k)=θ(k-1)+
(35)
線性反饋控制uL(k)=-l1a1(k)y(k)/β0(k)
每次產(chǎn)生的控制量uL(k)是傾側(cè)角余弦的修正量Δcosσ(k),還需通過(guò)積分器產(chǎn)生新的傾側(cè)角.該方法不需要事先規(guī)劃標(biāo)稱(chēng)軌道,并且每個(gè)計(jì)算周期只進(jìn)行參數(shù)估計(jì),而不用迭代求取控制量,結(jié)合上述動(dòng)態(tài)增益的離線化處理,可有效減少在線計(jì)算量.
如前所述,氣動(dòng)飛行的側(cè)向通道控制可以使用傾側(cè)角符號(hào)反轉(zhuǎn)的方式,只要設(shè)置翻轉(zhuǎn)閾值,在符號(hào)的不斷變換過(guò)程中側(cè)向速度將逐漸收斂.以下是其中一種側(cè)向通道制導(dǎo)方式.
設(shè)初始軌道面單位法向矢量:
(36)
側(cè)向速度:
vlat=v·I0
(37)
制導(dǎo)律:若vlat≥vthr則傾側(cè)角符號(hào)翻轉(zhuǎn),vthr即為設(shè)定的側(cè)向速度閾值.由于側(cè)向速度逐漸收斂,該速度閾值也應(yīng)逐次減小.
求取|ΔV1|+|ΔV2|的方法選擇文獻(xiàn)[15]中一種改進(jìn)的Golden-Section的方法,這種方法結(jié)合了Golden-Section和連續(xù)拋物線插值,在保證計(jì)算收斂的同時(shí)考慮到了收斂的快速性.而進(jìn)一步考慮在軌計(jì)算量,參數(shù)確定的思路可分為離線優(yōu)化和在線辨識(shí)兩部分.
2.3.1 離線優(yōu)化
2.3.2 在線辨識(shí)
仿真表明,各個(gè)極限工況下巡航高度主要取決于初始軌道特性,在軌運(yùn)行中的不確定性對(duì)其影響不大,因此hcruise的優(yōu)化問(wèn)題可采用離線標(biāo)稱(chēng)環(huán)境下的結(jié)果;而退出巡航速度vd在不同的非標(biāo)稱(chēng)環(huán)境下表現(xiàn)較為敏感,對(duì)最終總速度增量的影響也較大,因此選擇在線優(yōu)化.
2.3.3 氣動(dòng)參數(shù)辨識(shí)
氣動(dòng)捕獲問(wèn)題中的不確定性分為大氣環(huán)境不確定性和氣動(dòng)參數(shù)不確定性,根據(jù)氣動(dòng)力公式,這兩類(lèi)不確定性可以折算到升力和阻力兩個(gè)量中.在軌可以利用加速度計(jì)測(cè)量當(dāng)前軸加速度,表達(dá)式為:
(38)
(39)
(40)
(41)
其中κ∈(0,1),是濾波常數(shù).
引言中提到氣動(dòng)捕獲的兩種應(yīng)用場(chǎng)景:采樣返回和載人任務(wù),前者特指無(wú)人采樣探測(cè)任務(wù).無(wú)人任務(wù)和載人任務(wù)的探測(cè)器在氣動(dòng)外形、邊界約束條件和任務(wù)周期等方面有著很大的不同.本文的研究對(duì)象為前者,即無(wú)人采樣返回探測(cè)任務(wù),因此探測(cè)器構(gòu)型假定為低升阻比的鈍頭體.因沒(méi)有已在軌實(shí)施的項(xiàng)目,無(wú)人氣動(dòng)捕獲任務(wù)的相關(guān)研究較少,因此本文的氣動(dòng)參數(shù)選擇基于2 500 kg這個(gè)質(zhì)量規(guī)模,主要參考已進(jìn)行過(guò)氣動(dòng)減速任務(wù)的火星環(huán)球勘探者型號(hào),并比較了幾個(gè)已有的試驗(yàn)項(xiàng)目的氣動(dòng)參數(shù),從中進(jìn)行選擇,得出以下氣動(dòng)參數(shù)的航天器作為研究對(duì)象.
表1 氣動(dòng)參數(shù)初值Tab.1 Aerodynamic parameters of design reference
根據(jù)無(wú)人任務(wù)進(jìn)行最低能量轉(zhuǎn)移,進(jìn)入火星影響球后相對(duì)火星的軌道速度,適度放寬得到研究的進(jìn)入點(diǎn)速度,并根據(jù)無(wú)控時(shí)該速度對(duì)應(yīng)的進(jìn)入走廊γentry∈[-10.8°,-9.5°],選定進(jìn)入軌道傾角,因而有如下進(jìn)入點(diǎn)軌道初始條件及目標(biāo)橢圓軌道.
