国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

競爭性內(nèi)源性RNA與胃癌的相關(guān)研究進(jìn)展

2019-04-25 03:21安健健姜相君
中國現(xiàn)代醫(yī)生 2019年7期
關(guān)鍵詞:微小RNA胃癌

安健健 姜相君

[摘要] 胃癌是全球最常見的癌癥之一,是影響全球健康的一個主要問題。胃癌的發(fā)生發(fā)展是一個多因素共同作用的結(jié)果。近年來,非編碼RNA(non-coding RNA,ncRNA),特別是微小RNA(microRNA,miRNA)和長鏈非編碼RNA(long non-coding RNA,lncRNA),因在人類各種疾病中具有重要意義,包括癌癥,而受到廣泛關(guān)注。無疑,競爭性內(nèi)源性RNA(competitive endogenous RNA,ceRNA)假說的提出為疾病中的基因調(diào)控作用提供了新思路。根據(jù)最新發(fā)現(xiàn),本文描述了ceRNA在胃癌發(fā)生、發(fā)展中的作用和意義,并探討了ceRNA在胃癌中的相互作用及其可能的分子機(jī)制。

[關(guān)鍵詞] 胃癌;競爭性內(nèi)源RNA;長鏈非編碼RNA;微小RNA;假基因;環(huán)狀RNA

[中圖分類號] R735.7? ? ? ? ? [文獻(xiàn)標(biāo)識碼] A? ? ? ? ? [文章編號] 1673-9701(2019)07-0152-07

[Abstract] Gastric cancer is one of the most common cancers in the world and a major problem affecting global health. The occurrence and development of gastric cancer is the result of a combination of multiple factors. In recent years, non-coding RNAs (ncRNAs), especially microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), are important in various human diseases including cancer, and have received widespread attention. Undoubtedly, the proposal of competitive endogenous RNA (ceRNA) hypothesis provides a new idea for gene regulation in diseases. Based on the latest findings, this article describes the role and significance of ceRNA in the development and progression of gastric cancer, and explores the interaction of ceRNA in gastric cancer and its possible molecular mechanisms.

[Key words] Gastric cancer; Competitive endogenous RNA; Long-chain non-coding RNA; microRNA; Pseudogene; Circular RNA

胃癌是世界范圍內(nèi)的一種重要癌癥,盡管在過去幾十年中胃癌事件的發(fā)生率有所下降,成為第五位最常見的癌癥,依然是影響全球健康的一個主要問題[1,2]。胃癌是僅次于肺癌和肝癌的第三大與癌癥相關(guān)的死亡原因[3]。新病例確診后5年存活率僅達(dá)28.3%[4]。胃癌的發(fā)生具有很大的地域差異,大約70%的病例發(fā)生在發(fā)展中國家,半數(shù)病例發(fā)生在東亞,特別是中國[1]。根據(jù)我國2010~2014年惡性腫瘤發(fā)病率及死亡率分析結(jié)果顯示,胃癌是我國第二大常見惡性腫瘤,死亡率位居第三位[5-9]。胃癌的地理分布主要與飲食模式、社會經(jīng)濟(jì)狀況和幽門螺桿菌感染的流行有關(guān)[10]。綜合看來,胃癌仍然是威脅人類健康的一種重要疾病,了解胃癌發(fā)病機(jī)制,在疾病診斷、治療及預(yù)后等方面尋找突破是十分有必要的。

1 胃癌與非編碼RNA(ncRNA)

胃癌是一個多方面因素綜合作用、長期積累的最終結(jié)果,這一發(fā)生發(fā)展過程甚至需要經(jīng)過幾十年,其發(fā)病機(jī)制涉及許多基因、分子信號通路及表觀遺傳學(xué)變化[11,12]。研究表明,在人類基因組中大多數(shù)的轉(zhuǎn)錄本是不編碼蛋白質(zhì)的,即非編碼RNA(non-coding RNA,ncRNA),ncRNA在基因組轉(zhuǎn)錄產(chǎn)生的原始RNA轉(zhuǎn)錄本中占比99%,在成熟RNA中占比80%~90%[13]。ncRNA具有多種生物學(xué)功能,它們可以在轉(zhuǎn)錄、RNA處理和翻譯水平上調(diào)控基因的表達(dá),甚至引導(dǎo)基因組重組[14]。ncRNA主要根據(jù)其長度分為兩類,以200個核苷酸(nt)長度為界,ncRNAs<200 nt長度稱為非編碼小分子RNA(Small non-coding RNAs,sncRNA),包括微小RNA(microRNA,miRNA)、小干擾RNA(small interfering RNA,siRNA)、與PIWI蛋白相互作用的RNA(Piwi-interacting RNA,piRNA)等,ncRNAs>200 nt長度為長鏈非編碼RNA(long non-coding RNA,lncRNA)[15,16]。近年來,ncRNA調(diào)控失調(diào)在多種疾病中得到廣泛關(guān)注,例如:心血管疾病、肺纖維化、流感等[17-19],同樣也參與多種人類癌癥相關(guān)研究,包括胃癌、乳腺癌、結(jié)腸癌、肺癌、肝癌、前列腺癌等[20]??梢妌cRNA是調(diào)控腫瘤等多種疾病十分重要的一類分子,這類分子有望成為疾病研究的新標(biāo)志物。

