国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

餐廚垃圾半連續(xù)乙醇型酸化兩相厭氧消化產(chǎn)甲烷性能研究

2019-05-11 06:55:54吳川福任媛媛馬欣欣汪群慧
關(guān)鍵詞:醇化產(chǎn)甲烷堿度

于 淼,高 明,2,吳川福,2,任媛媛,馬欣欣,汪群慧,2

?

餐廚垃圾半連續(xù)乙醇型酸化兩相厭氧消化產(chǎn)甲烷性能研究

于 淼1,高 明1,2,吳川福1,2※,任媛媛1,馬欣欣1,汪群慧1,2

(1. 北京科技大學(xué)能源與環(huán)境工程學(xué)院環(huán)境工程系,北京 100083; 2. 工業(yè)典型污染物資源化處理北京市重點(diǎn)試驗(yàn)室,北京 100083)

為了解乙醇型兩相厭氧消化系統(tǒng)性能,該研究構(gòu)建了以接種酵母菌產(chǎn)乙醇同時(shí)產(chǎn)酸為特征的餐廚垃圾兩相厭氧消化系統(tǒng)(乙醇型兩相),并開(kāi)展系統(tǒng)的進(jìn)料有機(jī)負(fù)荷率由2.0 g/(L·d)逐漸提高至6.0 g/(L·d) 的半連續(xù)厭氧發(fā)酵產(chǎn)甲烷試驗(yàn)。結(jié)果表明:乙醇型兩相在5.0 g/(L·d)時(shí)甲烷產(chǎn)率為421.52 mL/g,比傳統(tǒng)兩相厭氧消化系統(tǒng)的394.48 mL/g,提高了6.8%。乙醇型的醇化/酸化相的水解產(chǎn)物中乙醇占33.4%,這有利于水解物料進(jìn)入甲烷相后保持該相pH值及厭氧消化的穩(wěn)定運(yùn)行。與傳統(tǒng)兩相相比,乙醇型兩相系統(tǒng)的醇化/酸化相水力停留時(shí)間減少了60%,系統(tǒng)的有效容積減少了10.6%,容積產(chǎn)甲烷率提高了18.3%。說(shuō)明乙醇型兩相比傳統(tǒng)型兩相系統(tǒng)在產(chǎn)甲烷性能方面具有明顯的優(yōu)勢(shì),且有提高系統(tǒng)穩(wěn)定性的潛力。

垃圾;發(fā)酵;甲烷;兩相厭氧消化;醇化/酸化相;有機(jī)負(fù)荷

0 引 言

中國(guó)由餐廚垃圾所引發(fā)的社會(huì)問(wèn)題如“地溝油”等逐漸被社會(huì)所關(guān)注。餐廚垃圾具有高油脂(5%~20%)、高鹽分(濕基0.8%~1.5%)、高水分(70%~90%)、高有機(jī)含量(干基90%以上)以及易腐發(fā)臭、易酸化等特點(diǎn)[1],它們也是填埋場(chǎng)氣體和滲濾液產(chǎn)生的主要來(lái)源[2],造成填埋場(chǎng)二次污染防治費(fèi)用大量增加。餐廚垃圾的熱值低,不僅不能自燃,而且會(huì)妨礙焚燒爐內(nèi)溫度的上升,并可能引起二惡英的合成[3]。但餐廚垃圾具有營(yíng)養(yǎng)豐富,生物降解性好,產(chǎn)甲烷潛能高等特點(diǎn),是良好的甲烷發(fā)酵底物。餐廚垃圾厭氧消化可降解復(fù)雜的底物成分,沼氣易分離、易于工程應(yīng)用,是目前最具潛力的餐廚垃圾資源化方式[4-5]。

復(fù)雜有機(jī)物的厭氧消化過(guò)程可以分為3個(gè)階段,水解階段、產(chǎn)酸階段和產(chǎn)甲烷階段,整個(gè)過(guò)程主要由水解細(xì)菌、酸化細(xì)菌、產(chǎn)氫產(chǎn)乙酸細(xì)菌和產(chǎn)甲烷菌4類微生物完成[6-7]。故通過(guò)人為的構(gòu)建水解酸化相包括水解細(xì)菌和酸化細(xì)菌和產(chǎn)甲烷菌包括產(chǎn)氫產(chǎn)乙酸細(xì)菌和產(chǎn)甲烷菌,使得各相中的微生物處于各自適宜的環(huán)境下以提高系統(tǒng)的處理效率和穩(wěn)定性。同時(shí)也存在著系統(tǒng)投資較大,運(yùn)行控制復(fù)雜等問(wèn)題。

