栗永華,車路平,仇旭升,譚磊,孫英杰,劉煒煒,宋翠萍,廖瑛,丁鏟,王金泉,孟春春
(1新疆農(nóng)業(yè)大學(xué)動(dòng)物醫(yī)學(xué)學(xué)院,烏魯木齊 830052;2中國(guó)農(nóng)業(yè)科學(xué)院上海獸醫(yī)研究所,上海 200241)
【研究意義】新城疫(newcastle disease,ND)是危害我國(guó)養(yǎng)禽業(yè)嚴(yán)重疫病之一,研究表明新城疫病毒(NDV)可誘導(dǎo)受感染細(xì)胞中 caspase依賴的內(nèi)源性和外源性凋亡途徑[1],從而產(chǎn)生病變效應(yīng)[2]。細(xì)胞凋亡的特征是細(xì)胞形態(tài)和生化變化,包括細(xì)胞膜泡、caspase活化和DNA斷裂[3]。P53抑癌蛋白在細(xì)胞應(yīng)激反應(yīng)和抑制惡性發(fā)展中起著重要作用,P53抑癌蛋白通過協(xié)調(diào) DNA修復(fù)、誘導(dǎo)細(xì)胞周期阻滯、凋亡、衰老和維持基因組穩(wěn)定性等多種機(jī)制調(diào)節(jié)腫瘤細(xì)胞的增殖和侵襲力[4],防止腫瘤的形成[5-8]。【前人研究進(jìn)展】BENSAAD等提出p53在細(xì)胞代謝中起著直接作用,TP53誘導(dǎo)的糖酵解和凋亡調(diào)節(jié)因子(TP53-induced glycolysis and apoptosis regulator,TIGAR)是p53下游的靶基因,具有調(diào)節(jié)糖酵解和抗氧化作用的蛋白[9]。在細(xì)胞中 TIGAR表達(dá)降低了果糖-2,6-二磷酸的水平來抑制磷酸果糖激酶(PFK),進(jìn)而有利于果糖-6-磷酸(fructose-6-phosphate,F(xiàn)-6-P)和葡萄糖-6-磷酸(glucose-6-phosphatase,G-6-P)的形成,從而抑制了糖酵解[5]。TIGAR可通過增加磷酸戊糖途徑(pentose phosphate pathway, PPP)[10-12],促進(jìn)還原型煙酰胺腺嘌呤二核苷酸磷酸(nicotinamide adenine dinucleotide phosphate,NADPH)和谷胱甘肽(glutathione,GSH)的產(chǎn)生,從而去除活性氧(Reactive oxygen species,ROS)[13],研究證實(shí) ROS 在 p53 介導(dǎo)的細(xì)胞凋亡中有著重要調(diào)節(jié)作用,可以由多種途徑抑制細(xì)胞生長(zhǎng)、誘發(fā)細(xì)胞凋亡[14-15]、自噬[16-18]。YE等用RNA干擾沉默HepG 2細(xì)胞中的TIGAR mRNA后,主要通過細(xì)胞凋亡和自噬作用抑制細(xì)胞生長(zhǎng)[19]。細(xì)胞內(nèi)ROS水平的降低而導(dǎo)致細(xì)胞對(duì)p53以及其他與ROS相關(guān)凋亡信號(hào)的敏感性[11,20-21]。TIGAR可以在缺氧條件下與線粒體的己糖激酶2形成復(fù)合體,從而提高己糖激酶2的活性,降低線粒體膜電位,減少ROS產(chǎn)生,保護(hù)細(xì)胞免受ROS的損傷并保持線粒體的完整性[22-24]。KO等在研究中表明 TIGAR在乳腺癌細(xì)胞中的表達(dá)促進(jìn)了腫瘤的代謝分化和線粒體的乳酸和谷氨酰胺分解代謝,是一種很有潛力的乳腺癌治療方法[25]?!颈狙芯壳腥朦c(diǎn)】前人已擴(kuò)增出人、鼠、牛等動(dòng)物的TIGAR基因,并研究TIGAR的抗凋亡及在腫瘤的發(fā)生、增殖和轉(zhuǎn)移中發(fā)揮的重要作用。本研究首次從SPF雞的脾臟中擴(kuò)增出雞的TIGAR基因,并研究了其抗凋亡的作用?!緮M解決的關(guān)鍵問題】驗(yàn)證本研究擴(kuò)增出的TIGAR是否具有抗凋亡功能,過表達(dá) TIGAR基因后再感染病毒是否可以增加病毒滴度,并有利于病毒感染細(xì)胞的存活;為后續(xù)構(gòu)建過表達(dá)TIGAR的細(xì)胞系和篩選適合新城疫病毒繁殖的高產(chǎn)細(xì)胞株提供前期基礎(chǔ)。
