劉波 王嘉麟 陳師林 石靜紋 雷彬 王一帆 李紅培
[摘要] 小膠質(zhì)細(xì)胞是中樞神經(jīng)系統(tǒng)的主要免疫細(xì)胞,其介導(dǎo)的炎性反應(yīng)在缺血缺氧性腦損傷中起著重要的作用。缺血性卒中是腦血管病的常見(jiàn)類型,現(xiàn)有的治療手段不能獲得滿意的臨床療效,因此研究小膠質(zhì)細(xì)胞的作用機(jī)制對(duì)缺血性卒中的治療具有重要意義。本文就近年來(lái)國(guó)內(nèi)外關(guān)于小膠質(zhì)細(xì)胞活化及其對(duì)缺血缺氧性腦損傷的作用、相關(guān)藥物治療等研究展開(kāi)綜述,為缺血性卒中的治療提供新思路。
[關(guān)鍵詞] 小膠質(zhì)細(xì)胞;缺血缺氧性腦損傷;炎性反應(yīng);藥物治療
[中圖分類號(hào)] R743? ? ? ? ? [文獻(xiàn)標(biāo)識(shí)碼] A? ? ? ? ? [文章編號(hào)] 1673-7210(2019)03(c)-0038-05
[Abstract] Microglia cells is the main immune cells in the central nervous system, which induced inflammatory response plays an important role in ischemic-hypoxic brain injury. Ischemic stroke is a common type of cerebrovascular disease, and the existing treatment methods cannot achieve satisfactory clinical efficacy. Therefore, the study on the mechanism of action of microglia cells is of great significance for the treatment of ischemic stroke. In this paper, recent studies on microglia activation and its effect on ischemic and hypoxic brain injury and related drug therapy at home and abroad were reviewed, providing new ideas for the treatment of ischemic stroke.
[Key words] Microglial cells; Hypoxic-ischemic brain damage; Inflammatory response; Pharmaceutical drug
缺血性卒中是腦血管病最主要的類型,具有高發(fā)病率、高致殘率、高死亡率的特點(diǎn),已在我國(guó)造成嚴(yán)重的公共衛(wèi)生問(wèn)題。炎性反應(yīng)在缺血缺氧性腦損傷中起著重要的作用,而抑制炎性反應(yīng)可改善神經(jīng)功能結(jié)局。小膠質(zhì)細(xì)胞是中樞神經(jīng)系統(tǒng)中的主要免疫細(xì)胞,在中樞神經(jīng)系統(tǒng)發(fā)育、維護(hù)和修復(fù)中起著至關(guān)重要的作用。其數(shù)量較少,占神經(jīng)膠質(zhì)細(xì)胞總數(shù)的5%~20%,但分布廣泛。生理情況下,小膠質(zhì)細(xì)胞一般處于靜息狀態(tài),被激活后可轉(zhuǎn)變?yōu)镸1型和M2型。M1型屬于經(jīng)典激活型,M2型為選擇激活型。M1型和M2型產(chǎn)生的病理生理作用不同,M1型小膠質(zhì)細(xì)胞抑制神經(jīng)新生,并加重神經(jīng)損傷;M2型在大腦恢復(fù)過(guò)程中起促進(jìn)作用,包括神經(jīng)發(fā)生、軸突再生、血管生成、少突膠質(zhì)細(xì)胞前體細(xì)胞生成和髓鞘再生等[1]。
