李俊偉,佟 金,胡 斌,王虎彪,毛春昱,5,馬云?!?/p>
?
不同含水率黏重黑土與觸土部件互作的離散元仿真參數(shù)標(biāo)定
李俊偉1,2,3,4,佟 金1,3,胡 斌2,4,王虎彪1,3,毛春昱1,3,5,馬云海1,3※
(1. 吉林大學(xué)工程仿生教育部重點(diǎn)實(shí)驗(yàn)室,長(zhǎng)春 130022;2. 石河子大學(xué)機(jī)械電氣工程學(xué)院,石河子 832003;3. 吉林大學(xué)生物與農(nóng)業(yè)工程學(xué)院,長(zhǎng)春 130022; 4. 石河子大學(xué)農(nóng)業(yè)部西北農(nóng)業(yè)裝備重點(diǎn)實(shí)驗(yàn)室,石河子 832003; 5. 吉林工程師范技術(shù)學(xué)院,長(zhǎng)春 130022)
為了獲得可用于東北地區(qū)黏重黑土與觸土部件相互作用的離散元仿真模擬參數(shù),該文利用EDEM中Hertz-Mindlin with JKR Cohesion接觸模型對(duì)不同含水率的東北地區(qū)黏重黑土進(jìn)行相關(guān)參數(shù)標(biāo)定,針對(duì)含水率在10%~20%的實(shí)際作業(yè)環(huán)境,分別配置含水率為12.46%±1%和17.15%±1%的2種黏重黑土,以土壤顆粒間的滾動(dòng)摩擦系數(shù)、恢復(fù)系數(shù)、表面能參數(shù)及靜摩擦系數(shù)為標(biāo)定對(duì)象,并以土壤顆粒的仿真堆積角為響應(yīng)值,基于Box-Behnken的響應(yīng)面優(yōu)化方法得到堆積角回歸模型,并對(duì)回歸模型進(jìn)行尋優(yōu),得到2種含水率的模型參數(shù)優(yōu)化解,并給出了模型參數(shù)范圍。測(cè)定了4種含水率下黏重黑土對(duì)3種觸土部件材料(65Mn、UHMW-PE和PTFE)的靜摩擦系數(shù),并以此為基礎(chǔ)分別對(duì)65Mn(典型鐵基材料)和PTFE(典型低表面能材料)板進(jìn)行斜面試驗(yàn),以含水率為17.15%±1%的黏重黑土為試驗(yàn)對(duì)象,分別搭建斜面物理試驗(yàn)平臺(tái)和仿真模型,以土壤顆粒與觸土部件材料之間的滾動(dòng)摩擦系數(shù)、恢復(fù)系數(shù)、表面能參數(shù)及靜摩擦系數(shù)為標(biāo)定對(duì)象,以仿真得到的土球在65Mn和PTFE板上的滾動(dòng)距離為響應(yīng)值,基于響應(yīng)面優(yōu)化法得到滾動(dòng)距離回歸模型,以實(shí)測(cè)的滾動(dòng)距離為目標(biāo)對(duì)回歸模型進(jìn)行尋優(yōu),得到黏重黑土對(duì)2類典型觸土部件材料接觸模型參數(shù)的優(yōu)化解。研究結(jié)果表明,標(biāo)定優(yōu)化后的土壤模型能夠近似代替真實(shí)的東北地區(qū)黏重黑土進(jìn)行仿真,可利用標(biāo)定后的參數(shù)進(jìn)行黏重黑土與觸土部件間的離散元仿真,可為東北黏重黑土作業(yè)條件下的農(nóng)業(yè)機(jī)械觸土部件仿生減阻設(shè)計(jì)與優(yōu)化提供基礎(chǔ)數(shù)據(jù)。
土壤;含水率;離散元法;黏重黑土;仿真參數(shù)標(biāo)定
觸土部件與土壤接觸或在切割土壤過程中所涉及到的相互作用力學(xué)問題一直是該領(lǐng)域研究的難點(diǎn)與熱點(diǎn)。由于土壤的復(fù)雜性與多樣性,目前尚未有一種準(zhǔn)確的數(shù)學(xué)模型能替代所有類型土壤的本構(gòu)模型。對(duì)于現(xiàn)代觸土部件的設(shè)計(jì)及其優(yōu)化,通常需要對(duì)觸土部件與土壤相互作用的過程進(jìn)行仿真分析,而現(xiàn)有的有限元土壤模型由于其采用的是連續(xù)介質(zhì)的表達(dá)形式而無法模擬土壤顆粒之間運(yùn)動(dòng)及其對(duì)耕作部件相互作用的動(dòng)態(tài)過程[1-2]。離散元素建模(discrete element modeling)是一種用于對(duì)粒狀材料的力學(xué)行為進(jìn)行建模的數(shù)值方法[3],該方法將散粒體簡(jiǎn)化成具有質(zhì)量和形狀的顆粒集合,解決各個(gè)顆粒體之間及其與邊界間的相互作用,從而揭示顆粒與邊界之間的物理作用性質(zhì)[4]。近幾年來,離散元法在工程中得到越來越廣泛的應(yīng)用,越來越多的學(xué)者運(yùn)用離散元法進(jìn)行散粒物料的流動(dòng)性、固體破碎及機(jī)具-土壤相互作用方面的研究。在農(nóng)業(yè)工程領(lǐng)域,離散元法的應(yīng)用主要集中在以散粒體為主的農(nóng)業(yè)物料學(xué),土壤與農(nóng)機(jī)部件的相互作用等方面的研究[5-7]。通常在利用離散元法進(jìn)行散粒體研究之前,需對(duì)散粒體的物料特性參數(shù)進(jìn)行標(biāo)定。除了模擬土壤顆粒之外,基于離散元法的接觸模型參數(shù)標(biāo)定還被應(yīng)用于比如小麥、水稻、馬鈴薯、大豆等其他散粒體[8-13]。