表2 進(jìn)入點(diǎn)軌道初值及控制目標(biāo)Tab.2 The initial orbit at the Mars atmosphere interface and the target orbit
作為參考,該初始和目標(biāo)軌道,若應(yīng)用傳統(tǒng)脈沖點(diǎn)火進(jìn)行平面內(nèi)變軌,所需的速度增量約為2 077 m/s,根據(jù)利亞普諾夫方程,當(dāng)采用推力為1 500 N,比沖為310 m/s的發(fā)動(dòng)機(jī)制動(dòng),所消耗的燃料質(zhì)量約為1 238 kg.
為直觀起見(jiàn),以下仿真結(jié)果除圖4外將分為橫向和縱向制導(dǎo)展示,為了給橫向制導(dǎo)提供控制裕度,傾側(cè)角幅值的變化范圍為(15°,165°).圖4顯示的是本文描述的制導(dǎo)算法下傾側(cè)角的變化序列.軌道預(yù)測(cè)的頻率是1 Hz,考慮到實(shí)際工程中有角速度轉(zhuǎn)動(dòng)上限,10 s改變一次傾側(cè)角.初始的大氣作用很小,在氣動(dòng)加速度和引力加速度之比小于0.05時(shí),不做制導(dǎo),最后的逸出段一直進(jìn)行到理論上的大氣層邊界處,此處為表明大氣邊界,將傾側(cè)角置0.
圖4 縱橫向耦合傾側(cè)角變化序列Fig.4 The bank angle profiles of longitude and lateral coupled movements
3.2.1 橫向制導(dǎo)
側(cè)向速度的變化規(guī)律如圖5所示,紅色折線標(biāo)記出橫向速度邊界,該邊界隨不同制導(dǎo)階段逐步縮小,達(dá)到使得橫向速度收斂的目的,有略微超出的部分就是10 s改變一次傾側(cè)角導(dǎo)致的超調(diào).仿真結(jié)果顯示,側(cè)向速度收斂后,最終軌道傾角的控制精度在0.03°以內(nèi).
3.2.2 縱向制導(dǎo)
如表3所示,本文選取了5種極限工況情形,包括,大氣密度幅值拉偏、大氣密度波、氣動(dòng)升力系數(shù)和阻力系數(shù)拉偏.其中氣動(dòng)系數(shù)相關(guān)的拉偏對(duì)應(yīng)探測(cè)器氣動(dòng)參數(shù)這一初始條件的不確定性,大氣密度相關(guān)拉偏對(duì)應(yīng)環(huán)境不確定性,多次仿真取均值后標(biāo)稱(chēng)情形(編號(hào)0)和各個(gè)極限工況下的制導(dǎo)結(jié)果如表3所示.初始條件不確定性還包括進(jìn)入大氣時(shí)的初始軌道不確定性,圖6中給出了多種極限工況下不同初始進(jìn)入角對(duì)應(yīng)的制導(dǎo)結(jié)果Monte Carlo圖.
文獻(xiàn)[16]中提出了一種基于龐德里亞金極大值原理的兩段式數(shù)值預(yù)測(cè)校正氣動(dòng)捕獲制導(dǎo)算法,該方法同時(shí)考慮了遠(yuǎn)拱點(diǎn)控制精度和速度增量?jī)?yōu)化,比較具有代表性.其校正環(huán)節(jié)通過(guò)二分法和三次插值法迭代尋找使得Δra=0的控制量.表4中對(duì)上述數(shù)值預(yù)測(cè)矯正法(NPC)和本文提出的全系數(shù)自適應(yīng)制導(dǎo)法(ACA)在極限工況下進(jìn)行了仿真對(duì)比.
圖5 橫向速度變化曲線Fig.5 The lateral velocity curve
表3 多種極限工況組合下制導(dǎo)仿真結(jié)果Tab.3 The simulation results of multi off-nominal conditions
表4 極限工況下制導(dǎo)算法結(jié)果對(duì)比Tab.4 The simulation results of multi off-nominal conditions between ACA and NPC method
表3中可以看出,對(duì)制導(dǎo)結(jié)果影響較大的非標(biāo)稱(chēng)情形是高頻率密度波和大氣密度大幅度正向拉偏,即情形3和1.升力系數(shù)和阻力系數(shù)的誤差影響主要取決于最終造成的升阻比的誤差.例如情形7和9中都對(duì)阻力系數(shù)進(jìn)行了+20%的拉偏,但9中即便還加入了低頻密度波影響,因?yàn)橐餐瑫r(shí)加入了+20%的升力系數(shù)拉偏,使得整個(gè)升阻比變化不大,最后制導(dǎo)精度遠(yuǎn)遠(yuǎn)高于7中結(jié)果.情形10中大氣密度和飛行器本身氣動(dòng)能力同時(shí)大幅下降,造成最終沒(méi)有足夠的氣動(dòng)力使得飛行器降低到目標(biāo)遠(yuǎn)拱點(diǎn)高度.