1 小膠質(zhì)細(xì)胞的活化
1.1 小膠質(zhì)細(xì)胞的活化及調(diào)控
生理狀態(tài)下,小膠質(zhì)細(xì)胞處于靜止?fàn)顟B(tài);在組織損傷或病原體入侵時(shí),小膠質(zhì)細(xì)胞活化為阿米巴樣,細(xì)胞體積增大,具有很強(qiáng)的吞噬功能;當(dāng)損傷痊愈后又恢復(fù)為靜息狀態(tài)。但在正常環(huán)境中,未成熟的小膠質(zhì)細(xì)胞能表達(dá)誘導(dǎo)型一氧化氮合酶(iNOS),表明其存在一定程度的激活。脂多糖(LPS)和γ干擾素(IFN-γ)誘導(dǎo)M1型小膠質(zhì)細(xì)胞產(chǎn)生促炎性細(xì)胞因子,白細(xì)胞介素-4(IL-4)和/或IL-13誘導(dǎo)M2型產(chǎn)生抗炎性細(xì)胞因子[1-2]。
Th1細(xì)胞分泌的IFN-γ在M1型分化中起著重要的作用。通過(guò)JAK1/JAK2信號(hào)通路,IFN-γ激活信號(hào)轉(zhuǎn)導(dǎo)和轉(zhuǎn)錄激活因子-1(STAT-1),增加促炎性細(xì)胞因子如腫瘤壞死因子-α(TNF-α)、IL-1β、IL-12、IL-23、趨化因子、活性氧和NO等的產(chǎn)生[3]。激活M1的另一條途徑由LPS或通過(guò)Toll-樣受體4(TLR4)激活的損傷相關(guān)分子模式(DAMP)介導(dǎo),隨后形成“激活復(fù)合物”。這些復(fù)合物反過(guò)來(lái)調(diào)節(jié)M1細(xì)胞分泌炎癥介質(zhì)和細(xì)胞表面標(biāo)志物(MHC-Ⅱ、CD86等)[3]。Th2細(xì)胞分泌的細(xì)胞因子如IL-4、IL-13通過(guò)激活STAT-6促進(jìn)M2型小膠質(zhì)細(xì)胞表達(dá)。另外,激活的PI3K/Akt/mTOR信號(hào)通路也會(huì)導(dǎo)致靜止?fàn)顟B(tài)的小膠質(zhì)細(xì)胞向M2型轉(zhuǎn)化[4]。
MAPK信號(hào)通路在小膠質(zhì)細(xì)胞激活中起著重要的作用,通過(guò)這個(gè)信號(hào)通路,4-酮戊二酸抑制谷氨酸的釋放和神經(jīng)毒性的興奮刺激,也可抑制腦缺血灶中M1型小膠質(zhì)細(xì)胞激活[5]。Notch信號(hào)通路通過(guò)TLR4/Myd88/TRAF6/NF-κB信號(hào)通路激活小膠質(zhì)細(xì)胞,加重腦組織損傷[6]。高滲鹽水通過(guò)阻斷Notch信號(hào)通路減少活化的小膠質(zhì)細(xì)胞中NF-κB的生成,進(jìn)而抑制促炎性細(xì)胞因子的釋放。
1.2 小膠質(zhì)細(xì)胞活化的時(shí)間順序
小膠質(zhì)細(xì)胞與缺血缺氧性腦損傷炎性反應(yīng)密切相關(guān),在腦缺血缺氧炎性反應(yīng)中小膠質(zhì)細(xì)胞被激活,但小膠質(zhì)細(xì)胞激活表型有一定的時(shí)間特性。小膠質(zhì)細(xì)胞和招募的巨噬細(xì)胞在腦梗死早期主要表現(xiàn)為M2型,隨后逐漸轉(zhuǎn)變?yōu)镸1型,這在缺血半暗帶尤為明顯[7]。這種極化與腦組織損傷時(shí)間、缺血損傷程度、發(fā)生在灰質(zhì)還是白質(zhì)有關(guān)[1,7]。
2 小膠質(zhì)細(xì)胞對(duì)缺血缺氧性腦損傷的促進(jìn)作用
