薛亞?wèn)|,楊露,楊慧麗,李冰,林亞楠,張懷勝,郭戰(zhàn)勇,湯繼華,2
?
玉米C型細(xì)胞質(zhì)雄性不育花藥不同發(fā)育時(shí)期的轉(zhuǎn)錄組分析
薛亞?wèn)|1,楊露1,楊慧麗1,李冰1,林亞楠1,張懷勝1,郭戰(zhàn)勇1,湯繼華1,2
(1河南農(nóng)業(yè)大學(xué)農(nóng)學(xué)院/省部共建小麥玉米作物學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,鄭州 450002;2長(zhǎng)江大學(xué)主要糧食作物產(chǎn)業(yè)化湖北省協(xié)同創(chuàng)新中心, 湖北荊州 434025)
【目的】通過(guò)分析玉米C型胞質(zhì)雄性不育“三系”材料花藥不同發(fā)育時(shí)期的轉(zhuǎn)錄組數(shù)據(jù),以期闡明玉米C型胞質(zhì)的不育和恢復(fù)機(jī)制,并解析不育基因與恢復(fù)基因之間相互作用的調(diào)控網(wǎng)絡(luò),為玉米C型細(xì)胞質(zhì)雄性不育在不育化制種中的利用提供理論依據(jù)?!痉椒ā恳灾袊?guó)玉米生產(chǎn)上的骨干自交系豫自87-1為背景的C型胞質(zhì)不育系、保持系、恢復(fù)系為材料,通過(guò)對(duì)3種材料減數(shù)分裂的前期Ⅰ、中期Ⅰ及末期Ⅱ(四分體)時(shí)期的花藥進(jìn)行轉(zhuǎn)錄組測(cè)序并利用hisat2、ballgown及DESeq2等工具進(jìn)行生物信息學(xué)分析,尋找三系花藥不同時(shí)期、相同時(shí)期不同材料間以及發(fā)育時(shí)序中差異表達(dá)的基因,預(yù)測(cè)C型胞質(zhì)不育機(jī)制與育性恢復(fù)的調(diào)控網(wǎng)絡(luò);同時(shí)通過(guò)實(shí)時(shí)定量PCR對(duì)測(cè)序分析結(jié)果進(jìn)行驗(yàn)證;通過(guò)酶活測(cè)定驗(yàn)證推測(cè)的C型胞質(zhì)不育及恢復(fù)假說(shuō)?!窘Y(jié)果】所有材料的轉(zhuǎn)錄組測(cè)序共產(chǎn)生156.59 Gb的序列數(shù)據(jù),比對(duì)并組裝共得到53 035個(gè)基因;在恢復(fù)系與不育系、保持系與不育系以及“三系”花藥不同時(shí)期之間共篩選出非重復(fù)差異基因5 676個(gè),其中發(fā)育階段差異基因4 705個(gè),同時(shí)期材料間差異基因2 693個(gè),發(fā)育時(shí)序差異基因135個(gè)。GO分子功能分析顯示ATP和DNA結(jié)合相關(guān)的基因和鋅離子結(jié)合基因得到高度富集;細(xì)胞組分中膜基本組分、核內(nèi)及質(zhì)膜內(nèi)的基因得到富集;以DNA為模板的轉(zhuǎn)錄、轉(zhuǎn)錄調(diào)控、氧化還原及初級(jí)代謝等生物學(xué)過(guò)程中的基因得到富集。KEGG分析表明,差異基因主要富集于氧化磷酸化、碳代謝及糖酵解等能量代謝相關(guān)的途徑中。不育系相對(duì)保持系而言,多個(gè)與氧化磷酸化相關(guān)的基因下調(diào)表達(dá),而恢復(fù)系中不但相應(yīng)基因的表達(dá)水平得到恢復(fù),而且同時(shí)協(xié)調(diào)調(diào)節(jié)了同一能量代謝途徑中的其他基因,定量分析顯示差異基因的表達(dá)差異及趨勢(shì)與轉(zhuǎn)錄組測(cè)序結(jié)果基本一致。ATP酶活結(jié)果表明不育系相比保持系,ATP酶活顯著降低,恢復(fù)系中由于恢復(fù)基因的作用其活性得到大幅恢復(fù)。【結(jié)論】玉米C型胞質(zhì)不育基因引起基因表達(dá)變化可能發(fā)生在減數(shù)分裂中期Ⅰ之后,末期Ⅱ之前;玉米C型胞質(zhì)不育的形成可能是由于不育基因引起的能量虧損所致,而恢復(fù)基因則通過(guò)能量補(bǔ)償促使育性得以恢復(fù)。
玉米;C型細(xì)胞質(zhì)雄性不育;轉(zhuǎn)錄組;差異表達(dá)基因;調(diào)控網(wǎng)絡(luò)
【研究意義】玉米是中國(guó)第一大糧食作物,常年播種面積333萬(wàn)hm2以上,年用種量7.5億kg左右,需要制種23萬(wàn)hm2左右(全國(guó)農(nóng)業(yè)技術(shù)推廣服務(wù)中心 www.natesc.org.cn)。由于玉米種子生產(chǎn)多數(shù)采用人工去雄的方式,人工去雄的直接費(fèi)用約6億元,導(dǎo)致種子生產(chǎn)成本增加,在一定程度上制約著中國(guó)種子企業(yè)的國(guó)際競(jìng)爭(zhēng)力,而不育化制種是當(dāng)前及今后種子企業(yè)提高競(jìng)爭(zhēng)力的一個(gè)重要途徑。在玉米的質(zhì)核互作不育類(lèi)型中,C型細(xì)胞質(zhì)雄性不育因其具有不育性穩(wěn)定、恢復(fù)徹底等特點(diǎn),得到了玉米育種家及相關(guān)種子企業(yè)的高度關(guān)注。由于玉米C型胞質(zhì)雄性不育及恢復(fù)機(jī)制目前仍不清楚,從而在一定程度上限制了其在種子生產(chǎn)上的大面積推廣應(yīng)用。因此,明確玉米C型細(xì)胞質(zhì)不育和恢復(fù)的分子機(jī)制及其調(diào)控網(wǎng)絡(luò),將對(duì)玉米C型胞質(zhì)雄性不育的應(yīng)用具有一定的促進(jìn)作用?!厩叭搜芯窟M(jìn)展】植物尤其是作物中細(xì)胞質(zhì)雄性不育材料是雜交種子生產(chǎn)的一種重要種質(zhì)資源,同時(shí)也是研究核質(zhì)互作的重要遺傳材料,因而得到了遺傳學(xué)家和育種家的廣泛關(guān)注。前人曾經(jīng)對(duì)細(xì)胞質(zhì)雄性不育開(kāi)展了大量的研究,玉米T型細(xì)胞質(zhì)的不育基因是第一個(gè)被鑒定的細(xì)胞質(zhì)雄性不育基因[1]。水稻先后克隆了CMS-HL不育基因[2]、CMS-BT的不育基因[3]以及CMS-WA的不育基因[4]。