試驗(yàn)于 2018年在中國(guó)農(nóng)業(yè)科學(xué)院上海獸醫(yī)研究所完成。
限制性內(nèi)切酶(EcoR I、BamH I)、Trizol、Alexa FlourTM 488 Annexin V/Dead Cell Apoptosis Kit為Thermo公司產(chǎn)品,Taq聚合酶、dNTP、T4DNA連接酶為諾唯贊公司產(chǎn)品,M-MLV、RNasin、FuGen為Promega公司產(chǎn)品,DH5α感受態(tài)細(xì)胞為天根公司產(chǎn)品,ECL發(fā)光液為圣爾公司產(chǎn)品。
1.2.1 RT-PCR擴(kuò)增TIGAR全長(zhǎng) 取SPF雞的脾臟,加PBS反復(fù)研磨3次,7 000 r/min離心10 min,取上清。采用Trizol裂解細(xì)胞提取RNA,加入隨機(jī)引物 6nt和 Olig18t各 1 μL,70℃10 min,冰浴 5 min,按照 Promega公司試劑盒的操作方法逆轉(zhuǎn)錄為cDNA,反轉(zhuǎn)錄的溫度為37℃ 2 h、42℃ 2 h,75℃ 5 min滅活。根據(jù) GenBank(GenBank登錄號(hào):XM_417232.6)上預(yù)測(cè)的原雞 TIGAR序列設(shè)計(jì)并合成上游引物(5′-CCGGAATTCATGGTTCGCTTCGGG CTGACC-3′,限制性內(nèi)切酶為EcoR I)和下游引物(5′-CGCG GATCCGAACATTTTCGGAGCTACACA TTCAGCACC-3′,限制性內(nèi)切酶為BamH I),以 cDNA為模板利用PCR擴(kuò)增出雞TIGAR的CDS區(qū)(擴(kuò)增程序:95℃ 預(yù)變性30 s,95℃變性10 s,62℃退火30 s,72℃延伸1 min進(jìn)行30個(gè)循環(huán),72℃延伸10 min)。PCR結(jié)束后,產(chǎn)物經(jīng) 1%瓊脂糖凝膠電泳并在紫外燈下觀察,用膠回收試劑盒收集PCR產(chǎn)物,并送至上海生物工程公司測(cè)序。
1.2.2 繪制哺乳動(dòng)物、水生動(dòng)物的TIGAR基因進(jìn)化樹TIGAR基因位于12號(hào)染色體短臂1區(qū)3帶3亞帶,含6個(gè)可能編碼外顯子的區(qū)域和2個(gè)P53結(jié)合位點(diǎn)[9,26-27],BENSAAD發(fā)現(xiàn)在脊椎動(dòng)物中(從魚到人)高度保守[9]。利用GenBank上找到脊椎動(dòng)物的TIGAR基因以及本研究擴(kuò)增的TIGAR基因構(gòu)建進(jìn)化樹。
1.2.3 質(zhì)粒轉(zhuǎn)染DF1細(xì)胞 在200 μL的Opti-MEM轉(zhuǎn)染試劑中加入6 μL FuGen,室溫靜置5 min,再加入Flag-TIGAR或Flag-CMV14 2 μg,輕輕混勻,室溫靜置20 min后加入6孔板中,于37℃培養(yǎng)4—6 h,更換成10%DMEM繼續(xù)培養(yǎng)。
1.2.4 TIGAR蛋白表達(dá)檢測(cè)和PARP檢測(cè) 將細(xì)胞接種至6孔板(細(xì)胞密度為1×105),待細(xì)胞長(zhǎng)至70%時(shí)轉(zhuǎn)染 2 μg重組質(zhì)粒(Flag-TIGAR)和空載體(Flag-CMV14),轉(zhuǎn)染24 h后感染Herts33(1MOI),在感染后18、24、30、36 h收集樣品,每孔加入200 μL 2×Loading Buffer裂解細(xì)胞,收集入離心管,100℃煮樣10 min,12 000 r/min離心3 min。取等量樣品上樣于10%聚丙烯酰胺凝膠進(jìn)行電泳,電轉(zhuǎn)移至硝酸纖維素膜上,加入5%脫脂乳室溫封閉2 h;按照1:1 000稀釋一抗(Flag、NP、PARP)4℃封閉過夜,用TBST洗膜3次,每次10 min;按照1:5 000稀釋二抗室溫封閉1 h,TBST洗膜3次,每次10 min。用化學(xué)發(fā)光法顯色。