小膠質(zhì)細(xì)胞是中樞神經(jīng)系統(tǒng)常駐免疫細(xì)胞,來(lái)源于胚胎卵黃囊,并在胚胎發(fā)育早期進(jìn)入腦實(shí)質(zhì)[8]。正常情況下,小膠質(zhì)細(xì)胞起著免疫監(jiān)視作用,可通過(guò)高速運(yùn)功過(guò)程不斷對(duì)周圍環(huán)境進(jìn)行掃描[3],也被認(rèn)為是大腦病理改變的立即感應(yīng)器,能迅速對(duì)大腦中的病理刺激作出響應(yīng)。
炎性反應(yīng)是腦梗死導(dǎo)致腦損傷的重要過(guò)程,炎性指標(biāo)升高常與患者預(yù)后不良相關(guān)。大腦炎性反應(yīng)常由小膠質(zhì)細(xì)胞介導(dǎo)引起。在血腦屏障保護(hù)作用下,小膠質(zhì)細(xì)胞通過(guò)清除細(xì)胞碎片、修剪突觸和分泌生長(zhǎng)修復(fù)因子來(lái)維持正常的大腦功能。在中樞神經(jīng)系統(tǒng)受到各種損傷性刺激時(shí),小膠質(zhì)細(xì)胞被迅速激活產(chǎn)生應(yīng)答反應(yīng)。
2.1 小膠質(zhì)細(xì)胞介導(dǎo)的炎性反應(yīng)對(duì)腦損傷的影響
2.1.1 細(xì)胞因子? 活化的小膠質(zhì)細(xì)胞通過(guò)TLR2-Sphk1通路,引起IL-1β、IL-17、IL-23和TNF-α釋放,從而參與腦缺血再灌注損傷[9]。IL-1β可趨化白細(xì)胞在炎癥局部聚集和活化,加重腦組織損傷,還可激活小膠質(zhì)細(xì)胞,釋放細(xì)胞因子進(jìn)一步加重腦損傷。TNF可加劇或減輕炎性反應(yīng),這與其信號(hào)轉(zhuǎn)導(dǎo)途徑有關(guān)。TNF有跨膜型和可溶型兩種,通過(guò)膜受體TNF-RⅠ(TNF-p55R)和TNF-RⅡ(TNF-p75R)進(jìn)行信號(hào)轉(zhuǎn)導(dǎo)。卒中實(shí)驗(yàn)發(fā)現(xiàn),TNF和抗體具有神經(jīng)保護(hù)作用,盡管實(shí)驗(yàn)證實(shí)TNF具有細(xì)胞毒性作用,但TNF可通過(guò)TNF-RⅠ途徑產(chǎn)生細(xì)胞保護(hù)作用[10]。IFN-γ可通過(guò)JAK1/JAK2信號(hào)通路,誘導(dǎo)M1型小膠質(zhì)細(xì)胞激化,促進(jìn)促炎性細(xì)胞因子大量表達(dá)[3]。
通過(guò)TLR4受體,LPS、DAMP也能觸發(fā)小膠質(zhì)細(xì)胞向M1型轉(zhuǎn)化。動(dòng)物實(shí)驗(yàn)[11]發(fā)現(xiàn),雌激素能顯著較少缺血半暗帶區(qū)TNF-α、IL-1β和IL-6的釋放,減小腦梗死體積,減輕神經(jīng)元損傷,改善神經(jīng)功能,這是通過(guò)激活G蛋白耦聯(lián)受體30進(jìn)而抑制TLR4介導(dǎo)的小膠質(zhì)細(xì)胞炎性反應(yīng)實(shí)現(xiàn)的。LPS、錳等通過(guò)激活小膠質(zhì)細(xì)胞中的MAPK信號(hào)通路,上調(diào)IL-6、TNF-α、COX-2水平,加重中樞神經(jīng)系統(tǒng)炎性反應(yīng)。
2.1.2 基質(zhì)金屬蛋白酶? 活化的小膠質(zhì)細(xì)胞也能釋放基質(zhì)金屬蛋白酶(MMPs),主要有MMP-3、MMP-8和MMP-9三種。MMPs是鋅依賴的內(nèi)肽酶,不僅在正常的腦發(fā)育過(guò)程中表達(dá),也在各種神經(jīng)病理狀態(tài)如阿爾茨海默病、帕金森病、卒中和多發(fā)性硬化等中表達(dá)。在大腦中,基質(zhì)金屬蛋白酶參與損傷后組織形成、神經(jīng)網(wǎng)絡(luò)重塑、血管生成、髓鞘形成等生理過(guò)程,并能維持血腦屏障完整性[12]。