油菜中應(yīng)用較為廣泛的CMS-pol、CMS-nap與CMS-ogu 3種類(lèi)型的細(xì)胞質(zhì)雄性不育的不育基因、和已經(jīng)克隆[5-7]。蘿卜、油菜、小麥等其他作物的細(xì)胞質(zhì)雄性不育相關(guān)的部分基因也已被鑒定。目前,已經(jīng)克隆的植物不育基因均與線粒體基因相關(guān),且均為重組形成的嵌合基因。與之相應(yīng)的恢復(fù)基因除玉米的[8]、水稻[9]和[10]、甜菜的[11]外,均為編碼PPR基序蛋白的基因[3,12-17]。根據(jù)已有的研究可將細(xì)胞質(zhì)雄性不育機(jī)理歸納為3個(gè)假說(shuō):毒性假說(shuō)、能量虧缺假說(shuō)及細(xì)胞異常凋亡假說(shuō);其相應(yīng)的恢復(fù)基因則通過(guò)轉(zhuǎn)錄后水平的編輯、剪接、多聚腺苷酸化、剪切等方式,或翻譯及翻譯后水平的修飾來(lái)補(bǔ)償或逆轉(zhuǎn)不育基因的危害,進(jìn)而恢復(fù)植株的育性[18]。玉米C型細(xì)胞質(zhì)雄性不育有2個(gè)重疊效應(yīng)的恢復(fù)基因和[19],分別定位于第8染色體短臂和第5染色體長(zhǎng)臂上[20]。玉米C型胞質(zhì)線粒體基因組中具有多個(gè)區(qū)域重復(fù)并伴有重組,造成與線粒體呼吸鏈復(fù)合體相關(guān)基因具有多個(gè)拷貝,如、或形成嵌合基因,如,推測(cè)其中可能包含不育基因[21-22]。光學(xué)及電子顯微鏡觀察結(jié)果表明,C型胞質(zhì)不育系小孢子的敗育發(fā)生在單核早期[23-24],而在二分體時(shí)期絨氈層細(xì)胞出現(xiàn)U氏小體異常[24],及至四分體絨氈層出現(xiàn)大量不規(guī)則液泡[23-24]。全基因組轉(zhuǎn)錄分析能夠鑒定到與育性恢復(fù)及不育相關(guān)的功能基因及其調(diào)控與代謝的網(wǎng)絡(luò)。已報(bào)道的雄性不育轉(zhuǎn)錄組分析結(jié)果表明,洋蔥細(xì)胞質(zhì)雄性不育與線粒體氧化磷酸化有關(guān)[25],辣椒細(xì)胞質(zhì)雄性不育主要涉及ATP合酶、NADH脫氫酶及細(xì)胞色素氧化酶[26]。對(duì)玉米C型胞質(zhì)不育系與保持系的花粉母細(xì)胞時(shí)期及單核期花藥轉(zhuǎn)錄組分析發(fā)現(xiàn)MYB轉(zhuǎn)錄因子、氨基酸代謝和脂肪酸合成途徑可能對(duì)育性產(chǎn)生重要影響[27]?!颈狙芯壳腥朦c(diǎn)】盡管前人確立了C型胞質(zhì)花粉敗育時(shí)期以及分析了花粉母細(xì)胞時(shí)期與單核時(shí)期在不育系與保持系之間的差異基因,但C型胞質(zhì)雄性不育的分子機(jī)制尚未解析;由于未能同時(shí)對(duì)同基因型的恢復(fù)系進(jìn)行分析,無(wú)法全面解析不育與恢復(fù)可能的代謝和調(diào)控機(jī)制;而對(duì)于孢子體不育材料,在花粉敗育時(shí)期取樣,無(wú)法分析敗育形成的基因?!緮M解決的關(guān)鍵問(wèn)題】本研究擬通過(guò)細(xì)化取樣時(shí)期,比較玉米C型胞質(zhì)三系材料在減數(shù)分裂前期Ⅰ、中期Ⅰ及四分體時(shí)期花藥的轉(zhuǎn)錄組數(shù)據(jù),在轉(zhuǎn)錄水平上分析玉米C型胞質(zhì)雄性不育及恢復(fù)的機(jī)制,明確玉米C型胞質(zhì)雄性不育發(fā)育過(guò)程中基因表達(dá)規(guī)律,以期為玉米C型雄性不育及恢復(fù)分子機(jī)制研究提供依據(jù),同時(shí)為恢復(fù)基因及不育基因的克隆及功能分析奠定基礎(chǔ)。
選用以?xún)?yōu)良玉米自交系豫自87-1為背景構(gòu)建的玉米細(xì)胞質(zhì)雄性不育系CMS-Es87-1()、保持系N87-1()及恢復(fù)系CMS-Es87-1()為試驗(yàn)材料。試驗(yàn)材料于2016年春分期種植于河南農(nóng)業(yè)大學(xué)科教園區(qū)。播種40 d后,參考Ma等[28]方法每隔2 d檢查玉米雄穗的花藥發(fā)育進(jìn)程,待花藥發(fā)育至減數(shù)分裂時(shí)期將玉米整株取回實(shí)驗(yàn)室。對(duì)雄穗局部區(qū)域進(jìn)行三點(diǎn)(區(qū)域兩頭及中部)醋酸洋紅染色鏡檢,選取減數(shù)分裂前期(P1)、減數(shù)分裂中期Ⅰ(M1)及四分體時(shí)期(T2)的花藥,液氮速凍后-80℃保存?zhèn)溆谩C恳粋€(gè)材料每一個(gè)時(shí)期各取3個(gè)生物學(xué)重復(fù)進(jìn)行轉(zhuǎn)錄組測(cè)序,每個(gè)生物學(xué)材料由多個(gè)植株的花藥組成,以消除個(gè)體及環(huán)境的差異。
采用TRIzol(Invitrogen,Carlsbad,CA,USA)法提取玉米花藥總RNA。利用NanoDrop One檢測(cè)RNA濃度,用Agilent 2100檢測(cè)28S/18S以及RIN值,同時(shí)用1%瓊脂糖凝膠電泳檢測(cè)所提取RNA的質(zhì)量及完整性。
利用Oligo(dT)磁珠富集每個(gè)玉米花藥樣品的mRNA(Illumina,San Diego,CA,USA),加入片段化緩沖液將mRNA隨機(jī)打斷成短片段。將打斷后的mRNA反轉(zhuǎn)錄成第一鏈cDNA,隨后合成第二鏈。利用QiaQuick PCR提取試劑盒純化后進(jìn)行末端修復(fù)并在3'末端加上堿基A,并連接測(cè)序接頭。篩選大小在300—500 bp的片段進(jìn)行PCR擴(kuò)增。文庫(kù)經(jīng)Agilent 2100 Bioanalyzer和ABI StepOnePlus Real-Time PCR System質(zhì)檢合格后用Illumina HiSeq 2500進(jìn)行雙末端測(cè)序(北京貝瑞和康生物科技有限公司)。