1.2.5 流式檢測(cè)細(xì)胞凋亡 將細(xì)胞接種至6孔板(細(xì)胞密度為1×105),待細(xì)胞長(zhǎng)至70%時(shí)分別轉(zhuǎn)染重組質(zhì)粒(Flag-TIGAR)和空載體(Flag-CMV14),轉(zhuǎn)染后24、48 h收集細(xì)胞,用PBS洗后,加500 μL不含EDTA的胰酶消化2 min,用PBS吹下細(xì)胞并收集入離心管中,4℃1 000 r/min離心5 min,棄上清,用預(yù)冷的PBS洗3次,加入500 μL 1×Binding Buffer重懸細(xì)胞,分別加入5 μL PI(用1×Binding Buffer做10倍稀釋)、25 μL Annexin V-FITC,室溫避光孵育15 min,用流式儀檢測(cè)細(xì)胞凋亡情況。
擴(kuò)增的全長(zhǎng)TIGAR基因經(jīng)1%瓊脂糖凝膠電泳,結(jié)果顯示擴(kuò)增片段大小為 843 bp,與預(yù)期結(jié)果相符(圖1)。
本研究擴(kuò)增的TIGAR基因全長(zhǎng)3 206 bp,CDS區(qū)843 bp編碼281個(gè)氨基酸,已上傳至GenBank并獲得登錄號(hào)(MH511993.1),將擴(kuò)增的雞TIGAR基因的序列與其他脊椎動(dòng)物的TIGAR基因的序列進(jìn)行比對(duì)并構(gòu)建進(jìn)化樹(圖2),發(fā)現(xiàn)TIGAR基因在脊椎動(dòng)物中高度保守。
圖1 RT-PCR擴(kuò)增雞TIGAR基因Fig. 1 Amplification chicken TIGAR gene with RT-PCR
將Flag-TIGAR重組質(zhì)粒和空載轉(zhuǎn)染至DF1細(xì)胞系中,轉(zhuǎn)染后24、36、48 h的樣品利用Western Blot檢測(cè)蛋白表達(dá)情況,結(jié)果顯示轉(zhuǎn)染重組質(zhì)粒的樣品在30 kD的位置出現(xiàn)了條帶,大小與預(yù)期結(jié)果一致;轉(zhuǎn)染空載體(Flag-CMV14)和未轉(zhuǎn)染細(xì)胞的樣品未出現(xiàn)條帶,表明Flag-TIGAR重組質(zhì)粒構(gòu)建成功(圖3)。
將Flag-TIGAR重組質(zhì)粒和空載轉(zhuǎn)染至DF1細(xì)胞系中,轉(zhuǎn)染后 24 h 感染 Herts/33(1MOI),Western Blot檢測(cè)NP、FLAG、PARP的表達(dá)情況,結(jié)果顯示轉(zhuǎn)染重組質(zhì)粒的樣品均表達(dá)TIGAR;感染組均表達(dá)NP;在30 h、36 h的樣品中PARP均有裂解條帶且轉(zhuǎn)染重組質(zhì)粒(Flag-TIGAR)的樣品裂解出PARP的表達(dá)量明顯低于未轉(zhuǎn)染質(zhì)粒(MOCK)組的樣品,且差異極顯著(P<0.01)(圖4)。
圖2 哺乳動(dòng)物、水生動(dòng)物的TIGAR基因的進(jìn)化樹Fig. 2 Phylogenetic tree of TIGAR gene in mammals and aquatic animals
將Flag-TIGAR和Flag-CMV14轉(zhuǎn)染入DF1細(xì)胞,在轉(zhuǎn)染后24、48 h收集細(xì)胞用流式細(xì)胞儀檢測(cè)細(xì)胞凋亡情況(收集樣品前2 h用藥物Staurosporine誘導(dǎo)細(xì)胞凋亡,按照1:1 000的比例使用)。結(jié)果顯示,24 h轉(zhuǎn)染Flag-CMV14后細(xì)胞總凋亡率為11%(早期凋亡7.8%,晚期凋亡3.2%),而轉(zhuǎn)染Flag-TIGAR后細(xì)胞總凋亡率為4%(早期凋亡3.7%,晚期凋亡0.3%),轉(zhuǎn)染 Flag-CMV14的早期凋亡率和晚期凋亡率均高于轉(zhuǎn)染 Flag-TIGAR組,且差異顯著(P<0.05);48 h轉(zhuǎn)染Flag-CMV14后細(xì)胞總凋亡率為20.3%(早期凋亡14.3%,晚期凋亡6.0%),而轉(zhuǎn)染Flag-TIGAR后細(xì)胞總凋亡率為6.4%(早期凋亡4.8%,晚期凋亡1.6%),轉(zhuǎn)染 Flag-CMV14的早期凋亡率和晚期凋亡率均高于轉(zhuǎn)染Flag-TIGAR組,且差異極顯著(P<0.01)(圖5)。