MMPs在病理狀態(tài)下異常表達(dá),導(dǎo)致血腦屏障破壞、炎性細(xì)胞浸潤(rùn)、脫髓鞘和神經(jīng)元死亡。MMP-8在激活的小膠質(zhì)細(xì)胞中表達(dá)明顯上調(diào),對(duì)神經(jīng)炎性反應(yīng)具有促進(jìn)作用。臨床研究[13]顯示,MMP-8與卒中嚴(yán)重程度存在相關(guān)性。MMP-9 能分解大多數(shù)細(xì)胞外基質(zhì),尤其是Ⅳ型和Ⅴ型膠原蛋白。它還能激活多種促炎性細(xì)胞因子和趨化因子,如CXCL-8、IL-1和TNF-α[14]。通過(guò)消化Occludins和Claudins,MMP-9在血腦屏障的破壞中發(fā)揮了重要作用。此外,由于Ⅳ型膠原分解破壞,促進(jìn)了白細(xì)胞向血管內(nèi)皮細(xì)胞遷移。最后,細(xì)胞核內(nèi)MMP-9水平升高降低二磷酸核糖聚合酶-1和X線的交叉互補(bǔ)因子-1的水平,導(dǎo)致破壞的DNA在神經(jīng)元中蓄積[14]。然而,由于蛋白酶在神經(jīng)血管方面的修復(fù)作用[15],卒中后長(zhǎng)時(shí)間抑制MMPs可能對(duì)神經(jīng)功能的恢復(fù)產(chǎn)生不利影響。
2.2 小膠質(zhì)細(xì)胞遷移對(duì)腦損傷的影響
小膠質(zhì)細(xì)胞在局部炎癥刺激下,不僅發(fā)生表型改變,也會(huì)引起遷移能力改變;小膠質(zhì)細(xì)胞受刺激向炎癥病灶遷移浸潤(rùn)。小膠質(zhì)細(xì)胞表面的G蛋白耦聯(lián)受體在激活小膠質(zhì)細(xì)胞不同組分中起著重要的作用,不同的受體對(duì)小膠質(zhì)細(xì)胞遷移產(chǎn)生不同的效應(yīng)。甲?;氖荏w1的激活可促進(jìn)小膠質(zhì)細(xì)胞遷移[16],而μ受體、σ受體抑制小膠質(zhì)細(xì)胞遷移[17],P2Y12受體調(diào)控著小膠質(zhì)細(xì)胞活動(dòng)[18]。
對(duì)小膠質(zhì)細(xì)胞的研究發(fā)現(xiàn),暴露于LPS使得小膠質(zhì)細(xì)胞的遷移能力下降[19]。盡管其作用機(jī)制尚未闡明,已有證據(jù)顯示LPS可通過(guò)下調(diào)P2Y12受體來(lái)削弱小膠質(zhì)細(xì)胞的遷移能力,而P2Y12通過(guò)應(yīng)答ATP的釋放而提高小膠質(zhì)細(xì)胞遷移能力[20]。此外,LPS能誘導(dǎo)小膠質(zhì)細(xì)胞過(guò)度激活,導(dǎo)致NF-κB表達(dá)上調(diào)[21]。激活的小膠質(zhì)細(xì)胞遷移到損傷處,不僅釋放炎性細(xì)胞因子,還可釋放趨化因子,如MCP-1/CCL2、MIP-1α/CCL3,進(jìn)而招募白細(xì)胞浸潤(rùn)[22]。浸潤(rùn)的白細(xì)胞釋放炎癥細(xì)胞毒素,如氧自由基和蛋白酶,破壞缺血性腦組織。
3 小膠質(zhì)細(xì)胞對(duì)缺血缺氧性腦損傷的神經(jīng)保護(hù)作用