土壤與觸土部件之間相互作用的精準(zhǔn)模型對(duì)設(shè)計(jì)與優(yōu)化觸土部件具有重要作用[14-15]。然而,觸土部件在土壤中進(jìn)行耕作作業(yè)時(shí),土壤-機(jī)具之間的相互作用受土壤性質(zhì)及土壤的動(dòng)態(tài)作用直接影響[16-17],對(duì)不同類型的土壤,其影響效應(yīng)差異顯著,因此,在運(yùn)用離散元法對(duì)觸土部件與土壤的相互作用進(jìn)行仿真前,需先標(biāo)定土壤顆粒與觸土部件之間的相關(guān)仿真參數(shù)。
目前,國(guó)內(nèi)外學(xué)者主要針對(duì)EDEM 軟件中以Hertze-Mindlin等模型為主的內(nèi)嵌模型對(duì)土壤顆粒接觸參數(shù)進(jìn)行研究,Mustafa等[1,3,14-15]利用Hertze-Mindlin及Hysteretic Spring接觸模型,研究分析了土壤在有黏結(jié)力和無黏結(jié)力的情況下土壤顆粒的塑性形變等問題。丁啟朔等[18]利用Hertz-Mindlin with Bonding模型建立了黏性水稻土的深松耕作離散元模型。雖然Hertz-Mindlin with Bonding接觸模型可以用來模擬粘結(jié)顆粒,但是該模型是用一個(gè)有限大小的“膠粘劑”粘結(jié),適用于模擬混凝土和巖石等硬粒介質(zhì)。張銳等[19]提出了一種標(biāo)定沙土顆粒相互作用參數(shù)的方法,該方法使用標(biāo)準(zhǔn)球和非標(biāo)準(zhǔn)球?qū)ι惩令w粒的靜摩擦系數(shù)、恢復(fù)系數(shù)等關(guān)鍵參數(shù)進(jìn)行標(biāo)定,為沙土顆粒的離散元接觸模型參數(shù)標(biāo)定提供了有價(jià)值的參考。王憲良等[4]基于代理模型的方法,利用The Edinburgh Elasto-Plastic Cohesion Model(ECM)彈塑性接觸模型表示土壤顆粒接觸模型,根據(jù)試驗(yàn)測(cè)定堆積角及剪切試驗(yàn)得到的參數(shù)建立離散元土壤模型,仿真分析模型參數(shù)的敏感性,最后以敏感性參數(shù)為變量,以試驗(yàn)值為目標(biāo)構(gòu)建代理模型并進(jìn)行參數(shù)優(yōu)化,ECM模型是一種將土壤應(yīng)變滯后性、內(nèi)聚力及范德華力等考慮在內(nèi)的非線性模型,適用于研究土壤、有機(jī)材料等的壓縮問題。石林榕等[20-21]整合延遲彈性模型(hysteretic spring contact model,HSCM)和線性內(nèi)聚力模型(liner cohesion model,LCM)優(yōu)勢(shì),建立了西北旱區(qū)農(nóng)田土壤模型,對(duì)土壤顆粒之間的靜摩擦系數(shù)、滾動(dòng)摩擦系數(shù)和內(nèi)聚強(qiáng)度等關(guān)鍵參數(shù)進(jìn)行離散元標(biāo)定。
上述EDEM軟件中的接觸模型大多適用于黏性弱含水率較低的土壤顆粒,如沙土、旱土或者巖石等,而對(duì)于東北地區(qū)的黏重黑土,其宏觀表現(xiàn)出的黏性及塑性特征遠(yuǎn)大于土壤顆粒之間的彈性特征,土壤顆粒之間粘結(jié)力較大,上述接觸模型并不適用。
武濤等[22]基于土壤堆積角物理試驗(yàn)結(jié)果,采用考慮顆粒間粘結(jié)力的“Hertz-Mindlin with JKR Cohesion”接觸模型進(jìn)行土壤堆積角仿真試驗(yàn),對(duì)考慮粘結(jié)力的土壤顆粒之間的關(guān)鍵參數(shù)如JKR表面能參數(shù)、恢復(fù)系數(shù)、靜摩擦系數(shù)與滾動(dòng)摩擦系數(shù)進(jìn)行接觸模型的參數(shù)標(biāo)定,試驗(yàn)驗(yàn)證了JKR模型可以用來模擬含水率較高的黏濕南方土壤。課題組在實(shí)際調(diào)研中發(fā)現(xiàn),對(duì)于東北地區(qū)的黑黏土,土壤孔隙率低,黏粒多,腐殖質(zhì)含量高,土壤性質(zhì)復(fù)雜,含水率較高,在作物收獲期間的含水率一般在10%~20%之間,特別是下雨后的土壤,其含水率更高,當(dāng)農(nóng)機(jī)耕作部件進(jìn)行作業(yè)時(shí),觸土部件的土壤粘附現(xiàn)象嚴(yán)重,耕作阻力較大,嚴(yán)重影響生產(chǎn)效能。
本文前期研究發(fā)現(xiàn),由于粘附能力很強(qiáng),當(dāng)含水率超過20%后,黏重黑土近于流變體性質(zhì),其黏性及塑性性質(zhì)很突出,在實(shí)際試驗(yàn)過程中發(fā)現(xiàn),當(dāng)含水率超過12%后,土壤顆粒之間就會(huì)發(fā)生較為嚴(yán)重的團(tuán)聚現(xiàn)象,由此可見,對(duì)于黏重黑土,其顆粒之間的粘結(jié)力是必須要重點(diǎn)考慮的因素。因此,本文根據(jù)東北地區(qū)的黏重黑土特性,配置2種含水率的黏重黑土,在EDEM2.7軟件平臺(tái)上,基于顆粒間粘結(jié)力的“Hertz-Mindlin with JKR Cohesion”接觸模型,采用物理試驗(yàn)與仿真試驗(yàn)相結(jié)合的方法,分別對(duì)含水率為12.46%±1%和17.15%±1%的黏重黑土進(jìn)行堆積角仿真試驗(yàn),基于Box-Behnken的響應(yīng)面優(yōu)化方法,對(duì)不同含水率黏重黑土顆粒之間的接觸模型仿真參數(shù)進(jìn)行標(biāo)定,對(duì)4種含水率的黏重黑土與3種觸土部件材料(典型鐵基類觸土部件材料65Mn及2種低表面能材料超高分子量聚乙烯(UHMW-PE)和聚四氟乙烯(PTFE))的靜摩擦系數(shù)進(jìn)行試驗(yàn)測(cè)定,并在此基礎(chǔ)上利用斜面試驗(yàn)方法,分別對(duì)較高含水率下(含水率17.15%±1%)的黏重黑土與2類典型觸土部件材料(65Mn鋼板和PTFE板)的接觸模型參數(shù)進(jìn)行標(biāo)定,以期為進(jìn)一步研究東北地區(qū)黏重黑土或者含水率較高的黏濕土壤與觸土部件之間的相互作用提供離散元仿真所需的基礎(chǔ)參數(shù),并為觸土部件減粘降阻仿生設(shè)計(jì)提供必要的仿真參數(shù)。