本課題組的研究發(fā)現(xiàn)通過(guò)在餐廚垃圾底物中接種酵母菌進(jìn)行開(kāi)放式乙醇發(fā)酵,可以降低底物酸化對(duì)系統(tǒng)的影響并提高其厭氧消化穩(wěn)定性[8-10]。底物乙醇預(yù)發(fā)酵可以視為一種底物的預(yù)處理手段,但該方法以往的研究都用于批式厭氧消化中,尚未開(kāi)展餐廚垃圾連續(xù)厭氧消化的相關(guān)研究。故本試驗(yàn)?zāi)康脑谟谕ㄟ^(guò)接種酵母菌構(gòu)建以第一相為開(kāi)放式產(chǎn)乙醇發(fā)酵為主同時(shí)又有底物自身的產(chǎn)酸細(xì)菌發(fā)酵為特征的醇化/酸化相,并與后續(xù)的產(chǎn)甲烷相串聯(lián)組成乙醇型兩相厭氧消化系統(tǒng)(簡(jiǎn)稱乙醇型兩相)。與傳統(tǒng)的兩相厭氧消化系統(tǒng)(簡(jiǎn)稱傳統(tǒng)兩相)在相同的進(jìn)料負(fù)荷下進(jìn)行對(duì)比。為了分析2個(gè)系統(tǒng)的穩(wěn)定性的差異,進(jìn)料有機(jī)負(fù)荷由2 g/(L·d)逐步提高至6 g/(L·d),分析在高進(jìn)料有機(jī)負(fù)荷率下系統(tǒng)穩(wěn)定性及揮發(fā)性脂肪酸(volatile fatty acids,VFAs)、堿度、pH值的變化,以期為構(gòu)建新型乙醇型兩相厭氧消化系統(tǒng)提供科學(xué)依據(jù)。

1 材料與方法

1.1 試驗(yàn)材料

餐廚垃圾取自北京科技大學(xué)學(xué)生食堂,經(jīng)簡(jiǎn)單分揀、絞碎后放入冰箱(-20 ℃)冷藏備用,接種污泥取自肖家河污水處理廠二沉池出泥并在實(shí)驗(yàn)室馴化1個(gè)月時(shí)間,其中厭氧消化污泥的馴化方法為35 ℃下在5 L發(fā)酵罐中每3 d添加30 g餐廚垃圾。餐廚垃圾和接種污泥原料的主要成分指標(biāo)見(jiàn)表1。

1.2 試驗(yàn)裝置和試驗(yàn)方法

兩相厭氧消化方法:根據(jù)以往張笑等[1]對(duì)餐廚垃圾批式厭氧消化的研究結(jié)果,選取2 d作為乙醇型兩相厭氧消化系統(tǒng)中第一相醇化/酸化相的水力停留時(shí)間(hydraulic retention time,HRT)。其中乙醇型水解醇化/酸化相不接種污泥,除每日進(jìn)料外,按照底物質(zhì)量的0.5%接種活化后的釀酒酵母菌粉(安琪酵母有限公司)進(jìn)行開(kāi)放式發(fā)酵。開(kāi)放式發(fā)酵是指本試驗(yàn)中底物不滅菌直接接種酵母菌進(jìn)行厭氧發(fā)酵。乙醇型兩相系統(tǒng)的第一相體積為0.65 L。

表1 餐廚垃圾和接種污泥的化學(xué)特征

注:* 以干基計(jì)。

Note:: * refers to a dry basis.

根據(jù)本課題組以往對(duì)餐廚垃圾兩相厭氧消化系統(tǒng)第一相水解酸化相在不同HRT(2、5、8 d)下的對(duì)比研究發(fā)現(xiàn),HRT為5和8 d時(shí),第一相的水解酸化效果穩(wěn)定,考慮到提高系統(tǒng)處理效率和節(jié)省反應(yīng)器體積的目的,在本試驗(yàn)中選擇了5 d作為傳統(tǒng)兩相系統(tǒng)第一相(酸化相)的HRT。傳統(tǒng)兩相系統(tǒng)的第一相體積為1.60 L。兩系統(tǒng)的產(chǎn)甲烷相均為全混式厭氧消化罐(continuous stirred-tank reactor,CSTR),體積為10 L,有效容積為8 L,HRT為25 d,兩系統(tǒng)初始進(jìn)料有機(jī)負(fù)荷率(organic loading rate,OLR)均為2 g/(L·d),且每10~15 d提高1 g/(L·d)有機(jī)負(fù)荷,每日固定時(shí)間進(jìn)料1次(也稱為半連續(xù)厭氧發(fā)酵),第一相的出料進(jìn)入產(chǎn)甲烷相。將 2個(gè)系統(tǒng)的發(fā)酵罐放置于THZ-82數(shù)顯恒溫氣浴振蕩器內(nèi),保持溫度(35±1)℃,轉(zhuǎn)速60 r/min,每日取樣分析甲烷產(chǎn)量及出料發(fā)酵液中pH值、總揮發(fā)性有機(jī)酸(TVFA)濃度、乙醇濃度、堿度等。所有組別設(shè)置3組平行試驗(yàn)組。

1.3 分析方法

本研究利用減質(zhì)量法[11]分析總固體(total solid,TS)、揮發(fā)性固體(volatile solid,VS)及灰分含量,樣品中的pH值采用PHS-3C型pH計(jì)測(cè)定。揮發(fā)性脂肪酸組成含量采用氣相色譜儀(GC)測(cè)定[12-13]。乳酸含量采用液相色譜儀(LC)測(cè)定[14]。產(chǎn)生的氣體由氣袋收集后用排水法測(cè)定沼氣體積,利用氣相色譜儀測(cè)定甲烷組分[15]。厭氧消化系統(tǒng)中的堿度利用溴甲酚綠-甲基紅指示劑滴定法測(cè)定。