2 競爭性內(nèi)源性RNA(ceRNA)假說

2011年Salmena和Pandolfi等研究人員首次提出競爭性內(nèi)源RNA(competitive endogenous RNA,ceRNA)假說[21],表示除了傳統(tǒng)的miRNA→RNA作用模式外,還存在反向的RNA→miRNA作用模式。并指出miRNA反應(yīng)元件(miRNA-response elements,MREs)可以看作是RNA語言的“字符”,通過競爭結(jié)合這些“字符”,轉(zhuǎn)錄本之間可以相互交流,形成大規(guī)模的轉(zhuǎn)錄調(diào)控網(wǎng)絡(luò)。該假說揭示了蛋白質(zhì)組學(xué)和傳統(tǒng)基因組方法所忽略的分子相互作用和基因調(diào)控網(wǎng)絡(luò)。在癌癥研究方面,該假說提出假基因(pseudogenes)和lncRNAs應(yīng)該通過其ceRNA功能作為潛在的腫瘤抑制因子和癌基因被系統(tǒng)地研究。在ceRNA調(diào)控系統(tǒng)中miRNAs將RNA誘導(dǎo)的沉默復(fù)合體(RNA-induced silencing complex,RISC)引導(dǎo)到MREs,從而通過抑制翻譯或破壞信使RNA(mRNA)的穩(wěn)定來抑制蛋白質(zhì)的產(chǎn)生。MRE定位于3非翻譯區(qū)(UTR)、編碼序列(CDS)和5UTR,除mRNAs外,還可在非蛋白質(zhì)編碼轉(zhuǎn)錄本中發(fā)現(xiàn),如假基因和lncRNA。每個miRNA都有大量的RNA靶點(diǎn),絕大多數(shù)RNA分子都包含幾個MRE,含有相同miRNA的MRE的轉(zhuǎn)錄本可以相互調(diào)節(jié),從而充當(dāng)ceRNAs[21-24]。在該調(diào)控網(wǎng)絡(luò)中l(wèi)ncRNAs可以充當(dāng)微RNA誘餌來調(diào)控基因表達(dá),它還包括基因間長鏈非編碼RNA(long intergenic ncRNA,lincRNA)、反義RNA(antisense RNA,asRNA)、假基因和環(huán)狀RNA(circular RNAs,circRNA)[22]。ceRNA假說的提出,無疑讓我們對基因表達(dá)調(diào)控有了更深刻的理解。

隨著對ceRNA調(diào)控機(jī)制的認(rèn)識,有不少研究人員將目光轉(zhuǎn)向ceRNA,試圖探索其在腫瘤等疾病中的調(diào)控作用,以豐富對腫瘤發(fā)病機(jī)理的認(rèn)知。例如,研究發(fā)現(xiàn)lncRNA牛磺酸上調(diào)基因(taurine-upregulated gene 1,TUG 1)轉(zhuǎn)錄本中可能存在miR-26a結(jié)合位點(diǎn),TUG 1的表達(dá)與miR-26a在前列腺癌(Prostate cancer,PCA)中的表達(dá)呈負(fù)相關(guān),另外TUG 1的異位過度表達(dá)抑制miR-26a的表達(dá),促進(jìn)腫瘤細(xì)胞在PCA中的遷移、侵襲和增殖。證明TUG 1可充當(dāng)ceRNA,在PCA中與miRNAs相互作用[25]。類似的調(diào)控模式在多種惡性腫瘤中被發(fā)現(xiàn)、討論,包括胃癌。本文將總結(jié)相關(guān)調(diào)控分子在胃癌中的作用及其指導(dǎo)意義。

3 LncRNA作為ceRNA在胃癌中的作用

lncRNAs在癌癥生物學(xué)的許多領(lǐng)域都有重要貢獻(xiàn)。研究表明lncRNAs可以作為癌基因或腫瘤抑制物發(fā)揮作用,直接或間接調(diào)節(jié)腫瘤相關(guān)信號通路,影響腫瘤的發(fā)生發(fā)展[26]。含有MREs的lncRNAs可與miRNA靶基因競爭,并通過減少游離功能的miRNA來調(diào)節(jié)其表達(dá)。長鏈非編碼ceRNA和蛋白質(zhì)編碼RNA都含有miRNA的結(jié)合位點(diǎn),所以長非編碼ceRNA的上調(diào)可與蛋白質(zhì)編碼RNA競爭結(jié)合miRNA[27]。

3.1 HOTAIR

HOX反義基因間RNA(HOX Antisense Intergenic RNA.,HOTAIR)是從哺乳動物12q13號染色體上的HOXC基因簇中轉(zhuǎn)錄出來的,長度為2.2 kb(kilobase,千堿基)的lncRNA[28]。大量研究發(fā)現(xiàn)HOTAIR在多種腫瘤的增殖、存活、遷移、耐藥性和基因組穩(wěn)定性等方面發(fā)揮著重要作用[29]。Liu等研究人員通過實(shí)驗(yàn)發(fā)現(xiàn),HOTAIR的過表達(dá)促進(jìn)了胃癌細(xì)胞的增殖、遷移和侵襲,并驗(yàn)證人類表皮生長因子受體2(human epidermal growth factor receptor-2,HER2)是miR-331-3p的靶標(biāo)。HOTAIR通過與miR-331-3p結(jié)合,從而消除了miRNA誘導(dǎo)對HER2的3‘-UTR的抑制活性,即說明了HOTAIR作為靶標(biāo)HER2 mRNA的ceRNA,通過與miR-331-3p結(jié)合,調(diào)節(jié)HER2的去表達(dá)[30]。Wang等也發(fā)現(xiàn)HOTAIR的高表達(dá)可抑制miR-217的表達(dá),從而增強(qiáng)蛋白酪氨酸磷酸酶非受體型14(protein tyrosine phosphatase non-receptor type 14,PTPN 14)的表達(dá)[31]。另外Yan等證明HOTAIR可與miR-126結(jié)合,抑制miR-126的表達(dá),進(jìn)而促進(jìn)血管內(nèi)皮生長因子A(vascular endothelial growth factor A,VEGFA)和磷酸肌醇3激酶調(diào)控亞單位(phosphoinositide 3-kinase regulatory subunit 2,PIK3R2)的表達(dá),激活PI3K/AKT/MRP1通路,促進(jìn)胃癌對順鉑的耐藥性[32]。HOTAIR最新相關(guān)研究表明,其參與多種惡性腫瘤的發(fā)生,例如:HOTAIR通過miR-217上調(diào)鋅指轉(zhuǎn)錄因子1(zinc-finger E-box binding homeobox 1,ZEB1)的表達(dá)介導(dǎo)骨肉瘤的進(jìn)展[33];HOTAIR通過負(fù)調(diào)控miR-206的表達(dá),增強(qiáng)細(xì)胞周期素CCND 1和CCND 2的表達(dá),參與卵巢癌的進(jìn)展,而細(xì)胞周期素(Cyclin D1,CCND 1)和細(xì)胞周期素(Cyclin D2,CCND 2)都是miR-206的下游靶點(diǎn)[34];在膠質(zhì)瘤中發(fā)現(xiàn)HOTAIR可充當(dāng)ceRNA通過與miR-126-5p作用調(diào)節(jié)谷氨酰胺酶(glutaminase,GLS)的表達(dá),表明HOTAIR/miR-126/GLS通路參與了膠質(zhì)瘤的進(jìn)展[35]。