小膠質(zhì)細(xì)胞作為中樞神經(jīng)系統(tǒng)第一道防線,在維持中樞神經(jīng)系統(tǒng)微環(huán)境穩(wěn)態(tài)中起著重要的作用。小膠質(zhì)細(xì)胞具有明顯的異質(zhì)性,不同亞群的小膠質(zhì)細(xì)胞對(duì)腦損傷產(chǎn)生不同的作用。耗竭實(shí)驗(yàn)大鼠小膠質(zhì)細(xì)胞使其卒中后腦損傷加重[23],而注射外源性小膠質(zhì)細(xì)胞可減輕實(shí)驗(yàn)沙鼠缺血性腦損傷[24]。由于caspase-3介導(dǎo)的細(xì)胞凋亡,小膠質(zhì)細(xì)胞未能完全吞噬凋亡神經(jīng)元,從而增加興奮性毒性損傷,并進(jìn)一步加重由缺血再灌注引起的細(xì)胞因子和趨化因子的釋放[23]。興奮性毒性被認(rèn)為是神經(jīng)元死亡的主要機(jī)制,它由各種細(xì)胞死亡信號(hào)通路介導(dǎo)的細(xì)胞內(nèi)鈣超載引起。缺乏小膠質(zhì)細(xì)胞會(huì)加重興奮性毒性損傷,這是因?yàn)樾∧z質(zhì)細(xì)胞缺乏會(huì)引起神經(jīng)元鈣反應(yīng)失調(diào)、鈣超載和增加神經(jīng)元死亡[25]。
興奮性毒性損傷的神經(jīng)元可發(fā)出包括細(xì)胞因子、趨化因子和生長(zhǎng)因子等在內(nèi)的多種“求救”信號(hào),誘導(dǎo)M2型小膠質(zhì)細(xì)胞表達(dá),進(jìn)而釋放神經(jīng)營(yíng)養(yǎng)因子促進(jìn)神經(jīng)元恢復(fù)[26]。M2型小膠質(zhì)細(xì)胞可產(chǎn)生多種神經(jīng)營(yíng)養(yǎng)因子,刺激神經(jīng)發(fā)生和改善神經(jīng)可塑性。一項(xiàng)動(dòng)物實(shí)驗(yàn)研究[27]證實(shí),在短暫性大腦中動(dòng)脈栓塞后,小膠質(zhì)細(xì)胞表達(dá)的IL-33明顯升高;IL-33通過(guò)IL-33/ST2 信號(hào)通路增加M2小膠質(zhì)細(xì)胞表達(dá)IL-10,提供神經(jīng)保護(hù)作用;而將IL-33注入已敲除IL-10的小鼠腦室內(nèi),不能對(duì)腦梗死小鼠提供神經(jīng)保護(hù)作用。腦缺血?jiǎng)游飳?shí)驗(yàn)[28]顯示,缺血半暗帶神經(jīng)元優(yōu)先表達(dá)IL-4。IL-4一方面上調(diào)小膠質(zhì)細(xì)胞IL-4R,對(duì)小膠質(zhì)細(xì)胞產(chǎn)生“前反饋”調(diào)節(jié)作用;另一方面通過(guò)PPARγ途徑誘導(dǎo)M2小膠質(zhì)細(xì)胞表達(dá),提高其清除凋亡神經(jīng)元的能力,并增加營(yíng)養(yǎng)因子的表達(dá),發(fā)揮神經(jīng)保護(hù)作用。此外,在中樞神經(jīng)系統(tǒng)重塑過(guò)程中,M2型小膠質(zhì)細(xì)胞可分化為少突膠質(zhì)細(xì)胞,這有助于促進(jìn)神經(jīng)系統(tǒng)的恢復(fù)。
4 小膠質(zhì)細(xì)胞在缺血性卒中治療中的作用
4.1 西藥對(duì)缺血性卒中的神經(jīng)保護(hù)作用
一項(xiàng)系統(tǒng)評(píng)價(jià)[29]報(bào)道,起病前已服用他汀類的卒中患者腦缺血再灌注損傷更輕,且其神經(jīng)功能可獲得更好的改善。體外實(shí)驗(yàn)[30]顯示,因?qū)π∧z質(zhì)細(xì)胞在炎性反應(yīng)中產(chǎn)生積極影響,瑞舒伐他汀可用于炎性相關(guān)神經(jīng)疾病的預(yù)防。Zhou等[31]發(fā)現(xiàn),AMPK激活劑二甲雙胍,能促進(jìn)小膠質(zhì)細(xì)胞激活轉(zhuǎn)變?yōu)镸2型,并顯著增加了大腦中動(dòng)脈閉塞大鼠缺血腦組織血管生成和神經(jīng)新生。依達(dá)拉奉通過(guò)抑制局部梗死區(qū)小膠質(zhì)細(xì)胞活化和小膠質(zhì)細(xì)胞釋放TNF-α、IL-1β和iNOS,發(fā)揮神經(jīng)保護(hù)作用[32]。丁基苯酞發(fā)揮腦保護(hù)作用與促進(jìn)M1型小膠質(zhì)細(xì)胞向M2型極化有關(guān)[33]。丁酸鈉通過(guò)IL-10/SATA3信號(hào)通路調(diào)控小膠質(zhì)細(xì)胞在缺血性中風(fēng)的炎性過(guò)程,發(fā)揮神經(jīng)保護(hù)作用[34]。