式中pullout為將2個(gè)顆粒分開所需的力,;為接觸角,(°);為顆粒半徑,mm。
對(duì)于含水率較高的黏重黑土,顆粒之間的黏結(jié)力或者顆粒與觸土部件材料之間的粘結(jié)力是重要考慮對(duì)象,在EDEM JKR模型中用表面能來表征顆粒之間或顆粒與觸土部件材料之間的黏結(jié)力。
1.2.1 試驗(yàn)材料及其本征參數(shù)
試驗(yàn)用土壤樣品采自吉林農(nóng)業(yè)大學(xué)試驗(yàn)田,土壤類型為典型東北黏重黑土,土壤堆積密度為1.07 kg/m3,為了更準(zhǔn)確地反映實(shí)際作業(yè)土壤狀況,考慮到雨后土壤含水率實(shí)測(cè)值與連續(xù)晴天下的土壤含水率差異,以2種含水率的黏重黑土為對(duì)象進(jìn)行離散元土壤顆粒接觸模型的參數(shù)標(biāo)定,因此本文采用配置的含水率為12.46%±1%和17.15%±1%的黏重黑土為對(duì)象進(jìn)行堆積角物理試驗(yàn)。土壤的本征參數(shù)通過圖1所示的SLB-1型應(yīng)力應(yīng)變控制式三軸試驗(yàn)儀測(cè)得,結(jié)果如表1所示。
1.2.2 土壤堆積角物理試驗(yàn)
圖1 土壤參數(shù)測(cè)試
圖2 土壤堆積角測(cè)試
1.2.3 土壤堆積角仿真試驗(yàn)?zāi)P偷慕?/p>
參考文獻(xiàn)[22]的方法,在EDEM 2.7軟件中建立堆積角仿真模型。漏斗頂部直徑為150 mm,底部直徑為30 mm,高為200 mm,接料底板為400 mm×400 mm的方形板。漏斗底部與接料底板的距離為400 mm。采用隨機(jī)分布方式生成土壤顆粒,顆粒半徑設(shè)置為2~4 mm,仿真參數(shù)設(shè)置詳見表1.
表1 土壤堆積角EDEM仿真參數(shù)
根據(jù)不同含水條件的黏重黑土顆粒之間的粘結(jié)性質(zhì),擬定顆粒之間的JKR表面能參數(shù)、恢復(fù)系數(shù)、靜摩擦系數(shù)和滾動(dòng)摩擦系數(shù)作為待標(biāo)定的接觸模型參數(shù),采用響應(yīng)面優(yōu)化方法,以堆積角為試驗(yàn)指標(biāo),在Design-expert軟件平臺(tái)上,運(yùn)用Box-Behnken方法進(jìn)行試驗(yàn)設(shè)計(jì),參考EDEM 通用顆粒材料數(shù)據(jù)庫GEMM ( generic EDEM material model database,GEMM)中土壤顆粒的相關(guān)參數(shù),結(jié)合仿真預(yù)試驗(yàn)的結(jié)果及文獻(xiàn)[22],堆積角仿真試驗(yàn)因素的水平值設(shè)置如表2所示。
表2 土壤堆積角仿真試驗(yàn)因素及水平
在EDEM2.7軟件平臺(tái)下,分別從錐面的方向和方向截取圖片,導(dǎo)入CAD軟件中標(biāo)注土壤堆積角[20],共測(cè)量4個(gè)堆積角,取平均值,仿真試驗(yàn)結(jié)果如表3所示。
表3 土壤堆積角仿真試驗(yàn)設(shè)計(jì)及結(jié)果
1.4.1 堆積角回歸模型
按表2進(jìn)行堆積角仿真試驗(yàn),并對(duì)試驗(yàn)結(jié)果進(jìn)行回歸方差分析,結(jié)果如表4所示,通過對(duì)試驗(yàn)數(shù)據(jù)的多元回歸,得到東北黏重黑土的堆積角回歸模型為
回歸方程(2)的決定系數(shù)2= 0.997 7,校正決定系數(shù)Adj-2=0.983 8。
表4 土壤堆積角回歸模型的方差分析
1.4.2 不同含水率的黏重黑土堆積角參數(shù)優(yōu)化與驗(yàn)證
通過Design-expert軟件的優(yōu)化模塊,以12.46%±1%含水率的黏重黑土形成的堆積角40.92°為目標(biāo)對(duì)堆積角回歸模型進(jìn)行尋優(yōu),得到多組優(yōu)化解,通過堆積角仿真試驗(yàn)驗(yàn)證這些優(yōu)化解,選取與物理試驗(yàn)得到的土壤堆積角相近的1組優(yōu)化解,即土壤顆粒之間的JKR表面能7.46 J/m2,恢復(fù)系數(shù)0.56,靜摩擦系數(shù)0.78,滾動(dòng)摩擦系數(shù)0.22,此優(yōu)化解下的堆積角仿真結(jié)果為 40.31°,與物理試驗(yàn)結(jié)果的相對(duì)誤差為1.49%。圖3為堆積角仿真試驗(yàn)與物理試驗(yàn)堆形的對(duì)比。從圖3可以看出,對(duì)于優(yōu)化參數(shù)的仿真試驗(yàn),土壤堆形與物理試驗(yàn)得到的結(jié)果具有較高的相似性。在土壤顆粒堆積角標(biāo)定的4個(gè)參數(shù)中,影響最顯著的是滾動(dòng)摩擦系數(shù),其次是恢復(fù)系數(shù)與表面能參數(shù)。