圖3 Flag-TIGAR真核質(zhì)粒表達(dá)(Flag抗體)Fig. 3 Expression of Flag-TIGAR with Western Blot(Flag antibody)
圖4 Western Blot檢測(cè)PARP表達(dá)Fig. 4 Detection PARP expression with Western Blot
TIGAR是具有調(diào)節(jié)糖酵解和抗氧化作用的蛋白,是存在于機(jī)體內(nèi)的p53基因誘導(dǎo)的糖酵解和凋亡調(diào)節(jié)因子,通過抑制糖酵解途徑,增加磷酸戊糖途徑(PPP),可產(chǎn)生大量的5-磷酸核糖,是DNA修復(fù)和合成的重要原料[26];還可以通過維持還原型谷胱甘肽所需的 NADPH水平來調(diào)節(jié) ROS水平,保護(hù)細(xì)胞免受ROS的損傷并保持線粒體的完整性,細(xì)胞內(nèi)NADPH升高,活性氧(ROS)和自噬活性降低,因此 TIGAR既可以抑制細(xì)胞凋亡又抑制自噬[21, 28]。
本試驗(yàn)利用雞脾臟組織cDNA為模板擴(kuò)增出雞的TIGAR基因,經(jīng)測(cè)序分析后,并將TIGAR基因序列上傳至GenBank。本研究通過檢測(cè)凋亡蛋白(PARP)以及流式檢測(cè),結(jié)果表明擴(kuò)增的雞 TIGAR基因具有抗凋亡的功能。
圖5 FCM檢測(cè)細(xì)胞凋亡率Fig. 5 Detection the rate of apoptosis with FCM
研究表明TIGAR在抗細(xì)胞凋亡及在腫瘤的發(fā)生、增殖和轉(zhuǎn)移中發(fā)揮的重要作用。周駿浩通過試驗(yàn)預(yù)測(cè) TIGAR在腦預(yù)適應(yīng)中的作用可能是中風(fēng)預(yù)防和治療[29]。細(xì)胞自噬是真核細(xì)胞內(nèi)維持細(xì)胞自穩(wěn)態(tài)的正常的分解代謝活動(dòng), 通過溶酶體將長(zhǎng)壽蛋白、損傷的細(xì)胞器以及外源病原微生物吞噬、降解的過程,是機(jī)體內(nèi)一種重要的保護(hù)和防御機(jī)制。馮婧等干擾TIGAR蛋白后,細(xì)胞色素c在胞質(zhì)內(nèi)含量明顯增加而在線粒體內(nèi)含量減少,且干擾組細(xì)胞凋亡率明顯升高,表明細(xì)胞凋亡增加;并檢測(cè)細(xì)胞中自噬標(biāo)志蛋白LC3-II/LC3-I、Beclin1表達(dá)顯著上升,同時(shí)P62表達(dá)下降,表明細(xì)胞自噬增強(qiáng)[30]。細(xì)胞發(fā)生凋亡后不利于病毒在細(xì)胞內(nèi)的復(fù)制[31-33],所以本研究為建立一株抑制病毒凋亡和自噬,利于病毒復(fù)制的細(xì)胞系奠定了前期基礎(chǔ)。
首次擴(kuò)增出雞的 TIGAR基因,并對(duì)其功能進(jìn)行研究,確認(rèn)其具有抗凋亡的作用。為進(jìn)一步研究雞TIGAR基因在減少細(xì)胞凋亡,促進(jìn)細(xì)胞增殖能力方面的研究提供了借鑒。
[1] RAVINDRA P V, TIWARI A K, RATTA B, BAIS M V, CHATURVEDI U,PALIA S K, SHARMA B, CHAUHAN R S. Time course of Newcastle disease virus-induced apoptotic pathways.Virus Research, 2009,144(1-2): 350-354.
[2] RAVINDRA P V, TIWARI A K, RATTA B, CHATURVEDI U, PALIA S K, CHAUHAN R S. Newcastle disease virus-induced cytopathic effect in infected cells is caused by apoptosis.Virus Research, 2009,141(1): 13-20.