結(jié)合表4數(shù)據(jù),兩種方法對(duì)遠(yuǎn)拱點(diǎn)的控制都可以達(dá)到較高精度.當(dāng)大氣密度偏高或升阻比較小時(shí),數(shù)值預(yù)測(cè)校正法制導(dǎo)精度相對(duì)較高,但當(dāng)大氣密度偏低或升阻比偏大時(shí),該方法的制導(dǎo)誤差會(huì)大幅提高,當(dāng)大氣密度和阻力系數(shù)同時(shí)偏小時(shí)甚至無(wú)法成功形成環(huán)繞.而本文提出的方法表現(xiàn)與數(shù)值校正法正相反,大氣密度偏低或升阻比偏高時(shí)制導(dǎo)精度較高,并且因?yàn)榧尤肓艘欢ǖ目偹俣仍隽績(jī)?yōu)化策略,不論遠(yuǎn)拱點(diǎn)誤差如何變化,后續(xù)平面內(nèi)變軌所需的速度增量基本保持在了100 m/s以內(nèi),和脈沖點(diǎn)火制動(dòng)相比減少了95%的能量需求,若考慮到有限推力產(chǎn)生的重力損耗,這一優(yōu)勢(shì)還將進(jìn)一步擴(kuò)大.
圖6顯示了不同初始進(jìn)入角下本文提出的全系數(shù)自適應(yīng)制導(dǎo)法(ACA)和數(shù)值預(yù)測(cè)矯正法(NPC)的制導(dǎo)結(jié)果對(duì)比.圖中y軸為氣動(dòng)捕獲后進(jìn)入目標(biāo)軌道所需的總速度增量ΔV=|ΔV1|+|ΔV2|.在一定的初始進(jìn)入角范圍內(nèi)([-10.8°,-9.8°])數(shù)值預(yù)測(cè)校正法制導(dǎo)精度表現(xiàn)較穩(wěn)定,但超出這個(gè)初始進(jìn)入角范圍后制導(dǎo)精度急劇下降,甚至無(wú)法形成環(huán)繞,氣動(dòng)走廊基本與無(wú)控情形下相同.而本文提出的基于全系數(shù)自適應(yīng)控制理論的制導(dǎo)算法(ACA)在圖中x軸所示的初始進(jìn)入角范圍內(nèi)制導(dǎo)精度都基本相同.事實(shí)上,當(dāng)γentry∈[-40°,-2.5°]時(shí)該方法都能得到較高的制導(dǎo)精度,極大地提升了進(jìn)入走廊范圍.
圖7~10顯示的是50次蒙特卡洛仿真的結(jié)果.可以看出,在各個(gè)極限工況的作用下,氣動(dòng)軌道特性基本相似,遠(yuǎn)拱點(diǎn)誤差收斂較快.極限工況下大部分情形巡航段都可以跟蹤0°飛行路徑角,個(gè)別情形即使無(wú)法保持嚴(yán)格保持0°,也對(duì)最終軌道控制精度及評(píng)價(jià)標(biāo)準(zhǔn)沒(méi)有明顯影響.
圖11顯示的是氣動(dòng)捕獲期間一階特征模型兩個(gè)時(shí)變參數(shù)的變化規(guī)律.可以看出兩個(gè)參數(shù)之和保持了接近于1這個(gè)標(biāo)準(zhǔn).
圖6 不同初始進(jìn)入角下兩種算法的制導(dǎo)結(jié)果Fig.6 The guidance results with initial entry angle dispersion under two guidance methods
圖7 軌道高度變化曲線Fig.7 Orbit height histories resulting from multi off-nominal conditions
圖8 速度變化曲線Fig.8 Orbit velocity histories resulting from multi off-nominal conditions
圖9 飛行路徑角角變化曲線Fig.9 Flight path angle histories resulting from multi off-nominal conditions
圖10 傾側(cè)角變化曲線Fig.10 Bank angle profiles resulting from multi off-nominal conditions
圖11 特征模型參數(shù)變化曲線Fig.11 The characteristic model parameters history
本文針對(duì)火星氣動(dòng)捕獲問(wèn)題,提出了一種基于預(yù)測(cè)校正制導(dǎo)的組合式制導(dǎo)方法.其中縱向制導(dǎo)分為3個(gè)階段,分別實(shí)現(xiàn)抵達(dá)巡航高度,跟蹤巡航高度以迅速降低軌道能量,以及以目標(biāo)遠(yuǎn)拱點(diǎn)半徑為控制目標(biāo)進(jìn)行準(zhǔn)確入軌的目的;橫向采取傾側(cè)角符號(hào)翻轉(zhuǎn)的控制策略.這一方法在利用了基于特征模型的全系數(shù)自適應(yīng)算法強(qiáng)自適應(yīng)能力和免于多次迭代的優(yōu)勢(shì)的前提下,通過(guò)設(shè)計(jì)巡航高度和優(yōu)化退出巡航速度,在滿足了最大過(guò)載約束的同時(shí)還在一定程度上優(yōu)化了后續(xù)變軌所需的總速度增量.仿真結(jié)果表明,該方法具有較高的魯棒性,在節(jié)約變軌燃料方面效果顯著,為日后的工程應(yīng)用提供了一定的借鑒價(jià)值.