對(duì)于含水率12.46%±1%的黏重黑土,仿真參數(shù)在一定范圍內(nèi)取值均能獲得在物理試驗(yàn)堆積角誤差范圍之內(nèi)的結(jié)果,仿真結(jié)果與試驗(yàn)結(jié)果的相對(duì)誤差在2.5%以內(nèi),即滾動(dòng)摩擦系數(shù)在0.2~0.24之間,JKR表面能范圍在6~8 J/m2之間,恢復(fù)系數(shù)在0.45~0.6之間,靜摩擦系數(shù)在0.65~0.9之間。同理,對(duì)于含水率17.15%±1%的黏重黑土,以44.15°的堆積角為優(yōu)化目標(biāo),最終得到土壤間JKR表面能參數(shù)為8.41 J/m2,土壤顆粒的恢復(fù)系數(shù)為0.5,靜摩擦系數(shù)系數(shù)為0.8,土壤間的滾動(dòng)摩擦系數(shù)為0.23,利用該優(yōu)化參數(shù)獲得的堆積角仿真試驗(yàn)結(jié)果與物理試驗(yàn)結(jié)果在角度和堆形上均具有較高的相似性。同理,得到含水率17.15%±1%黏重黑土的仿真參數(shù)范圍,即滾動(dòng)摩擦系數(shù)在0.22~0.24之間,JKR表面能范圍在7~9 J/m2之間,恢復(fù)系數(shù)在0.45~0.6之間,靜摩擦系數(shù)在0.65~0.9之間。
圖3 不同含水率黏重土壤堆積角仿真與物理試驗(yàn)的堆形對(duì)比 Fig.3 Stacked shape comparison between simulation and physical test of repose angle for clayey soil under different moisture content
為了給針對(duì)黏重黑土地區(qū)觸土部件的減阻性能優(yōu)化及仿生設(shè)計(jì)提供準(zhǔn)確可靠的仿真參數(shù),在1.1節(jié)研究結(jié)果的基礎(chǔ)上,針對(duì)典型觸土部件材料65Mn和2種減粘材料(超高分子量聚乙烯UHMW-PE和聚四氟乙烯PTFE),采用靜摩擦試驗(yàn)測(cè)定4種含水率的黏重黑土對(duì)典型觸土部件材料的靜摩擦系數(shù),并基于靜摩擦試驗(yàn)結(jié)果,采用斜面試驗(yàn)標(biāo)定高含水率(含水率為17.15%±1%)的黏重黑土對(duì)2種典型觸土部件材料(65Mn和PTFE)的離散元仿真參數(shù)。
2.1.1 土壤靜摩擦試驗(yàn)
土壤對(duì)不同材料的靜摩擦系數(shù)是土壤與觸土部件材料之間的特有屬性,不會(huì)因?yàn)橥寥赖男螤疃淖儯峭寥赖暮蕦?duì)其具有較大影響[29-30]。
為了減少仿真因素?cái)?shù),提高仿真優(yōu)化水平與精度,土壤對(duì)不同材料的靜摩擦系數(shù)由如圖4所示的靜摩擦試驗(yàn)臺(tái)測(cè)得。按前述方法配置含水率分別為0,12.46%,17.15%和23.5%的4種黏重黑土,制成1 cm×1 cm×1 cm的土塊,每次試驗(yàn)前,保證土塊的含水率保持均衡,誤差控制在±1%。每種含水率的黏重黑土均重復(fù)測(cè)試20次,利用斜面儀測(cè)量每次土塊下滑瞬間的角度,通過式 (3)~(4)計(jì)算得到對(duì)應(yīng)的靜摩擦系數(shù),取平均值作為最終結(jié)果。
注:F1為拉力,N;F2為壓力,N;G為重力,N;f為摩擦力,N;N為支撐力,N;θ為底座與斜面夾角,(°)。B為底座長(zhǎng)度,mm;H為斜面末端高度,mm。
2.1.2 斜面試驗(yàn)
表5 斜面試驗(yàn)臺(tái)參數(shù)
利用Desin-expert軟件中的Box-Behnken法進(jìn)行斜面試驗(yàn)仿真參數(shù)標(biāo)定的試驗(yàn)設(shè)計(jì),參考EDEM通用顆粒材料數(shù)據(jù)庫GEMM ( generic EDEM material model database,GEMM)中鋼鐵及塑料的相關(guān)參數(shù),根據(jù)仿真預(yù)試驗(yàn)及物理試驗(yàn)的結(jié)果及文獻(xiàn)[25],擬定土壤顆粒與65Mn及PTFE板之間的斜面仿真試驗(yàn)因素與水平,如表 6所示。
注:S為土球自然滾動(dòng)距離,mm。
Fig 5 Slope test of soil and different contact materials
表6 斜面仿真試驗(yàn)因素及水平
2.2.1 靜摩擦試驗(yàn)結(jié)果與分析
圖6為靜摩擦系數(shù)試驗(yàn)測(cè)試結(jié)果。通過靜摩擦試驗(yàn),測(cè)得含水率為0(干土)、12.46%±1%、17.15%±1%、23.5%±1%的黏重黑土與PTFE板之間的靜摩擦系數(shù)依次為0.447±0.075、0.332±0.034、0.522±0.11、0.633±0.16;與UHMW-PE板之間的靜摩擦系數(shù)依次為0.351±0.09、0.435±0.069、0.593±0.17、0.83±0.25;含水率為0(干土)、12.46%±1%、17.15%±1%的黏重黑土與65Mn板之間的靜摩擦系數(shù)依次為0.197±0.03、0.351±0.075、0.571±0.16。由圖6可知,對(duì)于觸土材料65Mn,隨著土壤含水率的增大,其靜摩擦系數(shù)亦增大且增大幅度明顯,而對(duì)于PTFE板與UHMW-PE板,隨著土壤含水率的增加,靜摩擦系數(shù)提高的趨勢(shì)較平緩,當(dāng)含水率超過23.5%時(shí),土壤仍然具有下滑趨勢(shì),摩擦系數(shù)并無顯著增大。