測(cè)序獲得的原始數(shù)據(jù)首先過(guò)濾掉低質(zhì)量(Q<30)、接頭污染以及位置堿基N含量過(guò)高(>5%)的reads,得到clean reads用于后續(xù)分析。利用HiSat2軟件[29]將過(guò)濾后的數(shù)據(jù)比對(duì)到玉米參考基因組B73第四版上(B73 AGPv4,http://ensembl.gramene.org/Zea_mays/ Info/Index),用stringtie軟件[30]進(jìn)行轉(zhuǎn)錄本拼接并進(jìn)行基因表達(dá)量估算?;虮磉_(dá)值導(dǎo)入R軟件包DESeq2中進(jìn)行差異基因分析[29]。padj小于0.05及表達(dá)差異大于2的基因認(rèn)為是差異表達(dá)的基因(DEG)。根據(jù)NCBI的玉米基因注釋數(shù)據(jù)提取差異表達(dá)基因的功能信息,利用內(nèi)部perl腳本從maizeGDB網(wǎng)站上獲取差異基因的GO注釋。從KAAS網(wǎng)站獲取差異表達(dá)基因的KEGG途徑,利用R軟件的clusterProfiler包進(jìn)行差異基因的GO富集及代謝途徑的富集,并對(duì)線粒體相關(guān)途徑進(jìn)行了分析[32]。
分別以87-1“三系”材料的減數(shù)分裂前期Ⅰ、四分體期和單核期的花藥總RNA為模板,反轉(zhuǎn)錄合成cDNA第一鏈。利用TB GreenTMPremix Ex TaqTMⅡ(TaKaRa)熒光定量試劑盒在CFX96實(shí)時(shí)定量PCR儀上對(duì)轉(zhuǎn)錄組數(shù)據(jù)差異表達(dá)的基因、、和進(jìn)行定量分析。使用Primer3 plus在線設(shè)計(jì)所有qRT-PCR反應(yīng)特異引物(表1)。cDNA反轉(zhuǎn)錄和qRT-PCR反應(yīng)體系及反應(yīng)程序按照PrimeScriptTMRT reagent Kit with gDNA Eraser(TaKaRa)和TB GreenTM Premix Ex TaqTMⅡ(TaKaRa)試劑盒里的說(shuō)明書(shū)的操作進(jìn)行。每個(gè)試驗(yàn)均設(shè)3次生物學(xué)重復(fù)和3次技術(shù)重復(fù),利用(2-ΔΔCt)法[33]分析基因表達(dá)水平。
表1 差異基因表達(dá)分析所用引物
根據(jù)北京索萊寶科技有限公司(Solarbio)鈣鎂離子ATP酶檢測(cè)試劑盒說(shuō)明書(shū)測(cè)定C型胞質(zhì)雄性不育三系減數(shù)分裂前期花藥的ATP酶活性。稱(chēng)取新鮮樣品約0.1 g,加入1 mL試劑一進(jìn)行冰浴勻漿,9 200 r/min 4℃離心10 min,取上清置于冰上待測(cè)。按照手冊(cè)設(shè)置ATP酶酶促反應(yīng),水浴10 min,取上清液100 μL,分別加入定磷反應(yīng)的對(duì)照管和測(cè)定管,加入定磷劑1 000 μL,混勻,40℃水浴10 min,冷卻至室溫后利用分光光度計(jì)于660 nm處比色。ATP酶活力(U·g-1)=7.5×(A測(cè)定管-A對(duì)照管)÷(A標(biāo)準(zhǔn)管-A空白管)÷W(樣本鮮重,g),計(jì)算鈣鎂離子ATP酶活性。每個(gè)材料測(cè)定3次。
為減少分期播種的環(huán)境影響及不同個(gè)體間的差異,同一時(shí)期至少混合3個(gè)不同播期材料及3個(gè)單株上的樣品用于RNA提取及后續(xù)測(cè)序分析。所測(cè)數(shù)據(jù)經(jīng)過(guò)嚴(yán)格的質(zhì)控后,產(chǎn)生5.6億對(duì)雙末端序列,共計(jì)156.59 Gb的序列數(shù)據(jù)(表2)。除樣品CrT23和CRT23外,Q30比例都超過(guò)了90%。PCA分析顯示三系前期各有一個(gè)樣品與相同時(shí)期的樣品差異較大,在后續(xù)比對(duì)分析中被剔除;其余不同樣品間差異明顯,不同樣品的生物學(xué)重復(fù)可聚類(lèi)在一起。Hisat2比對(duì)到參考基因組的序列經(jīng)過(guò)stringtie組裝,共得到53 035個(gè)Unigene,其中20 017(37.74%)個(gè)Unigene為B73基因組中未注釋的新基因。
將差異基因定義為FDR(false discovery rate)<0.05且表達(dá)差異倍數(shù)在2倍以上的基因(圖1)。通過(guò)比較87-1三系不同時(shí)期及相同時(shí)期不同系間的表達(dá)譜,獲得在三系不同時(shí)期或同一材料不同時(shí)期之間的顯著性差異基因(表3)。87-1不育系在減數(shù)分裂中期Ⅰ與前期Ⅰ相比共有121個(gè)差異表達(dá)基因,其中48個(gè)基因個(gè)上調(diào),73個(gè)基因下調(diào);在四分體時(shí)期有329個(gè)基因相比中期Ⅰ表現(xiàn)為下調(diào),而與前期Ⅰ相比,差異基因之間表現(xiàn)出顯著的變化。87-1保持系在不同發(fā)育時(shí)期之間差異表達(dá)基因的變化趨勢(shì)與不育系相似,但上調(diào)表達(dá)的基因數(shù)量更多。87-1恢復(fù)系在不同發(fā)育時(shí)期中差異基因數(shù)目的變化趨勢(shì)與保持系和不育系明顯不同,中期Ⅰ和前期Ⅰ的差異基因數(shù)量與四分體和中期Ⅰ間的差異數(shù)量相比變化不大。保持系與不育系的四分體時(shí)期出現(xiàn)大量差異表達(dá)基因(723上調(diào)/409下調(diào)),而恢復(fù)系與不育系相比在相同時(shí)期也有較多差異表達(dá)的基因。在87-1三系材料的整個(gè)發(fā)育時(shí)期中有135個(gè)基因均存在差異表達(dá)。
表2 測(cè)序數(shù)據(jù)統(tǒng)計(jì)分析
CR:恢復(fù)系;Cr:不育系;Nr:保持系;M1:中期Ⅰ;P1:前期Ⅰ;T2:四分體時(shí)期(末期Ⅱ);下同。樣品名最后一位數(shù)字:重復(fù)