3.2 PVT1

漿細(xì)胞瘤變異型易位基因(plasmacytoma variant translocation gene,PVT1)位于人類8q24染色體的lncRNA[36],它在胃癌、非小細(xì)胞肺癌、結(jié)直腸癌、胰腺癌等多種人類腫瘤中都有研究,并且PVT 1的表達(dá)可作為腫瘤預(yù)后監(jiān)測的生物標(biāo)志物[37]。有研究發(fā)現(xiàn)PVT1在胃癌組織和細(xì)胞系中的表達(dá)明顯上調(diào),具有促進(jìn)胃癌細(xì)胞的增殖和侵襲的作用,可通過與miR-186相互作用抑制缺氧誘導(dǎo)因子(hypoxia inducible factor 1α,HIF-1α)的表達(dá)[38]。同樣在胃癌研究中發(fā)現(xiàn),PVT1可通過調(diào)節(jié)(抑制)miR-152的表達(dá),增加CD151分子(CD151 molecule)和成纖維細(xì)胞生長因子(fibroblast growth factor 2,F(xiàn)GF2)的表達(dá)[39]。最近,在膀胱癌中也有新發(fā)現(xiàn),表示PVT1可能作為ceRNA與miR-128作用調(diào)控血管內(nèi)皮生長因子VEGFC的表達(dá)[40]。在肺癌研究中,PVT1可通過發(fā)揮miR-199a-5p的ceRNA的作用,促進(jìn)非小細(xì)胞肺癌組織中HIF-1α的表達(dá)[41]。

3.3 XIST

X染色體不活躍的特異性轉(zhuǎn)錄本(X inactive specific transcript,XIST)是X染色體失活(XCI)的主調(diào)節(jié)因子,是一個長17 kb的lncRNA[42,43]。大量研究提示lncRNA XIST的高表達(dá)可作為預(yù)后較差的生物標(biāo)志物,可用作判斷腫瘤預(yù)后和轉(zhuǎn)移[44,45]。相關(guān)研究顯示,在胃癌細(xì)胞中,XIST與miR-185表達(dá)呈負(fù)相關(guān),生長因子β1(TGF-β1)為miR-185的靶基因,研究者認(rèn)為XIST可作為ceRNA通過上調(diào)miR-185進(jìn)而抑制TGF-β1的表達(dá),從而抑制胃癌細(xì)胞的生長,并提示XIST可作為胃癌預(yù)后生物標(biāo)志物[46]。另外lncRNA XIST參與了胃癌細(xì)胞的增殖和侵襲,研究發(fā)現(xiàn)XIST作為ceRNA抑制miR-497的表達(dá),而miR-497控制著其下游靶點(diǎn)結(jié)腸癌相關(guān)轉(zhuǎn)移因子-1(metastasis associated in colon cancer-1,MACC1),認(rèn)為XIST通過miR-497/MACC 1軸在胃癌中發(fā)揮功能[47]。在其余疾病研究中,XIST也有很大貢獻(xiàn)。在肺癌中,XIST可充當(dāng)miR-137的ceRNA促進(jìn)非小細(xì)胞肺癌(nonsmall-cell lung cancer,NSCLC)細(xì)胞存活和侵襲,miR-137可靶向作用樁蛋白(paxillin,PXN)的3‘UTR,抑制NSCLC細(xì)胞的存活和侵襲,即XIST通過抑制miR-137對PXN表達(dá)水平起正調(diào)節(jié)作用[48]。在宮頸癌中,XIST通過與miR-200A競爭結(jié)合而上調(diào)了肉瘤融合基因(Fused in sarcoma gene,F(xiàn)US),在宮頸癌進(jìn)展中發(fā)揮重要作用[49]。不止是在惡性腫瘤方面有研究,在骨關(guān)節(jié)炎、脊髓損傷等疾病中,XIST也發(fā)揮了重要作用[50,51]。

3.4 NEAT1

核旁裝配轉(zhuǎn)錄體1(Nuclear paraspeckle assembly transcript 1,NEAT1)位于人類染色體11q13.1上,lncRNA NEAT1基因有兩種轉(zhuǎn)錄本:NEAT1_v1(3.7 kb)和NEAT1_v2(23 kb)[52]。NEAT在胃癌、乳腺癌、肝細(xì)胞癌、甲狀腺癌、卵巢癌等多種惡性腫瘤中都有相關(guān)研究,并證實(shí)其參與了腫瘤細(xì)胞的增殖、遷移、侵襲過程[53]。通過實(shí)驗(yàn)驗(yàn)證發(fā)現(xiàn),NEAT1作為ceRNA通過抑制miR-506表達(dá)從而調(diào)節(jié)胃癌中信號傳導(dǎo)及轉(zhuǎn)錄激活因子(signal transducers and activators of transcription,STAT 3)表達(dá),為胃癌提供潛在的診斷及治療靶點(diǎn)[54]。上調(diào)的NEAT1還可以通過抑制miR-335-5p,調(diào)控靶點(diǎn)Rho依賴性激酶1(Rho-dependent kinase 1,ROCK1)的表達(dá),NEAT1/miR-335-5p/ROCK1軸在胃癌細(xì)胞的增殖、遷移和侵襲過程中發(fā)揮作用[55]。Xiong等在肺腺癌中對NEAT1進(jìn)行相關(guān)研究,提示NEAT1可能作為ceRNA抑制miR-193a-3p的功能,阻斷miR-193a-3p對上游轉(zhuǎn)錄因子1(Upstream Transcription Factor 1,USF1)的抑制,在肺腺癌進(jìn)展中發(fā)揮作用[56]。實(shí)驗(yàn)證實(shí)miR-485是NEAT1的相互作用靶點(diǎn),另外,STAT3是miR-485的直接作用靶點(diǎn),所以認(rèn)為NEAT1可作為ceRNA,通過抑制miR-485在肝細(xì)胞癌中調(diào)控STAT3發(fā)揮作用[57]。