圖7為含水率23.5%的黏重黑土粘附在豎直(90°)的65Mn鋼板上。如圖7所示,含水率為23.5%(小于液限值)時(shí),試驗(yàn)土壤已經(jīng)完全粘附在65Mn板上,試驗(yàn)臺(tái)升角>90°后仍然不掉落,這說明在此含水率下的黏重黑土與65Mn板觸土面的粘附力大于其自身重力。而在低表面能的PTFE板和UHMW-PE板上含水率為23.5%的黏重黑土在一定升角范圍內(nèi)自由滑動(dòng),說明低表面能觸土部件具有減粘效果,這為仿生減粘觸土部件的設(shè)計(jì)提供了思路。
圖6 不同含水率黏重黑土與不同觸土材料間的靜摩擦系數(shù)
圖7 含水率23.5%的黏重黑土粘附在豎直65Mn板上
2.2.2 斜面仿真試驗(yàn)結(jié)果與分析
1)土壤與65Mn板的斜面仿真試驗(yàn)結(jié)果與分析
含水率為17.15%±1%的土球在65Mn板上的斜面仿真試驗(yàn)結(jié)果見表7,滾動(dòng)距離回歸模型的方差分析見表8。
對(duì)表7中的試驗(yàn)數(shù)據(jù)進(jìn)行多元回歸,得到土壤顆粒在65Mn板上的滾動(dòng)距離回歸模型,其回歸方程為
表7 含水率17.15%的土壤在65Mn板上的斜面仿真試驗(yàn)結(jié)果
表8 土壤在65Mn板上滾動(dòng)距離的回歸模型方差分析
2)土壤與PTFE板的斜面仿真試驗(yàn)結(jié)果分析
土球在PTFE板上的斜面仿真試驗(yàn)結(jié)果見表9,回歸模型的方差分析見表10。
表9 含水率17.15%的土壤在PTFE板上的斜面仿真試驗(yàn)結(jié)果
對(duì)表9中的試驗(yàn)數(shù)據(jù)進(jìn)行多元回歸,得到土壤顆粒在PTFE板上的滾動(dòng)距離回歸模型,其回歸方程為
表10 土壤在PTFE板上滾動(dòng)距離的回歸模型方差分析
回歸方程(6)的決定系數(shù)2= 0.999 8,校正決定系數(shù)Adj-2=0.998 9。
對(duì)含水率為17.15%±1%的土球,測(cè)得其在PTFE板上的滾動(dòng)距離為269.55±11.25 mm。利用Design-expert軟件中的優(yōu)化模塊,以滾動(dòng)距離269.55 mm為目標(biāo)對(duì)回歸模型進(jìn)行尋優(yōu),選取與土球滾動(dòng)距離相近的1組優(yōu)化解,逐一進(jìn)行仿真驗(yàn)證,結(jié)合前文靜摩擦試驗(yàn)結(jié)果,選取黏重黑土與PTFE板的靜摩擦系數(shù)為0.52,仿真結(jié)果顯示當(dāng)土壤與PTFE板之間的JKR表面能為4.08 J/m2、恢復(fù)系數(shù)為0.6、靜摩擦系數(shù)為0.52、滾動(dòng)摩擦系數(shù)為0.045時(shí),滾動(dòng)距離仿真結(jié)果為269.35 mm,與物理試驗(yàn)得到的平均滾動(dòng)距離269.55 mm接近,相對(duì)誤差為0.07%。
1)針對(duì)東北地區(qū)高含水率的黏重黑土,基于離散元方法,采用Hertz-Mindlin with JKR Cohesion模型分別對(duì)含水率為12.46%±1%與含水率17.15%±1%的2種土壤進(jìn)行離散元仿真,通過堆積角仿真試驗(yàn)標(biāo)定2種含水率下的黏重黑土顆粒之間的接觸模型仿真參數(shù),與物理試驗(yàn)進(jìn)行對(duì)比,得到堆積角回歸方程,利用響應(yīng)面優(yōu)化方法得到2種含水率的黏重黑土接觸模型的參數(shù)分別為:含水率12.46%±1%下土壤顆粒之間滾動(dòng)摩擦系數(shù)為0.22,JKR表面能為7.46 J/m2,恢復(fù)系數(shù)為0.56,靜摩擦系數(shù)0.78;含水率17.15%±1%的土壤顆粒JKR表面能為8.41 J/m2,恢復(fù)系數(shù)為0.5,靜摩擦系數(shù)系數(shù)為0.8,土壤之間的滾動(dòng)摩擦系數(shù)0.23。由此可得,對(duì)于含水率在10%~20%的黏重黑土,在進(jìn)行相關(guān)離散元仿真試驗(yàn)時(shí),各對(duì)應(yīng)參數(shù)值可取上下限之間的值。
3)通過斜面物理試驗(yàn)與仿真試驗(yàn)相結(jié)合的方法,得到含水率為17.15%±1%的黏重黑土對(duì)2類觸土部件材料的離散元仿真參數(shù),即黏重黑土與PTFE板之間的JKR表面能為4.08 J/m2,恢復(fù)系數(shù)為0.6,靜摩擦系數(shù)為0.52,滾動(dòng)摩擦系數(shù)為0.045;與65Mn板之間的JKR表面能為5.5 J/m2,恢復(fù)系數(shù)為0.61,靜摩擦系數(shù)為0.57,滾動(dòng)摩擦系數(shù)為0.056。
4)通過2種含水率的黏重黑土堆積角的回歸模型方差分析以及土壤對(duì)2種觸土部件材料65Mn、PTFE的斜面試驗(yàn)的回歸模型方差分析,得到東北地區(qū)黏重黑土顆粒之間(或顆粒與觸土部件材料之間)的滾動(dòng)摩擦系數(shù)以及顆粒之間(或顆粒對(duì)觸土部件材料)的表面能參數(shù)對(duì)接觸模型影響均極顯著,這與物理試驗(yàn)現(xiàn)象相吻合。
本文研究結(jié)果對(duì)東北黏重黑土地區(qū)農(nóng)業(yè)生產(chǎn)具有一定指導(dǎo)意義,含水率越高,黏重黑土的粘附性越強(qiáng),對(duì)觸土部件的粘附亦越嚴(yán)重,因此,對(duì)于黏重黑土地區(qū)土壤進(jìn)行耕作,可以選擇減粘材料的觸土部件或者設(shè)計(jì)仿生減粘觸土部件,有利于減少土壤粘附;對(duì)于塊莖類作物的機(jī)械收獲作業(yè),可以盡量讓土壤晾曬一些時(shí)日,以降低土壤含水率,減少土壤與觸土部件的粘附,且盡量避免雨后作業(yè)。