CR: the restorer lines; Cr: the sterile lines; Nr: the maintainer lines; M1: Metaphase Ⅰ; P1: Prophase Ⅰ; T2: Telophase Ⅱ (tetrad); The same as below. the end digit in sample name: replications
將時(shí)間軸差異分析結(jié)果及兩兩對(duì)比的結(jié)果取并集進(jìn)行分析,共得到5 676個(gè)顯著的差異表達(dá)基因。通過(guò)GO分析,有4 273個(gè)基因獲得4 946個(gè)GO注釋條目,其中具有3個(gè)及以上Unigene的GO條目的基因有2 128個(gè)。差異表達(dá)基因富集在生物學(xué)過(guò)程中的有4 231個(gè),細(xì)胞組分有4 082個(gè),分子功能有4 085個(gè)。富集最多的前81個(gè)GO分類(lèi)如圖2所示,細(xì)胞組分中富集基因最多的部位是膜的組分(integral component of membrane),其次是核內(nèi)(nucleus)和質(zhì)膜上(plasma membrane)的基因,而線粒體中也富集到較多的差異基因;分子功能中富集較多的3個(gè)亞類(lèi)分別是ATP結(jié)合、DNA結(jié)合及鋅離子結(jié)合。與轉(zhuǎn)錄有關(guān)的基因在生物學(xué)過(guò)程中富集最多,其次還有響應(yīng)刺激有關(guān)的基因以及氧化還原反應(yīng)有關(guān)的基因。時(shí)間軸分析的差異基因多富集在與磷酸酶活性相關(guān)的GO條目中。87-1恢復(fù)系與不育系在減數(shù)分裂中期Ⅰ差異表達(dá)的基因多富集在花粉發(fā)育、配子體發(fā)育等生物學(xué)過(guò)程中。
表3 差異基因統(tǒng)計(jì)分析
FDR < 0.05 and |log2FC| >= 1
通過(guò)對(duì)87-1三系不同時(shí)期兩兩對(duì)比及時(shí)間軸差異基因分別進(jìn)行KEGG分析,共獲得37個(gè)不同的代謝通路(表4)。在兩兩對(duì)比分析中出現(xiàn)最多次數(shù)的途徑是角質(zhì)、軟木脂和蠟質(zhì)合成途徑,共出現(xiàn)12次;其次是輔酶Q及其他萜-醌合成、脂肪酸降解和苯丙烷合成途徑。在所有途徑中,富集基因最多的是碳代謝途徑,其次是糖酵解途徑和DNA復(fù)制途徑。
表4 差異表達(dá)基因數(shù)量最多的15個(gè)代謝通路
線粒體是細(xì)胞的能量工廠,而細(xì)胞質(zhì)雄性不育多與線粒體相關(guān),尤其與線粒體內(nèi)氧化磷酸化途徑相關(guān)[18,34-35]。玉米中共有187個(gè)基因與氧化磷酸化途徑有關(guān)(KEGG途徑zma00190)。將該基因集與差異表達(dá)基因取交集,共有13個(gè)基因在三系不同發(fā)育時(shí)期中表達(dá)呈顯著差異(表5),其中基因和在87-1保持系花藥不同發(fā)育時(shí)期持續(xù)上調(diào)表達(dá),而在87-1不育系中表達(dá)則不存在差異;而在87-1恢復(fù)系的花藥不同發(fā)育時(shí)期的表達(dá)量與保持系相似(圖3-A和圖3-B)。87-1保持系與不育系的花藥從減數(shù)分裂前期到四分體時(shí)期的差異表達(dá)相比,有4個(gè)基因(、、和)顯著上調(diào)表達(dá);在87-1恢復(fù)系中3個(gè)基因(、和)的表達(dá)趨勢(shì)與保持系相同,同時(shí)有另外3個(gè)基因(、和)的表達(dá)水平顯著提高(表5,圖3-C)。值得注意的是,基因在87-1三系的花藥發(fā)育時(shí)期的表達(dá)波動(dòng)較大(圖3-D)。上述這些差異表達(dá)基因主要富集在氧化磷酸化途徑的復(fù)合體Ⅱ、復(fù)合體Ⅳ和復(fù)合體Ⅴ中(圖4)。
為驗(yàn)證轉(zhuǎn)錄組中差異基因的表達(dá)結(jié)果,挑選了氧化磷酸化途徑中的4個(gè)差異表達(dá)基因(ComplexⅡ)、(ComplexⅣ)、(ComplexⅤ,F(xiàn)-type ATPase beta)和(ComplexⅤ,inorganic diphosphatase),以為內(nèi)參基因,通過(guò)qRT-PCR技術(shù)分析它們?cè)谟衩證型胞質(zhì)不育花藥不同發(fā)育階段的表達(dá)變化(圖5)。結(jié)果表明,隨著花藥的發(fā)育表達(dá)量逐漸下降,在減數(shù)分裂中期Ⅰ時(shí)恢復(fù)系的表達(dá)量約為不育系的2倍;在恢復(fù)系中表達(dá)趨勢(shì)與相同,在不育系及保持系中都是先下降再上升,且不育系單核期比中期Ⅰ上升了1倍多;恢復(fù)系和保持系中,和從中期Ⅰ到末期Ⅱ的表達(dá)趨勢(shì)相反,從末期Ⅱ到單核期表達(dá)趨勢(shì)相同;在三系材料末期Ⅱ中迅速上升,不育系上升了7倍多,但其表達(dá)量仍低于保持系和恢復(fù)系。qTR-PCR結(jié)果與轉(zhuǎn)錄組分析結(jié)果基本一致。
A:Zm00001d033552;B:Zm00001d043834;C:Zm00001d009222;D:Zm00001d037576
綠底框:物種特異的基因;紅底框:上調(diào)基因;天藍(lán)底框:下調(diào)基因
CR:恢復(fù)系;Cr:不育系;Nr:保持系,M1:中期1;T2:末期2(tetrad);MN:?jiǎn)魏似?/p>
表5 線粒體氧化磷酸化途徑相關(guān)基因的表達(dá)差異