3.5 MEG3

母源性表達(dá)基因(maternally expressed gene 3,MEG3)與小鼠母系印跡基因Gtl2同源,定位于人類染色體14q上,長度約為1.8 kb[58]。MEG3被認(rèn)為是一個非常重要的抑癌基因,也是多種miRNA的宿主,在腫瘤發(fā)生過程中發(fā)揮作用[59]。研究證實(shí)MEG3和miR-148a表達(dá)呈正相關(guān),miR-148a可調(diào)節(jié)靶基因DNA甲基轉(zhuǎn)移酶1(DNA methyltransferase-1,DNMT-1)的表達(dá),抑制胃癌的發(fā)生,說明抑制miR-148a可通過調(diào)節(jié)DNMT-1表達(dá)進(jìn)一步下調(diào)MEG3,參與胃癌進(jìn)程[60]。MEG3在胃癌細(xì)胞株(如HGC-27和MGC-803)中的異位表達(dá)抑制了細(xì)胞的增殖、遷移、侵襲并促進(jìn)細(xì)胞凋亡,MEG3可以作為miR-181a的ceRNA上調(diào)B淋巴細(xì)胞瘤基因2(B-cell lymphoma-2,Bcl-2)的表達(dá)在胃癌中發(fā)揮作用[61]。根據(jù)最新研究顯示,MEG3可作為ceRNA在骨肉瘤、肝糖異生及結(jié)腸癌針對奧沙利鉑耐藥性的研究中發(fā)揮作用[62-64]。

綜上所述,提示人類基因組中可能存在大量可充當(dāng)ceRNA的lncRNA,并在胃癌等多種疾病中發(fā)揮其調(diào)控作用。lncRNA在不同疾病過程中發(fā)揮作用也不同,為疾病的診斷、預(yù)后及耐藥提供新的分子標(biāo)志物及診治靶點(diǎn)。

4 Pseudogenes作為ceRNA在胃癌中的作用

假基因(Pseudogenes)被定義為類似于真基因的基因組位點(diǎn),即與它們的同源蛋白編碼基因有很高的序列相似性,然而在生物學(xué)上被認(rèn)為是無關(guān)緊要的,因?yàn)樗鼈儼怀墒斓慕K止密碼子、缺失/插入和移碼突變,從而使它們不能轉(zhuǎn)化為功能性蛋白質(zhì)[65]。然而假基因在“轉(zhuǎn)錄組”中占比很大,幾乎和編碼基因一樣多[66]。Gu等[67]認(rèn)為假基因就像“內(nèi)源性海綿”,能夠影響miRNA在其靶標(biāo)上的分布。Poliseno等總結(jié)假基因可作為“誘餌”,同時競爭多個miRNA,因?yàn)樗鼈儽A袅嗽S多miRNA結(jié)合位點(diǎn)。假基因介導(dǎo)的miRNA誘餌為miRNA與其靶分子之間的相互作用提供了一個嶄新的維度[65]。假基因已被證明其在各種癌癥中被上調(diào)或下調(diào),可通過ceRNA活性發(fā)揮其致癌或抑癌作用[68]??梢姡瑢倩蜻M(jìn)行有效的統(tǒng)計分析,有利于豐富對疾病進(jìn)展的認(rèn)識,特別是在腫瘤相關(guān)研究中。

4.1 PTENP1

PTEN假基因1(PTENP1)是最早被報道的假基因之一。PTENP 1是抑癌基因磷酸酶和張力蛋白同系物(phosphatase and tensin homolog,PTEN)的假基因,人類PTENP1位于9p13.3染色體上,該假基因與PTEN具有廣泛的序列同源性,這些高度保守的序列可與PTEN靶向miRNAs相匹配,通過作為ceRNA誘導(dǎo)miRNAs來下調(diào)PTEN[65,69]。研究人員發(fā)現(xiàn)PTENP 1和PTEN在胃癌組織中同時下調(diào),PTENP1的過表達(dá)抑制細(xì)胞生長,促進(jìn)細(xì)胞凋亡,抑制胃癌細(xì)胞的遷移和侵襲,進(jìn)一步證明,PTENP1可以作為一種ceRNA誘導(dǎo)miR-106b和miR-93靶向下調(diào)PTEN的表達(dá),揭示了PTENP1作為ceRNA在胃癌中發(fā)揮抑癌作用[70]。另外,在乳腺癌中相關(guān)研究中,PTENP1可作為ceRNA,與miR-19b相互作用調(diào)節(jié)PTEN,在乳腺癌中發(fā)揮生物學(xué)作用[71];在膀胱癌中,miR-17作為PTENP1和PTEN的共同靶點(diǎn),與lncRNA PTENP1作用調(diào)控PTEN的表達(dá),可抑制膀胱癌的進(jìn)展[72];在肝癌中,驗(yàn)證了PTENP1可作為ceRNA與miR-193a-3p相互作用,調(diào)控下游PTEN/Akt通路[73]。

大量實(shí)驗(yàn)數(shù)據(jù)證實(shí),假基因并非無關(guān)緊要,相反,本人認(rèn)為因?yàn)榕c親本基因具有廣泛的同源序列,使其可能成為miRNA強(qiáng)有力的競爭對手,進(jìn)而調(diào)控靶基因的表達(dá),在疾病中扮演重要角色,在疾病進(jìn)展中發(fā)揮重要作用。

5 circRNA作為ceRNA在胃癌中的作用

已有研究人員驗(yàn)證,環(huán)狀RNA(circular RNA,circRNA)是通過頭對尾剪接外顯子形成的,具有調(diào)節(jié)能力的一類RNA分子[74]。通過實(shí)驗(yàn)分析,circRNA是一種常見且豐富的ncRNA,與相關(guān)的線性轉(zhuǎn)錄因子相比,circRNA更豐富(>10倍),并且在進(jìn)化上是保守的,circRNA具有豐富、保守、穩(wěn)定的特性,存在miRNA結(jié)合位點(diǎn),并且circRNA可以被siRNAs降解,因此被認(rèn)為可以作為ceRNA發(fā)揮作用[75]。