2 結(jié)果與分析

2.1 乙醇型與傳統(tǒng)兩相厭氧消化系統(tǒng)的產(chǎn)氣性能對(duì)比分析

將餐廚垃圾按1.2節(jié)所述的試驗(yàn)方法進(jìn)行了乙醇型和傳統(tǒng)型2個(gè)厭氧消化試驗(yàn),兩系統(tǒng)產(chǎn)甲烷量及底物降解率如圖1所示。

由圖1a中可以看出,在OLR為2 g/(L·d)至5 g/(L·d)的范圍內(nèi),兩系統(tǒng)的日產(chǎn)甲烷量均隨OLR的增加而升高,在5 g/(L·d)達(dá)到產(chǎn)氣峰值,其中,乙醇型兩相系統(tǒng)水解醇化/酸化相pH值較高且穩(wěn)定。而當(dāng)OLR提高至6 g/(L·d)后2個(gè)系統(tǒng)均失穩(wěn)、產(chǎn)氣量下降,維持OLR為6 g/(L·d) 10 d后,2個(gè)產(chǎn)甲烷相的pH值均降至6.5以下,系統(tǒng)完全酸化崩潰。由此可知5 g/(L·d)為本研究2個(gè)系統(tǒng)能穩(wěn)定運(yùn)行的最大進(jìn)料有機(jī)負(fù)荷率,這與目前研究報(bào)道的餐廚垃圾進(jìn)料負(fù)荷范圍接近[16-17]。從圖1b中可以看到2個(gè)厭氧消化系統(tǒng)平均甲烷產(chǎn)率隨OLR的變化。由表1餐廚垃圾的組成可算出本研究所用底物的理論化學(xué)分子式為C27.5H48.7O12.7N,根據(jù)Nielfa報(bào)道的計(jì)算公式[18],理論最大甲烷產(chǎn)率為612.3 mL/g。2個(gè)系統(tǒng)中,乙醇型、傳統(tǒng)型兩相厭氧系統(tǒng)在3 g/(L·d)時(shí)的達(dá)到最高甲烷產(chǎn)率,分別為486.3 mL/g、438.0 mL/g,是各系統(tǒng)理論產(chǎn)甲烷量的79.4%和71.5%。表2比較了有機(jī)負(fù)荷率5 g/(L·d)時(shí),兩系統(tǒng)容積產(chǎn)甲烷率等產(chǎn)氣性能。

圖1 乙醇型與傳統(tǒng)型厭氧消化系統(tǒng)的產(chǎn)甲烷效果、pH值及底物降解率

由表2可知,在最大進(jìn)料有機(jī)負(fù)荷(5 g/(L·d))條件下,乙醇型兩相系統(tǒng)的平均日甲烷產(chǎn)量和平均容積產(chǎn)甲烷率分別為16.86和1.94 L/(L·d),比傳統(tǒng)型兩相系統(tǒng)分別提高了6.8%和18.3%;乙醇型兩相的產(chǎn)甲烷率為421.52 mL/g,傳統(tǒng)兩相的為394.48 mL/g。這是由于乙醇型兩相系統(tǒng)的水解醇化/酸化相水力停留時(shí)間比傳統(tǒng)兩相減少60%,含兩相系統(tǒng)的有效容積比傳統(tǒng)兩相減少了10.6%,故整個(gè)系統(tǒng)的容積產(chǎn)氣率顯著提高,說(shuō)明乙醇型兩相系統(tǒng)在工業(yè)應(yīng)用中可減少裝置的占地面積,并節(jié)約維持系統(tǒng)發(fā)酵溫度的能耗。下面將從2個(gè)系統(tǒng)中水解酸化相的碳源流向、及甲烷發(fā)酵過(guò)程VFAs、堿度、pH值等重要指標(biāo)來(lái)分析乙醇型兩相優(yōu)于傳統(tǒng)型兩相的原因。

表2 厭氧消化系統(tǒng)在5 g·L-1·d-1負(fù)荷時(shí)的產(chǎn)氣性能

2.2 水解酸化相中水解產(chǎn)物流向趨勢(shì)

厭氧消化過(guò)程中,底物中的大分子有機(jī)物由產(chǎn)酸產(chǎn)醇細(xì)菌轉(zhuǎn)化為小分子脂肪酸(VFA)、乳酸、乙醇等水解產(chǎn)物,隨后在產(chǎn)甲烷古細(xì)菌的作用下,轉(zhuǎn)化為CH4和CO2[6-7]。水解酸化是厭氧消化的限速步驟[7,19-20],故提高其效率將有利于厭氧消化的進(jìn)行。2個(gè)系統(tǒng)在初始負(fù)荷2 g/(L·d)時(shí)的VFAs濃度較低,堿度、pH值等指標(biāo)區(qū)別也不明顯,故從3 g/(L·d)有機(jī)負(fù)荷率提高至6 g/(L·d) 期間(厭氧化第15 天至第65 天),水解酸化相中VFAs(含乙酸、丙酸、丁酸)、以及乳酸、乙醇等濃度的變化進(jìn)行取樣分析,其結(jié)果如圖2所示。