4.2 中藥提取物對(duì)缺血性腦卒中的神經(jīng)保護(hù)作用
黃芩苷能抑制局部梗死區(qū)小膠質(zhì)細(xì)胞活化和小膠質(zhì)細(xì)胞釋放TNF-α、IL-1β和iNOS,發(fā)揮神經(jīng)保護(hù)作用,其抗炎作用似乎強(qiáng)于依達(dá)拉奉;兩者合用時(shí)減輕腦梗死作用更明顯,這可能與抑制TLR2受體上調(diào)有關(guān)[33]。體內(nèi)外實(shí)驗(yàn)證實(shí),銀杏苦內(nèi)酯B衍生物XQ-1H可通過(guò)調(diào)節(jié)PPARγ通路,實(shí)現(xiàn)小膠質(zhì)細(xì)胞在促炎/抗炎中維持平衡,減輕缺血性卒中的炎性反應(yīng),改善神經(jīng)功能和結(jié)局[35]。紅景天苷通過(guò)抑制小膠質(zhì)細(xì)胞向M1型活化,增加M2型小膠質(zhì)細(xì)胞從而發(fā)揮神經(jīng)保護(hù)作用[36]。紅景天苷也可通過(guò)增加M2型小膠質(zhì)細(xì)胞分化為少突膠質(zhì)細(xì)胞,促進(jìn)損傷神經(jīng)再髓鞘化[36]。經(jīng)丹參酮ⅡA預(yù)處理的腦梗死大鼠,其腦梗死體積、腦水腫、神經(jīng)功能缺損程度明顯低于無(wú)預(yù)處理組;其海馬和皮層表達(dá)的IL-6、TNF-α、C反應(yīng)蛋白水平明顯下調(diào);另外,丹參酮ⅡA也能顯著下調(diào)Bax的表達(dá),上調(diào)Bcl-2的表達(dá),減少神經(jīng)元凋亡,提示丹參酮ⅡA治療腦梗死可能與抑制炎性反應(yīng)和細(xì)胞凋亡密切相關(guān)[37]。
5 總結(jié)
綜上所述,小膠質(zhì)細(xì)胞過(guò)度激活導(dǎo)致促炎性細(xì)胞因子大量釋放,加重神經(jīng)損傷,在疾病進(jìn)展中起著重要的作用。M1型小膠質(zhì)細(xì)胞釋放促炎性細(xì)胞因子,導(dǎo)致局部炎性細(xì)胞浸潤(rùn)、血腦屏障破壞、神經(jīng)元死亡;M2型促進(jìn)抗炎性細(xì)胞因子、神經(jīng)營(yíng)養(yǎng)因子表達(dá),增加少突膠質(zhì)細(xì)胞數(shù)量,在神經(jīng)組織抗損傷和損傷后修復(fù)中起著重要作用。某些藥物或信號(hào)通路通過(guò)調(diào)節(jié)小膠質(zhì)細(xì)胞極化方向、影響小膠質(zhì)細(xì)胞的遷移而發(fā)揮神經(jīng)保護(hù)作用,這為治療腦缺血性損傷提供新策略。因此,對(duì)小膠質(zhì)細(xì)胞進(jìn)行調(diào)控,維持小膠質(zhì)細(xì)胞在缺血性腦損傷過(guò)程中達(dá)到促炎與抗炎平衡,有助于為臨床實(shí)踐提供新思路。但是小膠質(zhì)細(xì)胞在神經(jīng)損傷或保護(hù)中的作用機(jī)制極為復(fù)雜,需要大量的研究闡述其作用機(jī)制。
[參考文獻(xiàn)]
[1]? Hu X,Leak RK,Shi Y,et al. Microglial and macrophage polarization-new prospects for brain repair [J]. Nat Rev Neurol,2015,11(1):56-64.