5.1 CDR1as

小腦變性相關(guān)蛋白1反義轉(zhuǎn)錄子(Cerebellar Degeneration-Related protein 1 antisense transcripts,CDR1as)是由Hansen等[76]研究人員發(fā)現(xiàn)的一種circRNA,之后在多種疾病中被廣泛研究。研究已證明CDR1as在神經(jīng)元組織中具有與miR-7結(jié)合的功能[74]。受此啟發(fā),Xu等推測CDR1as的表達(dá)可能抑制胰島細(xì)胞的miR-7功能,進(jìn)而促進(jìn)胰島素的分泌,因?yàn)閙iR-7在胰島細(xì)胞中大量表達(dá)。并通過實(shí)驗(yàn)發(fā)現(xiàn)CDR1as/miR-7通路調(diào)控胰島素分泌的新靶點(diǎn)[77]。近年來研究顯示,在非小細(xì)胞肺癌中CDR1as可作為miR-7海綿,上調(diào)miR-7的主要靶基因,包括表皮生長因子受體(epidermal growth factor receptor,EGFR)、細(xì)胞周期素E1(Cyclin E1,CCNE 1)和磷酸化磷脂酰肌醇激酶催化亞單位D(PIK3CD),抑制抑癌基因miR-7的抗腫瘤作用[78]。在喉鱗癌細(xì)胞中檢測到CDR1as可促進(jìn)細(xì)胞增殖、遷移和侵襲,CDR1的過度表達(dá)可抑制miR-7,而增加增殖指數(shù)CCNE 1和PIK3CD的表達(dá),促進(jìn)腫瘤生長[79]。另外CDR1as/miR-7信號軸在二氧化硅所致肺纖維化及骨肉瘤等疾病中也有研究[80,81]。因?yàn)镃DR1as與miR-7有70多個結(jié)合位點(diǎn),又稱為miR-7的環(huán)狀RNA海綿(circRNA sponge for miR-7,CIRS-7)[82]。在胃癌中,CIRS-7的過表達(dá)也通過拮抗miR-7,進(jìn)而介導(dǎo)PTEN/PI3K/AKT通路,阻斷miR-7的抑癌作用,在胃癌進(jìn)展中發(fā)揮重要作用[83]。

相關(guān)研究證明circRNA也可以作為ceRNA競爭性結(jié)合miRNA在疾病中發(fā)揮作用,而且circRNA具有含量豐富、保守、穩(wěn)定的特點(diǎn),這將為其在疾病中發(fā)揮重要作用提供優(yōu)勢,可以看做是腫瘤等疾病的生物標(biāo)志物。

6 潛在的問題

根據(jù)ceRNA假說,結(jié)合上述相關(guān)的ceRNA分子作用機(jī)制,我們了解了在這種RNA相互作用的調(diào)控模式中,因?yàn)榭赡艽嬖谙嗤腗REs,而可以發(fā)生相互“交流”, 從而形成大規(guī)模的轉(zhuǎn)錄調(diào)控網(wǎng)絡(luò)。在ceRNA假說提出后,吸引了不少研究人員的目光,多方面的研究顯示,ceRNA在多種疾病中存在并且發(fā)揮重要作用。但是同樣也存在質(zhì)疑聲,有研究人員通過肝細(xì)胞和肝臟中miR-122靶點(diǎn)的表達(dá)改變細(xì)胞內(nèi)靶點(diǎn)的豐度,并分析了對miR-122靶基因的影響,總結(jié)得出,在肝臟的生理或疾病背景中,由單個miRNA家族介導(dǎo)的ceRNA效應(yīng)是不可能的,這種功能可能在正常組織中廣泛存在[84]。面對質(zhì)疑,可能需要更多的努力,更深入的探索去解決思考、解決問題。

7 總結(jié)

胃癌依然是影響全球健康的重大問題,其發(fā)病率和死亡率仍然位居前列,依舊是一種具有挑戰(zhàn)性的疾病。胃癌的發(fā)病機(jī)制復(fù)雜且多樣化,外在涉及多種相關(guān)危險因素,內(nèi)在牽連復(fù)雜的分子機(jī)制,除了控制相關(guān)危險因素,提高居民的健康管理意識,建議及早消化內(nèi)鏡檢查以篩查高風(fēng)險人群,倡導(dǎo)“早發(fā)現(xiàn),早治療”的宗旨;更深層次的分子機(jī)制急需大量的研究成果、數(shù)據(jù)來豐富我們對發(fā)病機(jī)制和疾病發(fā)展過程的認(rèn)知。ceRNA假說的提出,讓我們對RNA之間的調(diào)控模式有了新的認(rèn)識,其中ncRNA在調(diào)控中發(fā)揮重要作用,無論是lncRNA、假基因還是cricRNA,都可充當(dāng)ceRNA在此調(diào)控模式中發(fā)揮各自的作用。本文重點(diǎn)描述與胃癌相關(guān)的ceRNA分子,描述了在胃癌進(jìn)展中不同的ceRNA分子通過調(diào)控不同miRNA進(jìn)而影響其對應(yīng)靶基因的表達(dá)的證據(jù)。同樣也列舉說明了部分與其他疾病相關(guān)的ceRNA分子,旨在說明ceRNA不只在胃癌中可發(fā)揮重要作用,在很多疾病中(包括癌癥)都可發(fā)揮其相應(yīng)的作用。闡明這一新的RNA相互作用的調(diào)控模式,將為胃癌在內(nèi)的多種疾病得診斷、治療、預(yù)后、以及化療藥物耐藥提供新的分子靶點(diǎn)??梢姼玫亓私膺@一調(diào)控模式的基本機(jī)制及其在胃癌生物學(xué)中的作用,有利于開發(fā)診斷及治療胃癌的新策略,有望改善患者的預(yù)后及提高生存率。

[參考文獻(xiàn)]

[1] Lazar DC,Avram MF,Romosan I,et al. Prognostic significance of tumor immune microenvironment and immunotherapy:Novel insights and future perspectives in gastric cancer[J]. World J Gastroenterol,2018,24(32):3583-3616.

[2] Bray F,F(xiàn)erlay J,Soerjomataram I,et al.Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin,2018,68(6):394-424.

[3] Ferlay J,Soerjomataram I,Dikshit R,et al.Cancer incidence and mortality worldwide:Sources,methods and major patterns in GLOBOCAN 2012[J]. Int J Cancer,2015, 136(5):E359-386.