在乙醇型兩相厭氧消化系統(tǒng)中,接種酵母菌后,系統(tǒng)中的乙醇質(zhì)量濃度維持在5.5~6.0 g/L,且水解產(chǎn)物濃度由高到低的順序?yàn)椋喝樗?乙醇>乙酸>丙酸≈丁酸(圖 2a);這是由于該乙醇型兩相系統(tǒng)中,餐廚底物未經(jīng)過(guò)滅菌直接進(jìn)入水解醇化/酸化相,存在著大量天然產(chǎn)酸細(xì)菌,故該系統(tǒng)水解醇化/酸化相中既有乙醇又有酸產(chǎn)生。而傳統(tǒng)型兩相厭氧消化系統(tǒng)中水解產(chǎn)物濃度由高到低的順序?yàn)椋喝樗?乙酸>丁酸>丙酸>乙醇(見(jiàn)圖2b),系統(tǒng)中丁酸大量產(chǎn)生的原因可能與系統(tǒng)中的產(chǎn)酸細(xì)菌群落相關(guān),在該負(fù)荷下發(fā)生了丁酸型發(fā)酵。在本研究的整個(gè)厭氧消化過(guò)程中,2個(gè)厭氧消化系統(tǒng)中都觀察到了乳酸質(zhì)量濃度穩(wěn)定在6.0~9.0 g/L,這也是餐廚垃圾底物的特點(diǎn)所致,由于中國(guó)的飲食習(xí)慣,餐廚垃圾中乳酸菌是優(yōu)勢(shì)菌種[9,12,21],土著乳酸菌濃度在105~106CFU/mL[9]。

將本研究水解酸化相中VFAs(含乙酸、丙酸、丁酸)、以及乳酸、乙醇等濃度的總和定義為水解產(chǎn)物總量,為了直觀的分析2個(gè)系統(tǒng)中底物在水解酸化相中的中碳源流向,將2個(gè)系統(tǒng)各進(jìn)料有機(jī)負(fù)荷階段(3.0~6.0 g/(L·d))水解產(chǎn)物濃度的平均值列于表3中。

圖2 乙醇型與傳統(tǒng)型厭氧消化系統(tǒng)水解酸化相中主要水解產(chǎn)物的濃度變化

由表3可以看出,乙醇型兩相和傳統(tǒng)兩相系統(tǒng)的水解產(chǎn)物總量進(jìn)料有機(jī)負(fù)荷3、4、5 g/(L·d)的發(fā)酵中,乙醇型系統(tǒng)醇化/酸化相中乙醇占水解產(chǎn)物總量的比例分別為41.47%、36.98%、33.41%,是傳統(tǒng)兩相系統(tǒng)的幾十倍,且乙醇與乙酸之和占水解產(chǎn)物總量的比例也維持在48%~54%范圍內(nèi),也高于傳統(tǒng)兩相;而傳統(tǒng)兩相的水解產(chǎn)物以其他有機(jī)酸(丁酸、乳酸、丙酸)為主(61%以上),它們占水解產(chǎn)物總量的比例比乙醇型系統(tǒng)高15~23個(gè)百分點(diǎn)。這表明乙醇型的醇化/酸化相中,更多的碳源被轉(zhuǎn)化為乙醇和乙酸,而傳統(tǒng)的酸化相中更多的碳源轉(zhuǎn)化為丁酸、乳酸和丙酸。

根據(jù)厭氧消化過(guò)程中乙醇、丙酸、乳酸、丁酸等都需轉(zhuǎn)化為乙酸后再降解為甲烷(化學(xué)式(1)~(4))。由反應(yīng)過(guò)程的吉布斯自由能可知,相對(duì)于丙酸和丁酸,乙醇反應(yīng)為乙酸所需自由能較低容易轉(zhuǎn)為乙酸,從而促進(jìn)了產(chǎn)甲烷階段中乙酸產(chǎn)甲烷途徑的進(jìn)行[12],即乙醇相當(dāng)于緩釋的乙酸[22]。因此,乙醇型的醇化/酸化相中高比例的乙醇+乙酸為后續(xù)產(chǎn)甲烷相提供了易于產(chǎn)甲烷菌降解的消化底物,并使其在高進(jìn)料有機(jī)負(fù)荷率條件下緩解VFAs累積,維持系統(tǒng)穩(wěn)定。

表3 乙醇型和傳統(tǒng)兩相厭氧消化系統(tǒng)水解酸化相中碳源流向比較

注:*本研究定義的水解產(chǎn)物總量=總揮發(fā)性脂肪酸(乙酸+丙酸+丁酸+異丁酸+戊酸+異戊酸)+乙醇+乳酸。

Note:: In this study, hydrolysate was defined that hydrolysate=TVFA (acetic acid+propionic acid+butyric acid+isobutyric acid+valerate+isovalerate)+ethanol+lactic acid.