細(xì)胞色素P450通過(guò)調(diào)節(jié)許多重要的細(xì)胞過(guò)程而影響植物的生長(zhǎng)與發(fā)育,而一些P450基因參與合成植物激素如生長(zhǎng)素、赤霉素、細(xì)胞分裂素等在植物開(kāi)花成熟過(guò)程中發(fā)揮著重要的作用[36-37]。轉(zhuǎn)錄組分析不同時(shí)期保持系與不育系、恢復(fù)系與不育系的比較中發(fā)現(xiàn)12個(gè)細(xì)胞色素P450家族基因的表達(dá)存在顯著差異(表6)。在減數(shù)分裂前期,保持系中與比不育系的表達(dá)量要高得多(log2值分別為19.96和17.59),表明不育系中這兩個(gè)基因幾乎不表達(dá)或表達(dá)量極低;在恢復(fù)系中,的表達(dá)量恢復(fù)到保持系的水平。及至減數(shù)分裂中期Ⅰ,這兩個(gè)基因在不同材料的比較中沒(méi)有差異,同時(shí)保持系與不育系間未出現(xiàn)新的差異表達(dá)細(xì)胞色素P450家族基因;而在恢復(fù)系中新增3個(gè)上調(diào)及3個(gè)下調(diào)的細(xì)胞色素P450基因。在減數(shù)分裂末期2時(shí),前期1的2個(gè)差異基因再次出現(xiàn)差異,且表達(dá)趨勢(shì)相同;而在不育系中下調(diào)的細(xì)胞色素基因在恢復(fù)系中都得到了恢復(fù)。
氧化磷酸化途徑是線粒體內(nèi)重要的代謝途徑。玉米C型胞質(zhì)不育線粒體基因組內(nèi)發(fā)生重復(fù)或嵌合的基因(、和)均與該途徑相關(guān),其中()位于復(fù)合體Ⅳ中,和()位于復(fù)合體Ⅴ中。重復(fù)的基因打破原有基因間的劑量比例[38-40],而嵌合基因又干擾了正常atp6的生成,并進(jìn)一步干擾了復(fù)合體Ⅴ的功能行使[18],最終引起線粒體ATP酶的活性變化。對(duì)“三系”材料減數(shù)分裂期間花藥ATP酶活性測(cè)定結(jié)果顯示,不育系的ATP酶活性相較于保持系明顯低了1個(gè)酶活單位(圖6),而在恢復(fù)系中,ATP酶的活性不但得到恢復(fù),并且比保持系提高了一個(gè)酶活單位。
CR:恢復(fù)系;Cr:不育系;Nr:保持系;**表示0.01水平差異顯著;***表示0.001水平差異顯著
Lee等[23]通過(guò)電鏡觀察發(fā)現(xiàn)玉米C型胞質(zhì)雄性不育系的花藥在四分體時(shí)期出現(xiàn)差異,主要為絨氈層細(xì)胞出現(xiàn)大量小液泡(類(lèi)型Ⅰ)或高度液泡化(類(lèi)型Ⅱ),細(xì)胞器如線粒體等正常。進(jìn)一步觀察發(fā)現(xiàn),不育系絨氈層細(xì)胞在二分體時(shí)期未觀察到U小體(Ubisch body),四分體時(shí)除出現(xiàn)液泡外,胞質(zhì)的電子密度亦有降低,小孢子初期開(kāi)始敗育[24]。本研究中發(fā)現(xiàn)87-1保持系與不育系在前期僅有103個(gè)差異表達(dá)基因;而87-1保持系與不育系相比前期Ⅰ至中期Ⅰ的差異表達(dá)基因也相對(duì)較少,而同一時(shí)期,保持系與不育系小孢子發(fā)育也沒(méi)有明顯區(qū)別,說(shuō)明這些差異基因可能與后期的小孢子敗育無(wú)直接關(guān)系。87-1不育系的花藥從中期Ⅰ到四分體,以及不同材料的花藥四分體之間則存在大量的差異表達(dá)基因,而前人利用電鏡觀察到不育系敗育的表型相吻合[23-24],因此可以推測(cè)引起玉米C胞質(zhì)雄性不育小孢子敗育的關(guān)鍵時(shí)期應(yīng)在減數(shù)分裂中期Ⅰ到減數(shù)分裂后期Ⅱ之間,而這一階段正是玉米花藥絨氈層細(xì)胞二核化的高峰期[41]。Li等[27]曾經(jīng)對(duì)玉米C型胞質(zhì)雄性不育系及保持系的花粉母細(xì)胞及單核期進(jìn)行了轉(zhuǎn)錄組測(cè)序,雖然鑒定到一些差異表達(dá)的基因,但是這些時(shí)期由于不是引起小孢子敗育的關(guān)鍵時(shí)期,鑒定到的差異表達(dá)基因可能與小孢子的后期敗育有關(guān)。為了篩選出與玉米C型胞質(zhì)雄性不育小孢子敗育與恢復(fù)的關(guān)鍵基因,本研究選擇了減數(shù)分裂前期、減數(shù)分裂中期Ⅰ及四分體3個(gè)花藥發(fā)育的關(guān)鍵時(shí)期進(jìn)行了轉(zhuǎn)錄組分析[23-24],并從差異不同時(shí)期差異基因的變化趨勢(shì)中推斷出基因表達(dá)改變的主要時(shí)期,為后續(xù)表達(dá)分析、分子鑒定的取樣提供了依據(jù)。
表6 細(xì)胞色素P450基因的表達(dá)
前人通過(guò)RNA雜交與C型胞質(zhì)不育系和保持系的線粒體測(cè)序分析,發(fā)現(xiàn)玉米N胞質(zhì)與C胞質(zhì)的線粒體基因組在atp6、atp9和coxⅡ等基因序列間存在差異,其中C胞質(zhì)線粒體中為嵌合體基因,和具有2個(gè)拷貝[21]。線粒體全基因組分析中也發(fā)現(xiàn)有其它的嵌合體基因,但與已知的線粒體基因均不同源[22]。盡管這3個(gè)基因可能與C胞質(zhì)不育相關(guān),迄今為止,尚沒(méi)有分子證據(jù)能證明其中的基因?yàn)椴挥颉hen等[18]總結(jié)了引起細(xì)胞質(zhì)雄性不育的4個(gè)模型,分別是毒性假說(shuō)、能量虧損假說(shuō)、異常PCD假說(shuō)及反向調(diào)節(jié)假說(shuō)。本研究通過(guò)對(duì)線粒體基因進(jìn)行分析,發(fā)現(xiàn)上述3個(gè)基因組間存在差異的基因在不育系與保持系及恢復(fù)系之間的差異表達(dá)無(wú)顯著差異(圖7)。由于及是氧化磷酸化途徑中復(fù)合體Ⅴ的組成部分,為復(fù)合體Ⅳ的成分,這些基因微小的表達(dá)差異也可引起能量供應(yīng)的波動(dòng),進(jìn)而造成花粉不育。轉(zhuǎn)錄組數(shù)據(jù)分析結(jié)果表明,氧化磷酸化相關(guān)基因在87-1不育系中表達(dá)較低,而在87-1保持系與恢復(fù)系中上調(diào)表達(dá)(圖4,紅框基因);而在87-1恢復(fù)系中同時(shí)還抑制了該途徑中另外幾個(gè)基因的表達(dá)(圖4,藍(lán)框基因),從而恢復(fù)線粒體的能量供求;ATP酶活性測(cè)定結(jié)果顯示ATP酶活性波動(dòng)趨勢(shì)(圖6)與由轉(zhuǎn)錄組數(shù)據(jù)中相應(yīng)基因的表達(dá)趨勢(shì)推導(dǎo)的結(jié)論一致。氧化磷酸化途徑復(fù)合體Ⅴ與ATP的合成直接有關(guān),qRT-PCR分析顯示,復(fù)合體Ⅴ亞基基因在四分體時(shí)期達(dá)到高峰,且中期Ⅰ中恢復(fù)系和保持系中的表達(dá)量比不育系高出數(shù)倍(圖5)。據(jù)此推斷,玉米C型胞質(zhì)雄性不育可能是由線粒體能量不足引起的,而恢復(fù)基因則可以對(duì)不育基因引起的能量虧損進(jìn)行補(bǔ)償;同時(shí)恢復(fù)基因可能通過(guò)協(xié)調(diào)氧化磷酸化途徑中不同的復(fù)合體亞基,促進(jìn)整個(gè)途徑中的反應(yīng)有序運(yùn)行,彌補(bǔ)不育基因的有害作用,進(jìn)而恢復(fù)育性。