[4] Marques-Lespier JM,Gonzalez-Pons M, Cruz-Correa M.Current perspectives on gastric cancer[J]. Gastroenterol Clin North Am,2016,45(3):413-428.

[5] 陳萬青,鄭榮壽,曾紅梅,等.中國2010年惡性腫瘤發(fā)病與死亡[J].中國腫瘤,2014,23(1):1-10.

[6] 陳萬青,鄭榮壽,曾紅梅,等.2011年中國惡性腫瘤發(fā)病和死亡分析[J].中國腫瘤,2015,24(1):1-10.

[7] 陳萬青, 鄭榮壽,張思維, 等.2012年中國惡性腫瘤發(fā)病和死亡分析[J]. 中國腫瘤,2016, 25(1):1-8.

[8] 陳萬青,鄭榮壽,張思維,等.2013年中國惡性腫瘤發(fā)病和死亡分析[J].中國腫瘤,2017,26(1):1-7.

[9] 陳萬青,李賀,孫可欣,等.2014年中國惡性腫瘤發(fā)病和死亡分析[J]. 中華腫瘤雜志, 2018,40(1):5-13.

[10] Jemal A,Bray F,Center MM,et al.Global cancer statistics[J]. CA Cancer J Clin,2011,61(2):69-90.

[11] Figueiredo C,Camargo MC,Leite M,et al. Pathogenesis of gastric cancer:Genetics and molecular classification[J].Curr Top Microbiol Immunol,2017,400:277-304.

[12] 石巖巖,丁士剛.胃癌病因及發(fā)病機(jī)制的研究進(jìn)展[J]. 中華臨床醫(yī)師雜志(電子版),2013,7(17):7941-7944.

[13] Su Y,Wu H,Pavlosky A,et al.Regulatory non-coding RNA:New instruments in the orchestration of cell death[J].Cell Death Dis,2016,7(8):e2333.

[14] Cech TR,Steitz JA.The noncoding RNA revolution-trashing old rules to forge new ones[J].Cell,2014,157(1):77-94.

[15] Nagano T,F(xiàn)raser P.No-nonsense functions for long noncoding RNAs[J]. Cell, 2011,145(2):178-181.

[16] Romano G,Veneziano D,Acunzo M,et al.Small non-coding RNA and cancer[J]. Carcinogenesis,2017,38(5):485-491.

[17] Cui H,Xie N,Thannickal VJ,et al.The code of non-coding RNAs in lung fibrosis[J]. Cell Mol Life Sci,2015, 72(18):3507-3519.

[18] Das A,Samidurai A,Salloum FN.Deciphering non-coding RNAs in cardiovascular health and disease[J]. Front Cardiovasc Med,2018,5:73.

[19] Ma Y, Ouyang J,Wei J,et al.Involvement of host non-coding RNAs in the pathogenesis of the influenza virus[J].Int J Mol Sci,2016,18(1):39.

[20] Diamantopoulos MA,Tsiakanikas P,Scorilas A.Non-coding RNAs:The riddle of the transcriptome and their perspectives in cancer[J]. Ann Transl Med,2018,6(12):241.

[21] Salmena L,Poliseno L,Tay Y,et al.A ceRNA hypothesis:The rosetta stone of a hidden RNA language[J].Cell,2011,146(3):353-358.

[22] Chan JJ,Tay Y.Noncoding RNA:RNA regulatory networks in cancer[J].Int J Mol Sci,2018,19(5):1310.

[23] Karreth FA,Pandolfi PP.ceRNA cross-talk in cancer:When ce-bling rivalries go awry[J].Cancer Discov,2013, 3(10):1113-1121.

[24] Paraskevopoulou MD,Georgakilas G,Kostoulas N,et al.DIANA-LncBase:Experimentally verified and computationally predicted microRNA targets on long non-coding RNAs[J].Nucleic Acids Res,2013,41(Database issue):D239-245.

[25] Yang B,Tang X,Wang Z,et al.TUG1 promotes prostate cancer progression by acting as a ceRNA of miR-26a[J]. Biosci Rep,2018,38(5):BSR20180677.

[26] Chandra Gupta S,Nandan Tripathi Y.Potential of long non-coding RNAs in cancer patients:From biomarkers to therapeutic targets[J].Int J Cancer,2017,140(9):1955-1967.

[27] Hu Y,Tian H,Xu J,et al.Roles of competing endogenous RNAs in gastric cancer[J]. Brief Funct Genomics,2016, 15(3):266-273.

[28] Rinn JL,Kertesz M,Wang JK,et al.Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs[J].Cell,2007,129(7):1311-1323.

[29] Tang Q,Hann SS.HOTAIR:An oncogenic long non-coding RNA in human cancer[J]. Cell Physiol Biochem,2018, 47(3):893-913.

[30] Liu XH,Sun M,Nie FQ,et al.Lnc RNA HOTAIR functions as a competing endogenous RNA to regulate HER2 expression by sponging miR-331-3p in gastric cancer[J]. Mol Cancer,2014,13:92.

[31] Wang H,Qin R,Guan A,et al.HOTAIR enhanced paclitaxel and doxorubicin resistance in gastric cancer cells partly through inhibiting miR-217 expression[J].J Cell Biochem,2018,119(9):7226-7234.

[32] Yan J,Dang Y,Liu S,et al.LncRNA HOTAIR promotes cisplatin resistance in gastric cancer by targeting miR-126 to activate the PI3K/AKT/MRP1 genes[J]. Tumour Biol,2016,37(12):16345-16355.

[33] Wang B,Qu XL, Liu J.HOTAIR promotes osteosarcoma development by sponging miR-217 and targeting ZEB1[J].J Cell Physiol,2018.doi:10.1002/jcp.27394.

[34] Chang L,Guo R,Yuan Z,et al.LncRNA HOTAIR regulates CCND1 and CCND2 expression by Sponging miR-206 in ovarian cancer[J]. Cell Physiol Biochem,2018, 49(4):1289-1303.

[35] Liu L,Cui S,Wan T,et al.Long non-coding RNA HOTAIR acts as a competing endogenous RNA to promote glioma progression by sponging miR-126-5p[J].J Cell Physiol,2018,233(9):6822-6831.