2.3 乙醇型和傳統(tǒng)兩相厭氧消化系統(tǒng)的甲烷相中揮發(fā)性脂肪酸等指標(biāo)的對(duì)比分析

圖3顯示2個(gè)系統(tǒng)在OLR為3至6 g/(L·d)的范圍內(nèi),甲烷相中的VFAs濃度均隨OLR的升高而升高。在3和4 g/(L·d)時(shí),2個(gè)甲烷相中的TVFA濃度均小于4 g/L,pH值在7.5左右(圖1a)。這表明了厭氧系統(tǒng)的運(yùn)行狀態(tài)穩(wěn)定,酸化相所產(chǎn)生的水解產(chǎn)物能夠有效的降解轉(zhuǎn)化為CH4,從而甲烷相中沒(méi)有VFAs過(guò)多的累積。這與運(yùn)行良好的厭氧消化系統(tǒng)性能吻合[23-24]。當(dāng)OLR提高至5 g/(L·d)后,系統(tǒng)中的VFAs開(kāi)始明顯累積,其中傳統(tǒng)兩相系統(tǒng)的TVFA最高質(zhì)量濃度為8.28 g/L大于乙醇型的7.01 g/L,且pH值下降,系統(tǒng)有酸化失穩(wěn)趨勢(shì)。

有研究表明,TVFA/堿度比值可以作為餐廚垃圾厭氧消化系統(tǒng)的抗酸化性能的判別指標(biāo)。當(dāng)TVFA/堿度<0.4時(shí),認(rèn)為厭氧消化系統(tǒng)具有足夠的緩沖能力;當(dāng)TVFA/堿度=0.4~0.8時(shí),認(rèn)為厭氧消化系統(tǒng)具備一定的緩沖能力,但緩沖能力有限;當(dāng)TVFA/堿度>0.8時(shí),認(rèn)為系統(tǒng)緩沖能力極小,揮發(fā)酸有出現(xiàn)累積的可能性,應(yīng)密切關(guān)注系統(tǒng)的變化并及時(shí)采取相應(yīng)的控制措施避免系統(tǒng)性能進(jìn)一步惡化。在本研究中,2組厭氧消化系統(tǒng)在負(fù)荷<3.0 g /(L·d)時(shí),TVFA/堿度值較為穩(wěn)定,之后隨著負(fù)荷的增加,TVFA/堿度值迅速增加。其中當(dāng)負(fù)荷達(dá)到5.0 g/(L·d)時(shí),乙醇型兩相系統(tǒng)的TVFA/堿度值緩慢增加在該負(fù)荷下的最后一天接近0.4。而傳統(tǒng)兩相系統(tǒng)在該負(fù)荷下TVFA/堿度平均值為0.7,最大TVFA/堿度值為0.9,其系統(tǒng)變得不穩(wěn)定,對(duì)酸的緩沖能力急劇下降,其堿度已不足以中和所產(chǎn)生的VFA,VFA濃度過(guò)高,將會(huì)抑制產(chǎn)甲烷菌的活性,這也解釋了在該負(fù)荷下,傳統(tǒng)兩相系統(tǒng)的甲烷產(chǎn)率明顯下降。此時(shí),兩系統(tǒng)的pH值仍然大于7.2,仍處于甲烷菌的適宜pH值范圍。但此時(shí)從TVFA/堿度來(lái)看,系統(tǒng)已經(jīng)有失穩(wěn)趨勢(shì),可見(jiàn)TVFA/堿度是一個(gè)比pH值更加敏感的指標(biāo),這與其他研究結(jié)果一致[25-26]。綜上,TVFA/堿度,可作為監(jiān)測(cè)厭氧消化系統(tǒng)穩(wěn)定運(yùn)行的指標(biāo)之一。

圖3 乙醇型和傳統(tǒng)兩相厭氧消化系統(tǒng)甲烷相出料的VFA組成及VFA/堿度比值對(duì)比

進(jìn)一步分析高OLR下的VFAs各組分的變化,2組系統(tǒng)中丙酸質(zhì)量分?jǐn)?shù)均較高(>25%)。從厭氧消化過(guò)程中VFAs轉(zhuǎn)化為甲烷的吉布斯化學(xué)自由能分析(化學(xué)式2)[8],丙酸是所有揮發(fā)性脂肪酸中較難被產(chǎn)甲烷菌降解的物質(zhì),其在產(chǎn)甲烷相中的累積,會(huì)對(duì)產(chǎn)甲烷菌的活性產(chǎn)生抑制。目前丙酸抑制濃度尚無(wú)統(tǒng)一報(bào)道,但有丙酸濃度升高導(dǎo)致系統(tǒng)失穩(wěn)的報(bào)道,如Wang等[27]報(bào)道了當(dāng)丙酸質(zhì)量濃度超過(guò)0.9 g/L后,系統(tǒng)中的產(chǎn)甲烷菌數(shù)量下降一個(gè)數(shù)量級(jí)。本研究在3、4、5、6 g/(L·d)時(shí),乙醇型系統(tǒng)的平均丙酸濃度分別為0.32、0.67、1.11和1.82 g/L,傳統(tǒng)型系統(tǒng)丙酸濃度增加更為顯著,在5 g/(L·d)時(shí)是乙醇型兩相系統(tǒng)的1.23倍,此時(shí)應(yīng)停止增加有機(jī)負(fù)荷,以維持系統(tǒng)穩(wěn)定。

綜上所述,由5 g/(L·d)有機(jī)負(fù)荷條件下的丙酸濃度、VFA/堿度比值等指標(biāo)可以推測(cè),在該有機(jī)負(fù)荷條件下乙醇型系統(tǒng)的穩(wěn)定性高于傳統(tǒng)型系統(tǒng)。