[2]? Xiong XY,Liu L,Yang QW. Functions and mechanisms of microglia/macrophages in neuroinflammation and neurogenesis after stroke [J]. Prog Neurobiol,2016,142:23-44.
[3]? Zhao S,Ma L,Chu Z,et al. Regulation of microglial activation in stroke [J]. Acta Pharmacol Sin,2017,38(4):445-458.
[4]? Lim JE,Chung E,Son Y. A neuropeptide,Substance-P,directly induces tissue-repairing M2 like macrophages by activating the PI3K/Akt/mTOR pathway even in the presence of IFNγ [J]. Sci Rep,2017,7(1):9417.
[5]? Han Q,Liu S,Li Z,et al. DCPIB,a potent volume-regulated anion channel antagonist,attenuates microglia-mediated inflammatory response and neuronal injury following focal cerebral ischemia [J]. Brain Res,2014,1542(2):176-185.
[6]? Cai Z,Zhao B,Deng Y,et al. Notch signaling in cerebrovascular diseases (Review) [J]. Mol Med Rep,2016,14(4):2883-2898.
[7]? Hu X,Li P,Guo Y,et al. Microglia/macrophage polarization dynamics reveal novel mechanism of injury expansion after focal cerebral ischemia [J]. Stroke,2012,43(11):3063-3070.
[8]? Orihuela R,McPherson CA,Harry GJ. Microglial M1/M2 polarization and metabolic states [J]. Br J Pharmacol,2016, 173(4):649-665.
[9]? Sun W,Ding Z,Xu S,et al. Crosstalk between TLR2 and Sphk1 in microglia in the cerebral ischemia/reperfusion-induced inflammatory response [J]. Int J Mol Med,2017, 40(6):1750-1758.
[10]? Lambertsen KL,Biber K,F(xiàn)insen B. Inflammatory cytokines in experimental and human stroke [J]. J Cereb Blood Flow Metab,2012,32(9):1677-1698.
[11]? Zhang Z,Qin P,Deng Y,et al. The novel estrogenic receptor GPR30 alleviates ischemic injury by inhibiting TLR4-mediated microglial inflammation [J]. J Neuroinflammation,2018,15(1):206.
[12]? Rempe RG,Hartz AM,Bauer B. Matrix metalloproteinases in the brain and blood-brain barrier:Versatile breakers and makers [J]. J Cereb Blood Flow Metab,2016,36(9):1481-1507.
[13]? Misra S,Talwar P,Kumar A,et al. Association between matrix metalloproteinase family gene polymorphisms and risk of ischemic stroke:A systematic review and meta-analysis of 29 studies [J]. Gene,2018,672:180-194.
[14]? Chang JJ,Ansley S,Tayebeh P. The Role of Matrix Metalloproteinase Polymorphisms in Ischemic Stroke [J]. Int J Mol Sci,2016,17(8):1323.
[15]? Ma F,Martínez-San Segundo P,Barceló V,et al. Matrix metalloproteinase-13 participates in neuroprotection and neurorepair after cerebral ischemia in mice [J]. Neurobiol Dis,2016,91:236-246.
[16]? 薛鑫,陳星星,王冠,等.甲酰基肽受體1對(duì)BV-2細(xì)胞遷移的影響及機(jī)制的體外研究[J].第三軍醫(yī)大學(xué)學(xué)報(bào),2016,38(1):44-49.
[17]? Fung S,Cherry AE,Xu C,et al. Alkylindole-sensitive receptors modulate microglial cell migration and proliferation [J]. Glia,2015,63(10):1797-1808.
[18]? Sipe GO,Lowery RL,Tremblay Mè,et al. Microglial P2Y12 is necessary for synaptic plasticity in mouse visual cortex [J]. Nat Commun,2016,7:10905.
[19]? Zhang F,Nance E,Alnasser Y,et al. Microglial migration and interactions with dendrimer nanoparticles are altered in the presence of neuroinflammation [J]. J Neuroinflammation,2016,13(1):1-11.