[3] KERR J F, WYLLIE A H, CURRIE A R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics.British Journal of Cancer,1972, 26(4): 239-257.
[4] 趙明, 馮婧, 劉勇, 楊玲麟. TIGAR調(diào)節(jié)肺癌細(xì)胞的增殖和侵襲能力研究. 國(guó)際檢驗(yàn)醫(yī)學(xué)雜志, 2016(06): 754-755.ZHAO M, FENG J, LIU Y, YANG L L. TIGAR promotes proliferation and invasiveness of lung cancer cells.International Journal of Laboratory Medicine,2016(06): 754-755. (in Chinese)
[5] GREEN D R, CHIPUK J E. p53 and metabolism: Inside the TIGAR.Cell,2006, 126(1): 30-32.
[6] VOGELSTEIN B, LANE D, LEVINE A J. Surfing the p53 network.Nature, 2000, 408(6810): 307-310.
[7] SHEN M, ZHAO X, ZHAO L, SHI L, AN S, HUANG G, LIU J. Met is involved in TIGAR-regulated metastasis of non-small-cell lung cancer.Molecular Cancer, 2018, 17(1): 88.
[8] ROMEO M, HUTCHISON T, MALU A, WHITE A, KIM J,GARDNER R, SMITH K, NELSON K, BERGESON R, MCKEE R,HARROD C, RATNER L, LUSCHER B, MARTINEZ E, HARROD R. The human T-cell leukemia virus type-1 p30(II) protein activates p53 and induces the TIGAR and suppresses oncogene-induced oxidative stress during viral carcinogenesis.Virology, 2018, 518(10): 3-15.
[9] BENSAAD K, TSURUTA A, SELAK M A, VIDAL M N, NAKANO K, BARTRONS R, GOTTLIEB E, VOUSDEN K H. TIGAR, a p53-inducible regulator of glycolysis and apoptosis.Cell,2006,126(1): 107-120.
[10] YU H P, XIE J M, LI B, SUN Y H, GAO Q G, DING Z H, WU H R,QIN Z H. TIGAR regulates DNA damage and repair through pentosephosphate pathway and Cdk5-ATM pathway.Scientific Reports,2015. DOI: 10.1038/srep09853
[11] ZHOU J H, ZHANG T T, SONG D D, XIA Y F, QIN Z H, SHENG R.TIGAR contributes to ischemic tolerance induced by cerebral preconditioning through scavenging of reactive oxygen species and inhibition of apoptosis.Scientific Reports, 2016. DOI: 10.1038/srep27096.