A:atp6c;B:atp9-1;C:cox2-1;D:nad4
植物細(xì)胞色素P450基因家族參與多個(gè)代謝途徑,影響植物的生長(zhǎng)發(fā)育及開(kāi)花[37]。過(guò)表達(dá)的擬南芥植株與野生型相比具有更大的莢果、較短的雄蕊以及較低的育性等[42]。敲除的擬南芥具有更多的葉片[43]。而則參與擬南芥生殖發(fā)育[44]。水稻中與花藥角質(zhì)的合成及花粉外壁的形成相關(guān)[45]。玉米核不育基因?yàn)榧?xì)胞色素P450類(lèi)基因[46]。前人研究表明細(xì)胞色素P450家族的基因與雄性器官的發(fā)育和育性有關(guān)。本研究發(fā)現(xiàn)減數(shù)分裂前期Ⅰ時(shí)不育系相比保持系,細(xì)胞色素P450基因與表達(dá)量極低,恢復(fù)系通過(guò)恢復(fù)其中一個(gè)細(xì)胞色素P450基因使得減數(shù)分裂正常向后進(jìn)行。隨后恢復(fù)系中通過(guò)恢復(fù)更多的細(xì)胞色素P450基因并抑制該家族中不需要的基因保證絨氈層細(xì)胞的正常功能最終恢復(fù)花粉的育性。由此推測(cè),不育基因可能影響到細(xì)胞色素P450基因的表達(dá),而恢復(fù)基因通過(guò)早期恢復(fù)相應(yīng)細(xì)胞色素P450基因的表達(dá),進(jìn)而級(jí)聯(lián)恢復(fù)后續(xù)發(fā)育所需的該家族基因,保證了細(xì)胞功能的正常行使,從而使育性得以恢復(fù)。
玉米C型胞質(zhì)不育形成的關(guān)鍵時(shí)期可能為減數(shù)分裂中期Ⅰ與減數(shù)分裂后期Ⅱ之間;玉米C型胞質(zhì)不育機(jī)理可能是能量虧損假說(shuō),恢復(fù)基因通過(guò)直接或間接作用進(jìn)行能量補(bǔ)償而恢復(fù)育性。
[1] Dewey R, Levings C S, Timothy D H. Novel recombinations in the maize mitochondrial genome produce a unique transcriptional unit in the texas male-sterile cytoplasm., 1986, 44(3): 439-449.
[2] Peng X, Wang K, Hu C, Zhu Y, Wang T, Yang J, Tong J, Li S, Zhu Y. The mitochondrial gene orfH79 plays a critical role in impairing both male gametophyte development and root growth in CMS-Honglian rice., 2010, 10(1): 125.
[3] Wang Z, Zou Y, Li X, Zhang Q, Chen L, Wu H, Su D, Chen Y, Guo J, Luo D, Long Y, Zhong Y, Liu Y G. Cytoplasmic male sterility of rice with Boro II cytoplasm is caused by a cytotoxic peptide and is restored by two related PPR motif genes via distinct modes of mRNA silencing., 2006, 18(3): 676-687.
[4] Luo D, Xu H, Liu Z, Guo J, Li H, Chen L, Fang C, Zhang Q, Bai M, Yao N, Wu H, Wu H, Ji C, Zheng H, Chen Y, Ye S, Li X, Zhao X, Li R, Liu Y G. A detrimental mitochondrial-nuclear interaction causes cytoplasmic male sterility in rice., 2013, 45(5): 573-577.
[5] Singh M. Suppression of cytoplasmic male sterility by nuclear genes alters expression of a novel mitochondrial gene region., 1991, 3(12): 1349-1362.
[6] Brown G G. Unique aspects of cytoplasmic male sterility and fertility restoration in., 1999, 90(3): 351-356.
[7] Uyttewaal M, Arnal N, Quadrado M, Martin-Canadell A, Vrielynck N, Hiard S, Gherbi H, Bendahmane A, Budar F, Mireau H. Characterization ofpentatricopeptide repeat proteins encoded by the fertility restorer locus for Ogura cytoplasmic male sterility., 2008, 20(12): 3331-3345.
[8] Cui X, Wise R P, Schnable P S. Thenuclear restorer gene of male-sterile T-cytoplasm maize., 1996, 272(5266): 1334-1336.