[1] Mustafa Ucgul, John M Fielke, Chris Saunders. 3D DEM tillage simulation: Validation of a hysteretic spring (plastic) contact model for a sweep tool operating in a cohesionless soil[J]. Soil & Tillage Research, 2014(144): 220-227.
[2] 張銳,李建橋,周長(zhǎng)海,等. 推土板表面形態(tài)對(duì)土壤動(dòng)態(tài)行為影響的離散元模擬[J]. 農(nóng)業(yè)工程學(xué)報(bào),2007,23(9):13-19. Zhang Rui, Li Jianqiao, Zhou Changhai, et al. Simulation of dynamic behavior of soil ahead of the bulldo zing plates with different surface configurations by discrete element method[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2007, 23(9): 13-19. (in Chinese with English abstract).
[3] Mustafa Ucgul, John M Fielke, Chris Saunders. Three dimensional discrete element modeling DEM of tillage accounting for soil cohesion and adhesion[J]. Biosystems Engineering, 2015(129): 298-306.
[4] 王憲良,胡紅,王慶杰,等. 基于離散元的土壤模型參數(shù)標(biāo)定方法[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(12):78-85. Wang Xianliang, Hu Hong, Wang Qingjie, et al. Calibration method of soil contact characteristic parameters based on DEM theory[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(12): 78-85. (in Chinese with English abstract).
[5] B Li, Y Chen, J Chen. Modeling of soil–claw interaction using the discrete element method (DEM)[J]. Soil & Tillage Research, 2016(158): 177–185.
[6] 鄭侃,何進(jìn),李洪文,等. 基于離散元深松土壤模型的折線破土刃深松鏟研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,47(9):62-72. Zheng Kan, He Jin, Li Hongwen, et al. Research on polyline soil-breaking blade subsoiler based on subsoiling soil model using discrete element method[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(9): 62-72. (in Chinese with English abstract).
[7] 賀一鳴,吳明亮,向偉,等. 離散元法在農(nóng)業(yè)工程領(lǐng)域的應(yīng)用進(jìn)展[J]. 中國(guó)農(nóng)學(xué)通報(bào),2017,33(20):133-137. He Yiming, Wu Mingliang, Xiang Wei, et al. Application progress of discrete element method in agricultural engineering[J]. Chinese Agricultural Science Bulletin, 2017, 33(20): 133-137. (in Chinese with English abstract).
[8] 鹿芳媛,馬旭,譚穗妍,等. 水稻芽種離散元主要接觸參數(shù)仿真標(biāo)定與試驗(yàn). 農(nóng)業(yè)機(jī)械學(xué)報(bào)[J],2018,49(2):94-99. Lu Fangyuan, Ma Xu, Tan Suiyan, et al. Simulative calibration and experiment on main contact parameters of discrete elements for rice bud seeds[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(2): 94-99. (in Chinese with English abstract).