3 結(jié) 論

1)以餐廚垃圾為底物,產(chǎn)乙醇同時(shí)產(chǎn)酸為特征的乙醇型兩相系統(tǒng)與傳統(tǒng)產(chǎn)酸產(chǎn)甲烷兩相系統(tǒng)在不同有機(jī)負(fù)荷下的厭氧消化試驗(yàn)結(jié)果表明:5.0 g/(L·d)為乙醇型和傳統(tǒng)兩相厭氧消化2個(gè)系統(tǒng)穩(wěn)定運(yùn)行的最大負(fù)荷,此時(shí)乙醇型兩相系統(tǒng)甲烷產(chǎn)率為421.52 mL/g,比傳統(tǒng)兩相的394.48 mL/g提高了6.8%。

2)乙醇型兩相系統(tǒng)的醇化/酸化相水力停留時(shí)間比傳統(tǒng)兩相減少60%,就整個(gè)系統(tǒng)而言,乙醇型兩相系統(tǒng)的有效容積比傳統(tǒng)兩相減少了10.6%,從而導(dǎo)致容積產(chǎn)氣率的提高。如在5.0 g/(L·d)負(fù)荷時(shí),乙醇型兩相厭氧消化系統(tǒng)容積產(chǎn)氣率比傳統(tǒng)系統(tǒng)提高了18.3%,有利于在工業(yè)應(yīng)用中減小裝置占地面積及節(jié)約水解酸化所需能耗。

3)對(duì)乙醇型兩相和傳統(tǒng)兩相系統(tǒng)的水解醇化/酸化相水解產(chǎn)物分析發(fā)現(xiàn),在3.0和4.0 g/(L·d)負(fù)荷時(shí),2組的水解產(chǎn)物總量接近,當(dāng)5.0 g/(L·d)負(fù)荷時(shí)乙醇型兩相水解醇化/酸化相水解產(chǎn)物中乙醇占33.4%,高于傳統(tǒng)兩相系統(tǒng),而丙酸濃度低于傳統(tǒng)兩相系統(tǒng),這有利于水解物料進(jìn)入產(chǎn)甲烷相后保持產(chǎn)甲烷相pH值和堿度,具有提高厭氧系統(tǒng)穩(wěn)定性的潛力。

[1] 張笑,宋娜,汪群慧,等. 乙醇預(yù)發(fā)酵對(duì)餐廚垃圾與酒糟混合甲烷發(fā)酵的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(19):257-264. Zhang Xiao, Song Na, Wang Qunhui, et al. Effect of ethanol pre-fermentation on methane fermentation during anaerobic co-digestion of kitchen waste and vinasse[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(19): 257-264. (in Chinese with English abstract)

[2] Ma Hongzhi, Xing Yi, Yu Miao, et al. Feasibility of converting lactic acid to ethanol in food waste fermentation by immobilized lactate oxidase[J]. Applied Energy, 2014, 129: 89-93.

[3] Ren Yuanyuan, Yu Miao, Wu Chuanfu, et al. A comprehensive review on food waste anaerobic digestion: Research updates and tendencies[J]. Bioresource Technology, 2018, 247: 1069-1076.

[4] 許勇. 餐廚垃圾兩相厭氧發(fā)酵性能的研究[D]. 哈爾濱:東北林業(yè)大學(xué),2014.Xu Yong. Performance of Two-Phase Anaerobic Fermentation of Food Waste[D]. Harbin: Northeast Forestry University, 2014. (in Chinese with English abstract)

[5] Kawai Minako, Nagao Norio, Tajima Nobuaki, et al. The effect of the labile organic fraction in food waste and the substrate/inoculum ratio on anaerobic digestion for a reliable methane yield[J]. Bioresource Technology, 2014, 157: 174-180.

[6] Zhang Cunsheng, Su Haijia, Baeyens Jan, et al. Reviewing the anaerobic digestion of food waste for biogas production[J]. Renewable and Sustainable Energy Reviews, 2014, 38: 383-392.

[7] Lee Eunyoung, Cumberbatch Jewel, Wang Meng, et al. Kinetic parameter estimation model for anaerobic co-digestion of waste activated sludge and microalgae[J]. Bioresource Technology, 2017, 228: 9-17.

[8] Wu Chuanfu, Wang Qunhui, Yu Miao, et al. Effect of ethanol prefermentation and inoculum-to-substrate ratio on methane yield from food waste and distillers’ grains[J]. Applied Energy, 2015, 155: 846-853.

[9] Zhao Nana, Yu Miao, Wang Qunhui, et al. Effect of ethanol and lactic acid pre-fermentation on putrefactive bacteria suppression, hydrolysis, and methanogenesis of food waste[J]. Energy & Fuels, 2016, 30(4): 2982-2989.

[10] Yu Miao, Wu Chuanfu, Wang Qunhui, et al. Ethanol prefermentation of food waste in sequencing batch methane fermentation for improved buffering capacity and microbial community analysis[J]. Bioresource Technology, 2018, 248(Part A): 187-193.

[11] American Public Health Association, American Water Works Association, Farber Lawrence. Standard Methods for the Examination of Water and Wastewater[M]. 18th edition. Washington: American Public Health Association, 1992.

[12] Wu Chuanfu, Huang Qiqi, Yu Miao, et al. Effects of digestate recirculation on a two-stage anaerobic digestion system, particularly focusing on metabolite correlation analysis[J]. Bioresource Technology, 2018, 251: 40-48.