[20]? Charolidi N,Schilling T,Eder C. Microglial Kv1.3 Channels and P2Y12 Receptors Differentially Regulate Cytokine and Chemokine Release from Brain Slices of Young Adult and Aged Mice [J]. PLoS One,2015,10(5):e0128463.
[21]? Fu Y,Xin Z,Liu B,et al. Platycodin D Inhibits Inflammatory Response in LPS-Stimulated Primary Rat Microglia Cells through Activating LXRα-ABCA1 Signaling Pathway [J]. Front Immunol,2018,8:1929.
[22]? Khan A,Ju F,Xie W,et al. Transcriptomic analysis reveals differential activation of microglial genes after ischemic strokein mice [J]. Neuroscience,2017,348:212-227.
[23]? Fernández-López D,F(xiàn)austino J,Klibanov AL,et al. Microglial Cells Prevent Hemorrhage in Neonatal Focal Arterial Stroke [J]. J Neurosci,2016,36(10):2881-2893.
[24]? Imai F,Suzuki H,Oda J,et al. Neuroprotective effect of exogenous microglia in global brain ischemia [J]. J Cereb Blood Flow Metab,2007,27(3):488-500.
[25]? Szalay G,Martinecz B,Lénárt N,et al. Microglia protect against brain injury and their selective elimination dysregulates neuronal network activity after stroke [J]. Nat Commun,2016,7:11499.
[26]? Puig B,Brenna S,Magnus T. Molecular Communication of a Dying Neuron in Stroke [J]. Int J Mol Sci,2018,19(9).pii:E2834.
[27]? Yang Y,Liu H,Zhang H,et al. ST2/IL-33-Dependent Microglial Response Limits Acute Ischemic Brain Injury [J]. J Neurosci,2017,37(18):4692-4704.
[28]? Zhao X,Wang H,Sun G,et al. Neuronal Interleukin-4 as a Modulator of Microglial Pathways and Ischemic Brain Damage [J]. J Neurosci,2015,35(32):11281-11291.
[29]? Hong KS,Lee JS. Statins in Acute Ischemic Stroke:A Systematic Review [J]. J Stroke,2015,17(3):282-301.
[30]? Kata D,F(xiàn)?觟ldesi I,F(xiàn)eher LZ. Rosuvastatin enhances anti-inflammatory and inhibits pro-inflammatory functions in cultured microglial cells [J]. Neuroscience,2016,314:47-63.
[31]? Zhou X,Cao Y,Ao G,et al. CaMKKβ-dependent activation of AMP-activated protein kinase is critical to suppressive effects of hydrogen sulfide on neuroinflammation [J]. Antioxid Redox Signal,2014,21(12):1741-1758.
[32]? Yuan Y,Zha H,Rangarajan P,et al. Anti-inflammatory effects of Edaravone and Scutellarin in activated microglia in experimentally induced ischemia injury in rats and in BV-2 microglia [J]. BMC Neurosci,2014,15(1):1-21.
[33]? Li F,Ma Q,Zhao H. L-3-n-Butylphthalide reduces ischemic stroke injury and increases M2 microglial polarization [J]. Metab Brain Dis,2018,33(6):1995-2003.
[34]? Patnala R,Arumugam TV,Gupta N,et al. HDAC Inhibitor Sodium Butyrate-Mediated Epigenetic Regulation Enhances Neuroprotective Function of Microglia During Ischemic Stroke [J]. Mol Neurobiol,2017,54(8):6391-6411.
[35]? Liu R,Diao J,He S,et al. XQ-1H protects against ischemic stroke by regulating microglia polarization through PPARγ pathway in mice [J]. Int Immunopharmacol,2018, 57:72-81.
[36]? Liu X,Wen S,Yan F,et al. Salidroside provides neuroprotection by modulating microglial polarization after cerebral ischemia [J]. J Neuroinflammation,2018,15(1):39.
[37]? Zhou L,Zhang J,Wang C,et al. Tanshinone inhibits neuronal cell apoptosis and inflammatory response in cerebral infarction rat model [J]. Int J Immunopathol Pharmacol,2017,30(2):123-129.
(收稿日期:2018-09-14? 本文編輯:封? ?華)