[9] 王云霞,梁志杰,張東興,等. 基于離散元的玉米種子顆粒模型種間接觸參數(shù)標(biāo)定[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(22):36-42. Wang Yunxia, Liang Zhijie, Zhang Dongxing, et al. Calibration method of contact characteristic parameters for corn seeds based on EDEM[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(22): 36-42. (in Chinese with English abstract)
[10] 劉凡一,張艦,李博,等. 基于堆積試驗(yàn)的小麥離散元參數(shù)分析及標(biāo)定[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(12):247-253. Liu Fanyi, Zhang Jian, Li Bo, et al. Calibration of parameters of wheat required in discrete element method simulation based on repose angle of particle heap[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(12): 247-253. (in Chinese with English abstract)
[11] 劉凡一,張艦,陳軍. 小麥籽粒振動(dòng)篩分黏彈塑性接觸模型構(gòu)建及其參數(shù)標(biāo)定[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(15):37-43. Liu Fanyi, Zhang Jian, Chen Jun. Construction of visco-elasto-plasticity contact model of vibratory screening and its parameters calibration for wheat[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(15): 37-43. (in Chinese with English abstract)
[12] 彭飛,王紅英,方芳,等. 基于注入截面法的顆粒飼料離散元模型參數(shù)標(biāo)定[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2018,49(4):140-147. Peng Fei, Wang Hongying, Fang Fang, et al. Calibration of discrete element model parameters for pellet feed based on injected cection method[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(4): 140-147. (in Chinese with English abstract)
[13] 張濤,劉飛,趙滿全,等. 大豆種子與排種器接觸物理參數(shù)的測(cè)定與離散元仿真標(biāo)定[J]. 中國(guó)農(nóng)業(yè)大學(xué)學(xué)報(bào),2017,22(9):86-92. Zhang Tao, Liu Fei, Zhao Manquan, et al. Measurement of physical parameters of contact between soybean seed and metering device and discrete element simulation calibration[J]. Journal of China Agricultural University, 2017, 22(9): 86-92. (in Chinese with English abstract).
[14] Mustafa Ucgul, John M Fielke, Chris Saunders. Defining the effect of sweep tillage tool cutting edge geometry on tillage forces using 3D discrete element modeling[J]. Information Processing in Agriculture, 2015(2): 130-141.
[15] Mustafa Ucgul, John M Fielke, Chris Saunders. Three-dimensional discrete element modelling of tillage: Determination of a suitable contact model and parameters for a cohesionless soil[J]. Biosystems Engineering, 2014(121): 105-107.
[16] 于建群,付宏,李紅,等. 離散元法及其在農(nóng)業(yè)機(jī)械工作部件研究與設(shè)計(jì)中的應(yīng)用[J]. 農(nóng)業(yè)工程學(xué)報(bào),2005,21(5):1-6. Yu Jianqun, Fu Hong, Li Hong, et al. Application of discrete element method to research and design of working parts of agricultural machines[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2005, 21(5): 1-6. (in Chinese without English abstract).
[17] Tong Jin, Mohammad Almagzoub Mohammad, Zhang Jinbo, et al. DEM numerical simulation of abrasive wear characteristics of a bioinspired ridged surface[J]. Journal of Bionic Engineering, 2010 (7): 175-181.
[18] 丁啟朔,任駿,Belal Eisa Adam,等. 濕粘水稻土深松過程離散元分析[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(3):38-48. Ding Qishuo, Ren Jun, Belal Eisa Adam, et al. DEM analysis of subsoiling process in wet clayey paddy soil[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(3): 38-48. (in Chinese with English abstract)
[19] 張銳,韓佃雷,吉巧麗,等. 離散元模擬中沙土參數(shù)標(biāo)定方法研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(3):50-56. Zhang Rui, Han Dianlei, Ji Qiaoli, et al. Calibration methods of sandy soil parameters in simulation of discrete element method[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(3): 50-56. (in Chinese with English abstract).
[20] 石林榕,趙武云,孫偉. 基于離散元的西北旱區(qū)農(nóng)田土壤顆粒接觸模型和參數(shù)標(biāo)定[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(21):181-187. Shi Linrong, Zhao Wuyun, Sun Wei. Parameter calibration of soil particles contact model of farmland soil in northwest arid region based on discrete element method[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(21): 181-187. (in Chinese with English abstract)
[21] 石林榕,吳建民,趙武云,等. 基于離散單元法農(nóng)田土壤單軸壓縮模型的建立及參數(shù)校核[J]. 中國(guó)農(nóng)業(yè)大學(xué)學(xué)報(bào),2015,20(4):174-182. Shi Linrong, Wu Jianmin, Zhao Wuyun, et al. Establishement and parameter verification of farmland soil model in uniaxial compression based on discrete element method[J]. Journal of China Agricultural University, 2015, 20(4): 174-182. (in Chinese with English abstract)
[22] 武濤,黃偉鳳,陳學(xué)深,等. 考慮顆粒間黏結(jié)力的黏性土壤離散元模型參數(shù)標(biāo)定[J]. 華南農(nóng)業(yè)大學(xué)學(xué)報(bào),2017,38(3):93-98. Wu Tao, Huang Weifeng, Chen Xueshen, et al. Calibration of discrete element model parameters for cohesive soil considering the cohesion between particles[J]. Journal of South China Agricultural University, 2017, 38(3): 93-98. (in Chinese with English abstract)
[23] EDEM 2.5 theory reference guide[R/OL]. 2014-12-05 [2015-06-07].http://www.docin.com/p-980174717. html
[24] 熊平原,楊洲,孫志全,等. 基于離散元法的旋耕刀三向工作阻力仿真分析與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(18):113-121. Xiong Pingyuan, Yang Zhou, Sun Zhiquan, et al. Simulation analysis and experiment for three-axis working resistances of rotary blade based on discrete element method[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(18): 113-121. (in Chinese with English abstract)
[25] 郝新敏,楊元,黃斌香. 聚四氟乙烯微孔膜及纖維[M]. 北京:化學(xué)工業(yè)出版社,2011.
[26] 滕兵. 端面扭動(dòng)摩擦界面行為研究[D]. 北京:中國(guó)礦業(yè)大學(xué),2014. Teng Bing. Study on Face-on-Face Torsional Tribological Interfacial Behaviors[D]. Beijing: China University of Mining and Technology, 2014. (in Chinese with English abstract)
[27] Mustafa Ucgul, Chris Saunders, John M Fielke. Discrete element modelling of tillage forces and soil movement of a one-third scale mouldboard plough[J]. Biosystems Engineering, 2017(155): 44-54.