[13] Wu Chuanfu, Wang Qunhui, Xiang Juan, et al. Enhanced productions and recoveries of ethanol and methane from food waste by a three-Stage process[J]. Energy & Fuels, 2015, 29(10): 6494-6500.

[14] 孫緒順,褚春鳳,李春杰. 反相高效液相色譜測(cè)定厭氧反應(yīng)上清液中揮發(fā)性脂肪酸[J]. 凈水技術(shù),2009,28(5):64-66. Sun Xushun, Chu Chunfeng, Li Chunjie. Determination of volatile fatty acids in anaerobic reaction by high performance liquid chromatography[J]. Water Puification Technology, 2009, 28(5): 64-66. (in Chinese with English abstract)

[15] 沼氣中甲烷和二氧化碳的測(cè)定.氣相色譜法:NY/T 1700-2009 [S],2009.

[16] Zuo Zhuang, Wu Shubiao, Qi Xiangyang, et al. Performance enhancement of leaf vegetable waste in two-stage anaerobic systems under high organic loading rate: Role of recirculation and hydraulic retention time[J]. Applied Energy, 2015, 147: 279-286.

[17] Wang Haoyu, Tao Yu, Temudo Margarida, et al. Biomethanation from enzymatically hydrolyzed brewer’s spent grain: Impact of rapid increase in loadings[J]. Bioresource Technology, 2015, 190: 167-174.

[18] Nielfa A, Cano R, Fdz-Polanco M. Theoretical methane production generated by the co-digestion of organic fraction municipal solid waste and biological sludge[J]. Biotechnology Reports, 2015, 5: 14-21.

[19] Vavilin V A, Fernandez B, Palatsi J, et al. Hydrolysis kinetics in anaerobic degradation of particulate organic material: An overview[J]. Waste Management, 2008, 28(6): 939-951.

[20] Wang Kun, Yin Jun, Shen Dongsheng, et al. Anaerobic digestion of food waste for volatile fatty acids (VFAs) production with different types of inoculum: Effect of pH[J]. Bioresource Technology, 2014, 161: 395-401.

[21] 高明,馬鴻志,蘇偉,等. 糟液循環(huán)對(duì)開(kāi)放式餐廚垃圾乙醇發(fā)酵的影響及工藝改進(jìn)[J]. 中國(guó)環(huán)境科學(xué),2015(12):3721-3727.Gao Ming, Ma Hongzhi, Su Wei, et al. Effects of distillery waste recycling on open ethanol fermentation from kitchen garbage and technological enhancement[J]. China Environmental Science, 2015(12): 3721-3727. (in Chinese with English abstract)

[22] Yu Miao, Gao Ming, Wang Lihong, et al. Kinetic modelling and synergistic impact evaluation for the anaerobic co-digestion of distillers’ grains and food waste by ethanol pre-fermentation[J]. Environmental Science and Pollution Research, 2018, 25(30): 30281-30291.

[23] Voelklein M A, Jacob A, O Shea R, et al. Assessment of increasing loading rate on two-stage digestion of food waste[J]. Bioresource Technology, 2016, 202: 172-180.

[24] Patinvoh Regina J, Kalantar Mehrjerdi Adib, Sárvári Horváth Ilona, et al. Dry fermentation of manure with straw in continuous plug flow reactor: Reactor development and process stability at different loading rates[J]. Bioresource Technology, 2017, 224: 197-205.

[25] Li Dong, Ran Yi, Chen Lin, et al. Instability diagnosis and syntrophic acetate oxidation during thermophilic digestion of vegetable waste[J]. Water Research, 2018, 139: 263-271.

[26] Li Dong, Chen Lin, Liu Xiaofeng, et al. Instability mechanisms and early warning indicators for mesophilic anaerobic digestion of vegetable waste[J]. Bioresource Technology, 2017, 245: 90-97.

[27] Wang Yuanyuan, Zhang Yanlin, Wang Jianbo, et al. Effects of volatile fatty acid concentrations on methane yield and methanogenic bacteria[J]. Biomass and Bioenergy, 2009, 33(5): 848-853.

Methane production performance of semi-continuous alcoholization/acidification type two-phase anaerobic digestion

Yu Miao1, Gao Ming1,2, Wu Chuanfu1,2※, Ren Yuanyuan1, Ma Xinxin1, Wang Qunhui1,2

(1.,,100083; 2.100083)