[36] Colombo T,F(xiàn)ara L,Macino Gin,et al.PVT1:A rising star among oncogenic long noncoding RNAs[J]. Biomed Res Int,2015,2015:304208.

[37] Chen X,Yang Y,Cao Y,et al.lncRNA PVT1 identified as an independent biomarker for prognosis surveillance of solid tumors based on transcriptome data and meta-analysis[J]. Cancer Manag Res,2018,10:2711-2727.

[38] Huang T,Liu HW,Chen JQ,et al.The long noncoding RNA PVT1 functions as a competing endogenous RNA by sponging miR-186 in gastric cancer[J].Biomed Pharmacother,2017,88:302-308.

[39] Li T,Meng XL,Yang WQ.Long Noncoding RNA PVT1 acts as a "Sponge" to inhibit microRNA-152 in gastric cancer cells[J]. Dig Dis Sci,2017,62(11):3021-3028.

[40] Yu C,Longfei L,Long W,et al.LncRNA PVT1 regulates VEGFC through inhibiting miR-128 in bladder cancer cells[J]. J Cell Physiol,2018,234(2):1346-1353.

[41] Wang C,Han C,Zhang Y,et al.LncRNA PVT1 regulate expression of HIF1alpha via functioning as ceRNA for miR199a5p in nonsmall cell lung cancer under hypoxia[J].Mol Med Rep,2018,17(1):1105-1110.

[42] Cerase A,Pintacuda G,Tattermusch A,et al.Xist localization and function:New insights from multiple levels[J].Genome Biol,2015,16:166.

[43] Pintacuda G,Young AN,Cerase A.Function by structure: Spotlights on xist long non-coding RNA[J]. Front Mol Biosci,2017,4:90.

[44] Mao H,Wang K,F(xiàn)eng Y,et al.Prognostic role of long non-coding RNA XIST expression in patients with solid tumors:A meta-analysis[J].Cancer Cell Int,2018,18:34.

[45] Zhu J,Kong F,Xing L,et al.Prognostic and clinicopathological value of long noncoding RNA XIST in cancer[J].Clin Chim Acta,2018,479:43-47.

[46] Zhang Q,Chen B,Liu P.XIST promotes gastric cancer(GC) progression through TGF-beta1 via targeting miR-185[J]. J Cell Biochem,2018,119(3):2787-2796.

[47] Ma L,Zhou Y,Luo X,et al.Long non-coding RNA XIST promotes cell growth and invasion through regulating miR-497/MACC1 axis in gastric cancer[J]. Oncotarget,2017,8(3):4125-4135.

[48] Jiang H,Zhang H,Hu X,et al.Knockdown of long non-coding RNA XIST inhibits cell viability and invasion by regulating miR-137/PXN axis in non-small cell lung cancer[J].Int J Biol Macromol,2018,111:623-631.

[49] Zhu H,Zheng T,Yu J,et al.LncRNA XIST accelerates cervical cancer progression via upregulating Fus through competitively binding with miR-200a[J]. Biomed Pharmacother,2018,105:789-797.

[50] Gu S,Xie R,Liu X,et al.Long coding RNA XIST contributes to neuronal apoptosis through the downregulation of AKT phosphorylation and is negatively regulated by miR-494 in rat spinal cord injury[J]. Int J Mol Sci,2017, 18(4):732.

[51] Li L,Lv G,Wang B,et al.The role of lncRNA XIST/miR-211 axis in modulating the proliferation and apoptosis of osteoarthritis chondrocytes through CXCR4 and MAPK signaling[J]. Biochem Biophys Res Commun,2018, 503(4):2555-2562.

[52] Bond CS,F(xiàn)ox AH.Paraspeckles:Nuclear bodies built on long noncoding RNA[J].J Cell Biol,2009,186(5):637-644.

[53] Dong P,Xiong Y,Yue J,et al.Long non-coding RNA NEAT1: A novel target for diagnosis and therapy in human tumors[J]. Front Genet,2018,9:471.

[54] Tan HY,Wang C,Liu G,et al.Long noncoding RNA NEAT1-modualted miR-506 regulates gastric cancer development through targeting STAT3[J]. J Cell Biochem, 2018,doi:10.1002/jcb.26691.

[55] Wang H,Zhang M,Sun G.Long non-coding RNA NEAT1 regulates the proliferation, migration and invasion of gastric cancer cells via targeting miR-335-5p/ROCK1 axis[J]. Pharmazie,2018,73(3):150-155.

[56] Xiong DD,Li ZY,Liang L,et al.The LncRNA NEAT1 accelerates lung adenocarcinoma deterioration and binds to Mir-193a-3p as a competitive endogenous RNA[J]. Cell Physiol Biochem,2018,48(3):905-918.

[57] Zhang XN,Zhou J,Lu XJ.The long noncoding RNA NEAT1 contributes to hepatocellular carcinoma development by sponging miR-485 and enhancing the expression of the STAT3[J].J Cell Physiol,2018,233(9):6733-6741.

[58] Miyoshi N,Wagatsuma H,Wakana S,et al.Identification of an imprinted gene, Meg3/Gtl2 and its human homologue MEG3, first mapped on mouse distal chromosome 12 and human chromosome 14q[J]. Genes Cells,2000,5(3):211-220.

[59] Benetatos L,Vartholomatos G,Hatzimichael E.MEG3 imprinted gene contribution in tumorigenesis[J]. Int J Cancer,2011,129(4):773-739.

[60] Yan J,Guo X,Xia J,et al.MiR-148a regulates MEG3 in gastric cancer by targeting DNA methyltransferase 1[J]. Med Oncol,2014,31(3):879.

[61] Peng W,Si S,Zhang Q,et al.Long non-coding RNA MEG3 functions as a competing endogenous RNA to regulate gastric cancer progression[J]. J Exp Clin Cancer Res,2015,34:79.

[62] Jiang M,Wang YR,Xu N,et al.Long noncoding RNA MEG3 play an important role in osteosarcoma development through sponging microRNAs[J]. J Cell Biochem, 2018,doi:10.1002/jcb.27791.

[63] Wang H,Li H,Zhang L,et al.Overexpression of MEG3 sensitizes colorectal cancer cells to oxaliplatin through regulation of miR-141/PDCD4 axis [J]. J Cell Biochem,2018, 106:1607-1615.