[9] Fujii S, Toriyama K. Suppressed expression of retrograde- regulated male sterility restores pollen fertility in cytoplasmic male sterile rice plants., 2009, 106(23): 9513-9518.
[10] Itabashi E, Iwata N, Fujii S, Kazama T, Toriyama K. The fertility restorer gene,, for lead rice-type cytoplasmic male sterility of rice encodes a mitochondrial glycine-rich protein., 2011, 65(3): 359-367.
[11] Kitazaki K, Arakawa T, Matsunaga M, Yui-Kurino R, Matsuhira H, Mikami T, Kubo T. Post-translational mechanisms are associated with fertility restoration of cytoplasmic male sterility in sugar beet ()., 2015, 83(2): 290-299.
[12] Bentolila S, Alfonso A A, Hanson M R. A pentatricopeptide repeat-containing gene restores fertility to cytoplasmic male-sterile plants., 2002, 99(16): 10887-10892.
[13] Brown G G, Formanová N, Jin H, Wargachuk R, Dendy C, Patil P, Laforest M, Zhang J, Cheung W Y, Landry B S. The radishrestorer gene of Ogura cytoplasmic male sterility encodes a protein with multiple pentatricopeptide repeats., 2003, 35(2): 262-272.
[14] Koizuka N, Imai R, Fujimoto H, Hayakawa T, Kimura Y, Kohno-Murase J, Sakai T, Kawasaki S, Imamura J. Genetic characterization of a pentatricopeptide repeat protein gene,, that restores fertility in the cytoplasmic male-sterile Kosena radish., 2003, 34(4): 407-415.
[15] Hu J, Wang K, Huang W, Liu G, Gao Y, Wang J, Huang Q, Ji Y, Qin X, Wan L, Zhu R, Li S, Yang D, Zhu Y. The rice pentatricopeptide repeat proteinrestores fertility in Hong-Lian cytoplasmic male-sterile lines via a complex with the glycine-rich protein GRP162., 2012, 24(1): 109-122.
[16] Tang H, Luo D, Zhou D, Zhang Q, Tian D, Zheng X, Chen L, Liu Y G. The rice restorerfor wild-abortive cytoplasmic male sterility encodes a mitochondrial-localized PPR protein that functions in reduction of WA352 transcripts., 2014, 7(9): 1497-1500.
[17] Huang W, Yu C, Hu J, Wang L, Dan Z, Zhou W, He C, Zeng Y, Yao G, Qi J, Zhang Z, Zhu R, Chen X, Zhu Y. Pentatricopeptide-repeat family protein RF6 functions with hexokinase 6 to rescue rice cytoplasmic male sterility., 2015, 112(48): 14984-14989.
[18] Chen L, Liu Y G. Male sterility and fertility restoration in crops., 2014, 65(1): 579-606.
[19] 陳偉程, 羅福和, 季良越. 玉米C型胞質(zhì)雄花不育的遺傳及其在生產(chǎn)上的應(yīng)用. 作物學(xué)報(bào), 1979, 5(4): 21-28.
Chen W C, Luo F H, Ji L Y. Some genetic aspects of the C-type cytoplasmic male-sterility in maize and its use in breeding., 1979, 5(4): 21-28. (in Chinese)
[20] 湯繼華, 劉宗華, 陳偉程, 胡彥民, 季洪強(qiáng), 季良越. 玉米C型胞質(zhì)不育恢復(fù)主基因SSR標(biāo)記. 中國(guó)農(nóng)業(yè)科學(xué), 2001, 34(6): 592-596.
Tang J H, Liu Z H, Chen W C, Hu Y M, Ji H Q, Ji L Y. The SSR markers of the main restorer genes for CMS-C cytoplasmic male sterility in maize., 2001, 34(6): 592-596. (in Chinese)
[21] Dewey R E, Timothy D H, Levings C S. Chimeric mitochondrial genes expressed in the C male-sterile cytoplasm of maize., 1991, 20(6): 475-482.
[22] Allen J O, Fauron C M, Minx P, Roark L, Oddiraju S, Lin G N, Meyer L, Sun H, Kim K, Wang C, Du F, Xu D, Gibson M, Cifrese J, Clifton S W, Newton K J. Comparisons among two fertile and three male-sterile mitochondrial genomes of maize., 2007, 177(2): 1173-1192.
[23] Lee S L, Gracen V E, Earle E D. The cytology of pollen abortion in C-cytoplasmic male-sterile corn anthers., 1979, 66(6): 12.
[24] 陳偉程, 李桂珍. 玉米C型胞質(zhì)雄性不育系花粉敗育的細(xì)胞學(xué)研究. 華北農(nóng)學(xué)報(bào), 1987, 2(1): 1-6.
Chen W C, Li G Z. A cytological study in pollen abortion in C-cytoplasmic male-sterile corn (, L.)., 1987, 2(1): 1-6. (in Chinese)
[25] Liu Q, Lan Y, Wen C, Zhao H, Wang J, Wang Y. Transcriptome sequencing analyses between the cytoplasmic male sterile line and its maintainer line in Welsh onion (L.)., 2016, 17(7): 1058.
[26] Liu C, Ma N, Wang P Y, Fu N, Shen H L. Transcriptome sequencing and De Novo analysis of a cytoplasmic male sterile line and its near-isogenic restorer line in Chili pepper (L.)., 2013, 8(6): e65209.
[27] Li C, Zhao Z, Liu Y, Liang B, Guan S, Lan H, Wang J, Lu Y, Cao M. Comparative transcriptome analysis of isonuclear-alloplasmic lines unmask key transcription factor genes and metabolic pathways involved in sterility of maize CMS-C., 2017, 5: e3408.
[28] Ma J, Skibbe D S, Fernandes J, Walbot V. Male reproductive development: gene expression profiling of maize anther and pollen ontogeny., 2008, 9(12): R181.
[29] Kim D, Langmead B, Salzberg S L. HISAT: a fast spliced aligner with low memory requirements., 2015, 12(4): 357-360.
[30] Pertea M, Pertea G M, Antonescu C M, Chang T C, Mendell J T, Salzberg S L. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads., 2015, 33(3): 290-295.
[31] Love M I, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2., 2014, 15(12): 550.
[32] Yu G, Wang L G, Han Y, He Q Y. ClusterProfiler: an R package for comparing biological themes among gene clusters., 2012, 16(5): 284-287.
[33] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2?ΔΔCTmethod., 2001, 25(4): 402-408.