[28] J Y Sun, Y M Wang, Y H Ma, et al. DEM simulation of bionic subsoilers (tillage depth >40 cm) with drag reduction and lower soil disturbance characteristics[J]. Advances in Engineering Software, 2018(119): 30-37.
[29] 任露泉. 土壤粘附力學(xué)[M]. 北京:機(jī)械工業(yè)出版社. 2011.
[30] 錢定華,張際先. 土壤對(duì)金屬材料粘附和摩擦研究狀況概述[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),1984(1):69-78. Qian Dinghua, Zhang Jixian. A Summary of study of adhesion and friction between soil and metals[J]. Transactions of the Chinese Society for Agricultural Machinery, 1984(1): 69-78. (in Chinese with English abstract).
Calibration of parameters of interaction between clayey black soil with different moisture content and soil-engaging component in northeast China
Li Junwei1,2,3,4, Tong Jin1,3, Hu Bin2,4, Wang Hubiao1,3, Mao Chunyu1,3,5, Ma Yunhai1,3※
(1.,,,130022,; 2.,,832003,3.,,130022,4.,,832003,5.,130022,;)
In order to obtain the interaction parameters which can be used for discrete element simulation between the soil-engaging components and clayey black soil in northeast China, the Hertz-Mindlin with JKR Cohesion contact model in EDEM2.7 was used to simulate the clayey black soil. Aiming at the actual working environment with moisture content of 10%-20%, 2 kinds of clayey black soil with moisture content of 12.46%±1% and 17.15%±1% were prepared respectively. The rolling friction coefficient, recovery coefficient, JKR surface energy parameter and the static friction coefficient between the soil particles were used as the model calibrated parameters. The soil repose angle simulated under the simulation parameters was set as the response value. The regression model of the soil repose angle was established based on the Box-Behnken response surface method, and the regression model was optimized by using the soil repose angles under 2 moisture contents obtained by physical experiments. The optimal solution of the contact model parameters of the clayey black soil particles with 2 moisture contents was obtained. The parameter range of the discrete element contact model of clayey black soil with moisture content between 10%-20% were given. The soil repose angle and stacked shape obtained by the simulation experiment with the optimized solution had a high similarity with that of the physical test. At the same time, the static friction coefficients of 3 kinds of soil contact materials such as 65Mn plate, UHMW-PE plate and PTFE plate were tested under the conditions of 4 kinds of moisture content, which were 0, 12.46%, 17.15% and 23.5% respectively. Then for the 2 typical soil contact materials such as 65Mn and PTFE, the slope physical test bench were constructed for the clayey black soil with moisture content of 17.15%±1%. The slope simulation models of 65Mn and PTFE materials were established under the EDEM2.7 software platform. Based on the critical simulation parameters such as JKR surface energy parameter, static friction coefficient, rolling friction coefficient and recovery coefficient between soil particle and soil contact material, the simulated rolling distance of the soil ball on different soil contact materials was set as the response value. The excellent fit regression model of rolling distance for the 2 kinds of typical soil contact materials were established based on the response surface optimization method of Box-Behnkende. The 2 regression models were optimized by the sliding distance obtained by the physical experiment. Then the optimized solution of the contact model parameters of different materials was obtained. The simulation results showed that when the surface energy of JKR between soil and 65Mn was 5.5 J/m2, the recovery coefficient was 0.61, the static friction coefficient was 0.57 and the rolling friction coefficient was 0.056, the rolling distance simulation result was 153.56 mm, which was close to the average rolling distance obtained from physical experiments of 155.93 mm, and the relative error was 1.52%; When the surface energy of JKR between soil and PTFE was 4.08 J/m2, the recovery coefficient was 0.6, the static friction coefficient was 0.52 and the rolling friction coefficient was 0.045, the simulation result of rolling distance was 269.35 mm, which was close to the average rolling distance of 269.55 mm obtained from physical experiment, and the relative error was 0.07%. And the optimized parameters can be used to simulate the discrete parameters between the clayey black soil and the soil-engaging components. The study provides credible basic data for the design and simulation of agricultural machinery under clayey black soil conditions.
soils; water content; discrete element method; clayey black soil; calibration of simulation parameter
2018-10-11
2019-03-03
國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(YS2016YFNC050065)課題(2016YFD0701601);國(guó)家自然科學(xué)基金項(xiàng)目(51805338,51875242,51865051);吉林省科技廳項(xiàng)目(20170101173JC,20190302129GX)
李俊偉,講師,博士生,主要從事農(nóng)業(yè)機(jī)械減阻耐磨仿生技術(shù)研究。Email:ljwjdxy@shzu.edu.cn
馬云海,教授,博士生導(dǎo)師,主要從事農(nóng)業(yè)工程仿生技術(shù)研究。Email:myh@jlu.edu.cn
10.11975/j.issn.1002-6819.2019.06.016
S347.7;S22
A
1002-6819(2019)-06-0130-11
李俊偉,佟 金,胡 斌,王虎彪,毛春昱,馬云海. 不同含水率黏重黑土與觸土部件互作的離散元仿真參數(shù)標(biāo)定[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(6):130-140. doi:10.11975/j.issn.1002-6819.2019.06.016 http://www.tcsae.org
Li Junwei, Tong Jin, Hu Bin, Wang Hubiao, Mao Chunyu, Ma Yunhai. Calibration of parameters of interaction between clayey black soil with different moisture content and soil-engaging component in northeast China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(6): 130-140. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.06.016 http://www.tcsae.org
農(nóng)業(yè)工程學(xué)報(bào)2019年6期