A novel semi-continuous two-phase anaerobic digestion(AD) system characterized by methanogenesis from alcoholization was constructed, and the organic loading rate of the system was gradually increased from 2.0 to 6.0 g/ (L·d). According to the previous research results, the HRT(hydrodynamic retention time) of the first phase of the alcoholization/acidification type semi-continuous two-phase AD system was set for 2 d. Compared to the first phase of the traditional two-phase anaerobic digestion, the HRT was set for 2, 5, and 8 days, respectively. After 25 days of continuous operation, the change tendencies of acetic acid, propionic acid, butyric acid, etc. in the first phase hydrolysis products were analyzed under a certain OLR (organic loading rate). The results showed that when the acidification phase residence time was 5 and 8 days, the hydrolysis acidification effect of the system was better than that at 2 days, which may be due to the stable state of the acidified bacteria microbial community in the system. Therefore, in this experiment, 5 days was selected as the hydraulic retention time of the acidified phase. The methanogenic phase volume of the two systems was 8 L and the hydraulic retention time was 25 d. The results showed that 5.0 g/(L·d) was the maximum OLR for stable operation of the two systems in the study. By comparing the alcoholization/acidification type system with the traditional two-phase anaerobic digestion system, when the maximum OLR of the system reached 5.0 g/(L·d), the methane yield of the alcoholization/acidification type system reached 421.52 mL/g, which was 6.8% higher than that of the traditional system (394.48 mL/g). In this study, the TVFA (total volatile fatty acid)/alkalinity ratio was a more sensitive indicator than the pH value to detect the operating state of the methanogenic phase. The ethanol concentration in the first phase of the alcoholization/acidification type system accounted for 33.4%, which was beneficial to maintain the pH value and the stable operation of anaerobic digestion after the materials in the first phase entered to the second phase. Compared with the traditional two-phase anaerobic digestion system, the alcoholization/acidification type system had a shorter first phase hydraulic retention time of 2 days. Moreover, comparing with the traditional two-phase system, the volume methanogenesis rate of alcoholization/acidification type system was increased by 18.3%. All of the results showed that the alcoholization/acidification type system had obvious advantages in the methanogenic performance compared with the traditional system. And it also had the potential to improve system stability and reduce the scale of the plant and save the energy required for hydrolysis acidification in industrial applications. By comparing the first phase of the two systems, it could be found that the total amount of hydrolyzed products in the two groups was close when the OLR was 3.0 and 4.0 g/(L·d). When the OLR increased to 5.0 g/(L·d), the ethanol proportion in the first phase of the alcoholization/acidification type system was higher than that in the traditional two-phase system. Meanwhile, the propionic acid concentration was lower than that of the traditional two-phase system. Propionic acid was a substance which was more difficult to be degraded by methanogens in all volatile fatty acids, and its accumulation in the methanogenic phase inhibited the activity of methanogens. These results showed that it was beneficial to keep a stable pH value and alkalinity environment for the methanogenic phase, which ensured the advantage to improve the stability of the anaerobic system.

wastes; fermentation; methane; two-phase anaerobic digestion; alcoholizable/acidogenic phase; organic loading rate

2018-10-18

2019-02-28

國(guó)家自然科學(xué)基金資助項(xiàng)目(51578063)和(51778052)

于 淼,博士生,主要從事有機(jī)廢物資源化利用。Email:ustb_yu@163.com

吳川福,副教授,主要從事固體廢物的資源化與能源化、環(huán)境生物技術(shù)、污水處理等領(lǐng)域的研究。Email:wuchuanfu83@163.com

10.11975/j.issn.1002-6819.2019.06.028

S216.4

A

1002-6819(2019)-06-0229-06

于 淼,高 明,吳川福,任媛媛,馬欣欣,汪群慧. 餐廚垃圾半連續(xù)乙醇型酸化兩相厭氧消化產(chǎn)甲烷性能研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(6):229-234. doi:10.11975/j.issn.1002-6819.2019.06.028 http://www.tcsae.org

Yu Miao, Gao Ming, Wu Chuanfu, Ren Yuanyuan, Ma Xinxin, Wang Qunhui. Methane production performance of semi-continuous alcoholization/acidification type two-phase anaerobic digestion[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(6): 229-234. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.06.028 http://www.tcsae.org

猜你喜歡
醇化產(chǎn)甲烷堿度
不同醇化方式對(duì)烤煙品種翠碧一號(hào)片煙醇化效果的影響
復(fù)烤片煙在不同醇化環(huán)境中的質(zhì)量變化
造紙法煙草薄片濃縮液的醇化方法
天津造紙(2016年1期)2017-01-15 14:03:30
零級(jí)動(dòng)力學(xué)模型產(chǎn)甲烷量估算值與實(shí)測(cè)值的比較研究
普通一級(jí)模型產(chǎn)甲烷量估算
丙烯酸鹽及對(duì)甲苯磺酸鹽對(duì)乙酸、丙酸產(chǎn)甲烷活性的影響
自然醇化過(guò)程中白肋煙葉TSNAs含量的變化
煙草科技(2014年5期)2014-05-22 09:40:06
高堿度銅精礦濾布的再生清洗
金屬礦山(2014年7期)2014-03-20 14:19:58
兩種煤化工廢水的產(chǎn)甲烷抑制性
[知識(shí)小貼士]
金屬世界(2013年6期)2013-02-18 16:30:47
通渭县| 扎鲁特旗| 日照市| 灌阳县| 萝北县| 淳安县| 湘乡市| 海原县| 嘉义县| 武隆县| 陆川县| 鸡东县| 芦山县| 凤阳县| 天门市| 溆浦县| 西吉县| 靖州| 阳曲县| 涪陵区| 拜泉县| 通许县| 邹城市| 峨眉山市| 连平县| 绿春县| 乌鲁木齐县| 海南省| 饶平县| 峡江县| 竹山县| 龙游县| 彝良县| 武隆县| 天镇县| 开封县| 中江县| 澎湖县| 德惠市| 寿光市| 上蔡县|