[34] Hu J, Huang W C, Huang Q, Qin X J, Yu C C, Wang L L, Li S Q, Zhu R S, Zhu Y G. Mitochondria and cytoplasmic male sterility in plants., 2014, 19(B): 282-288.
[35] Touzet P, Meyer E H. Cytoplasmic male sterility and mitochondrial metablolism in plants., 2014, 19(B): 166-171.
[36] Werck-Reichhart D, Feyereisen R. Cytochromes P450: a success story., 2000, 1(6): reviews3003.1-3003.9.
[37] Xu J, Wang X Y, Guo W Z. The cytochrome P450 superfmily: Key players in plant development and defense., 2015, 14(9): 1673-1686.
[38] Qian W F, Zhang J Z. Gene dosage and gene duplicability., 2008, 179(4): 2319-2324.
[39] Spadafora N, Perrotta L, Nieuwland J, Albani D, Bitonti B M, Herbert R J, Doonan J H, Marchbank A M, Siciliano I, Gr?nlund A L, Francis D, Rogers H J. Gene dosage effect of WEE1 on growth and morphogenesis fromexplants., 2012, 110(8): 1631-1639.
[40] Chang N, Sun Q Q, Li Y Q, Mu Y J, Hu J L, Feng Y, Liu X M, Gao H B. PDV2 has a dosage effect on chloroplast division in., 2017, 36(3): 471-480.
[41] Kelliher T, Walbot V. Emergence and patterning of the five cell types of theanther locule., 2011, 350(1): 32-49.
[42] Fang W, Wang Z, Cui R, Li J, Li Y. Maternal control of seed size by EOD3/CYP78A6 in., 2012, 70: 929-939.
[43] Wang J W, Schwab R, Czech B, Mica E, Weigel D. Dual effects of miR156-targeted SPL genes and CYP78A5/KLUH on plastochron length and organ size in., 2008, 20: 1231-1243.
[44] Sotelo-Silveira M, Cucinotta M, Chauvin A L, Chavez Montes R A, Colombo L, Marsch-Martinez N, de Folter S. Cytochrome P450 CYP78A9 is involved inreproductive development., 2013, 162: 779-799.
[45] Li H, Pinot F, Sauveplane V, Werck-Reichhart D, Diehl P, Schreiber L, Franke R, Zhang P, Chen L, Gao Y W, Liang W Q, Zhang D B. Cytochrome P450 family member CYP704B2 catalyzes the omega-hydroxylation of fatty acids and is required for anther cutin biosynthesis and pollen exine formation in rice., 2010, 22: 173-190.
[46] Djukanovic V, Smith J, Lowe K, Yang M Z, Gao H R, Jones S, Micholson M G, West A, Lape J, Bidney D, Falco S C, Jantz D, Lyznik L A. Male-sterile maize plants produced by targeted mutagenesis of the cytochrome P450-like gene (MS26) using a re-designed I-CreI homeing endonuclease., 2013, 76: 888-899.
Comparative transcriptome analysis among the three line of cytoplasmic male sterility in maize
XUE Yadong1, YANG Lu1, YANG Huili1, LI Bing1, LIN Yanan1, ZHANG Huaisheng1, GUO Zhanyong1, TANG Jihua1,2
(1College of Agronomy, Henan Agricultural University/Key Laboratory of Wheat and Maize Crops Science, Zhengzhou 450002;2Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou 434025, Hubei)
【Objective】It is one of the most efficient ways to utilize cytoplasmic male sterile (CMS) lines in hybrid seed production, which could improve the purity of seeds, reduce the cost in creating hybrid seeds and enhance the competitiveness of Chinese seed companies. The comparative transcriptome analysis of the anthers at different development stages from the CMS line, the maintainer line and the restorer line (the three lines) were performed in order to understand the mechanism of sterility and restoration of CMS-C in maize, and also to elucidate the regulation network between the restorer gene and the sterile gene, which will provide the fundamental basis for the employment of maize CMS in hybrid seed production.【Method】The transcriptome sequencing was carried out on the anthers at the prophaseⅠ, the metaphaseⅠand the tetrad stage from the three lines based on the elite inbred line Yu87-1. Method of comparative analysis was used to deal with all the transcripts by the tools such as hisat2, ballgown and DESeq2, and to predict genes involved in the regulation network between the sterile gene and the restorer gene, between the different development stages and through the development time series. qRT-PCR was used to verify the differentially expressed genes. The activity of ATPase was quantified with by the spectrophotometric method for the verification of the putative hypothesis.【Result】Transcriptome sequencing totally produced 156.59 Gb sequence data. After mapping and assembling, 53035 Unigenes were obtained. A total of 5676 differentially expressed (DE) genes were identified from the pairwise comparisons (except for comparisons between the restorer lines and the maintainer lines) in the anthers at the different stages from the three lines. Of those, 4705 DE genes between the comparisons of the development stages, 2693 DE genes between the comparisons of the different lines and 135 DE genes related to the time series. The GO molecular functional analysis showed that the genes related to ATP binding, DNA binding and zinc ion binding were highly enriched, in cell component analysis, genes located in integral component of membrane, nucleus and plasma membrane were enriched, and in biological process, genes involved in DNA-templated transcription, regulation of transcription, oxidation-reduction process and primary metabolic process were enriched. KEGG pathway analysis indicated that the oxidative phosphorylation pathways, the carbon metabolism pathways and glycolysis pathways were mostly enriched. Compared to the maintainer lines, several genes involving in the oxidative phosphorylation pathways were significantly down-regulated in the sterile lines, while those down-regulated genes were recovered, besides other genes in the same pathways were also coordinately regulated. The expression trend determined by qRT-PCR on the selected DE genes was in accordance with that in the transcriptome data. The enzyme activity results show that the activity of ATPase in the sterile line was greatly reduced compared to the maintainer line, while in the restorer line, the activities the ATPase were restored due to the existence of the restorer gene.【Conclusion】The onset of the changes in the gene expression caused by the sterile gene in the anthers of CMS-C maize may happen after metaphaseⅠ and before telophase Ⅱ in meiosis before visible phenotype occurred. The energy deficiency model may account for the mechanism of the sterility in maize CMS-C, and the energy requirements were compensated by the restorer gene through direct or indirect manner.
; cytoplasmic male sterility; transcriptome; differentially expressed gene; regulation network
2018-12-10;
2019-02-14
國(guó)家自然科學(xué)基金(31471504)
薛亞?wèn)|,E-mail:yadongxue@henau.edu.cn。通信作者湯繼華,Tel:0371-56990336;E-mail:tangjihua1@163.com
10.3864/j.issn.0578-1752.2019.08.002
(責(zé)任編輯 李莉)