[64] Zhu X,Li H,Wu Y,et al.CREB-upregulated lncRNA MEG3 promotes hepatic gluconeogenesis by regulating miR-302a-3p-CRTC2 axis[J]. J Cell Biochem,2018,doi:10.1002/jcb.27706.

[65] Poliseno L,Salmena L,Zhang J,et al.A coding-independent function of gene and pseudogene mRNAs regulates tumour biology [J]. Nature,2010,465(7301):1033-1038.

[66] Harrison PM,Zheng D,Zhang Z,et al.Transcribed processed pseudogenes in the human genome:An intermediate form of expressed retrosequence lacking protein-coding ability[J]. Nucleic Acids Res,2005,33(8):2374-2783.

[67] Gu S,Jin L,Zhang F,et al.Biological basis for restriction of microRNA targets to the 3' untranslated region in mammalian mRNAs[J]. Nat Struct Mol Biol,2009,16(2):144-150.

[68] Glenfield C,McLysaght A.Pseudogenes provide evolutionary evidence for the competitive endogenous RNA hypothesis[J]. Mol Biol Evol,2018,35(12):2886-2899.

[69] Haddadi N,Lin Y,Travis G,et al.PTEN/PTENP1: 'Regulating the regulator of RTK-dependent PI3K/Akt signalling', new targets for cancer therapy[J].Mol Cancer,2018,17(1):37.

[70] Zhang R,Guo Y,Ma Z,et al.Long non-coding RNA PTENP1 functions as a ceRNA to modulate PTEN level by decoying miR-106b and miR-93 in gastric cancer[J]. Oncotarget,2017,8(16):26079-26089.

[71] Li RK,Gao J,Guo LH,et al.PTENP1 acts as a ceRNA to regulate PTEN by sponging miR-19b and explores the biological role of PTENP1 in breast cancer[J]. Cancer Gene Ther,2017,24(7):309-315.

[72] Yu G,Ou ZY,Tao QY,et al.Role of lncRNA PTENP1 in tumorigenesis and progression of bladder cancer and the molecular mechanism [J]. Nan Fang Yi Ke Da Xue Xue Bao,2017,37(11):1494-1500.

[73] Qian YY,Li K,Liu QY,et al.Long non-coding RNA PTENP1 interacts with miR-193a-3p to suppress cell migration and invasion through the PTEN pathway in hepatocellular carcinoma[J]. Oncotarget,2017,8(64):107859-107869.

[74] Memczak S,Jens M,Elefsinioti A,et al.Circular RNAs are a large class of animal RNAs with regulatory potency[J].Nature,2013,495(7441):333-338.

[75] Jeck WR,Sorrentino JA,Wang K,et al.Circular RNAs are abundant, conserved, and associated with ALU repeats[J]. Rna,2013,19(2):141-157.

[76] Hansen TB,Wiklund ED,Bramsen JB,et al.miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA[J]. Embo J,2011,30(21):4414-4422.

[77] Xu H,Guo S,Li W,et al.The circular RNA Cdr1as, via miR-7 and its targets, regulates insulin transcription and secretion in islet cells[J]. Sci Rep, 2015,5:12453.

[78] Zhang X,Yang D,Wei Y.Overexpressed CDR1as functions as an oncogene to promote the tumor progression via miR-7 in non-small-cell lung cancer[J]. Onco Targets Ther,2018,11:3979-3987.

[79] Zhang J, Hu H,Zhao Y,et al.CDR1as is overexpressed in laryngeal squamous cell carcinoma to promote the tumour's progression via miR-7 signals[J]. Cell Prolif,2018,51(6):e12521.

[80] Xu B,Yang T,Wang Z,et al.CircRNA CDR1as/miR-7 signals promote tumor growth of osteosarcoma with a potential therapeutic and diagnostic value[J]. Cancer Manag Res,2018,10:4871-4880.

[81] Yao W,Yan L,Han L,et al.The CDR1as/miR-7/TGFBR2 axis modulates EMT in silica-induced pulmonary fibrosis[J]. Toxicol Sci,2018,166(2):465-478.

[82] Hansen TB,Jensen T,Clausen BH,et al.Natural RNA circles function as efficient microRNA sponges[J]. Nature,2013,495(7441):384-388.

[83] Pan H,Li T,Jiang Y,et al.Overexpression of circular RNA ciRS-7 abrogates the tumor suppressive effect of miR-7 on gastric cancer via PTEN/PI3K/AKT signaling pathway[J]. J Cell Biochem,2018,119(1):440-446.

[84] Denzler R,Agarwal V,Stefano J,et al.Assessing the ceRNA hypothesis with quantitative measurements of miRNA and target abundance[J]. Mol Cell, 2014,54(5):766-776.

(收稿日期:2018-12-17)

猜你喜歡
微小RNA胃癌
風(fēng)心病合并房顫患者心肌microRNA表達(dá)譜分析與靶基因預(yù)測
MiRNA在肺癌診斷與治療中的應(yīng)用進(jìn)展
微小RNA和腫瘤治療的研究進(jìn)展
鼻咽癌腫瘤干細(xì)胞miRNAs和 lncRNAs及mRNAs表達(dá)譜分析
胃癌組織中PGRN和Ki-67免疫反應(yīng)性增強(qiáng)
P53及Ki67在胃癌中的表達(dá)及其臨床意義
胃癌組織中Her-2、VEGF-C的表達(dá)及意義
胃癌組織中LKB1和VEGF-C的表達(dá)及其意義
胃癌組織中VEGF和ILK的表達(dá)及意義
乳腺癌與糖尿病關(guān)聯(lián)研究的新進(jìn)展
河池市| 盘山县| 阿尔山市| 大城县| 尼勒克县| 内乡县| 永和县| 武平县| 宣恩县| 遵义市| 阿鲁科尔沁旗| 大姚县| 健康| 双鸭山市| 六盘水市| 耿马| 华池县| 隆尧县| 红桥区| 南投市| 噶尔县| 田阳县| 乐清市| 江华| 和平县| 赤城县| 万盛区| 突泉县| 宁津县| 乌兰县| 惠来县| 彭阳县| 亳州市| 拜城县| 华安县| 竹山县| 金阳县| 德钦县| 开远市| 三台县| 滨州市|