[12] JIANG L B, CAO L, MA Y Q, CHEN Q, LIANG Y, YUAN F L, LI X L, DONG J, CHEN N. TIGAR mediates the inhibitory role of hypoxia on ROS production and apoptosis in rat nucleus pulposus cells.Osteoarthritis and Cartilage, 2018, 26(1): 138-148.
[13] KIM J, DEVALARAJA-NARASHIMHA K, PADANILAM B J.TIGAR regulates glycolysis in ischemic kidney proximal tubules.American Journal of Physiology Renal Physiology,2015, 308(4).DOI:10.1152/ajprenal.00459.2014F298-308.
[14] 付托. 過表達(dá)人TIGAR的CHO細(xì)胞株構(gòu)建及其抗凋亡機(jī)制研究[D]. 蘇州: 蘇州大學(xué), 2013.FU T. Establishment of CHO cell line overexpressing hTIGAR and mechanism of anti-apoptosis effect[D]. Suzhou: Suzhou University,2013. (in Chinese)
[15] HWANG S O, LEE G M. Nutrient deprivation induces autophagy as well as apoptosis in Chinese hamster ovary cell culture.Biotechnology and Bioengineering, 2008, 99(3): 678-685.
[16] WANG H, CHENG Q, LI X, HU F, HAN L, ZHANG H, LI L, GE J,YING X, GUO X, WANG Q. Loss of TIGAR induces oxidative stress and meiotic defects in oocytes from obese mice.Molecular & Cellular Proteomics, 2018. DOI: 10.1074/mcp.RA118.000620.
[17] LI B, WANG Z, XIE J M, WANG G, QIAN L Q, GUAN X M, SHEN X P, QIN Z H, SHEN G H, LI X Q, GAO Q G. TIGAR knockdown enhanced the anticancer effect of aescin via regulating autophagy and apoptosis in colorectal cancer cells.Acta Pharmacologica Sinica,2018. DOI: 10.1038/s41401-018-0001-2.
[18] KUMAR B, IQBAL M A, SINGH R K, BAMEZAI R N. Resveratrol inhibits TIGAR to promote ROS induced apoptosis and autophagy.Biochimie,2015, 118: 26-35.
[19] YE L, ZHAO X, LU J, QIAN G, ZHENG J C, GE S. Knockdown of TIGAR by RNA interference induces apoptosis and autophagy in HepG2 hepatocellular carcinoma cells.Biochemical and Biophysical Research Communications,2013, 437(2): 300-306.
[20] CHEUNG E C, LEE P, CETECI F, NIXON C, BLYTH K, SANSOM O J, VOUSDEN K H. Opposing effects of TIGAR- and RAC1-derived ROS on Wnt-driven proliferation in the mouse intestine.Genes & Development,2016, 30(1): 52-63.
[21] XIE J M, LI B, YU H P, GAO Q G, LI W, WU H R, QIN Z H. TIGAR has a dual role in cancer cell survival through regulating apoptosis and autophagy.Cancer Research,2014, 74(18): 5127-5138.
[22] CHEN J, ZHANG D M, FENG X, WANG J, QIN Y Y, ZHANG T,HUANG Q, SHENG R, CHEN Z, LI M, QIN Z H. TIGAR inhibits ischemia/reperfusion-induced inflammatory response of astrocytes.Neuropharmacology, 2018, 131: 377-388.
[23] CHEUNG E C, LUDWIG R L, VOUSDEN K H. Mitochondrial localization of TIGAR under hypoxia stimulates HK2 and lowers ROS and cell death.Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(50): 20491-20496.
[24] FENG J, LUO L, LIU Y, FU S, CHEN J, DUAN X, XIANG L,ZHANG Y, WU J, FAN J, WEN Q, ZHANG Y, YANG J, PENG J,ZHAO M, YANG L. TP53-induced glycolysis and apoptosis regulator is indispensable for mitochondria quality control and degradation following damage.Oncology Letters,2018, 15(1): 155-160.
[25] KO Y H, DOMINGO-VIDAL M, ROCHE M, LIN Z, WHITAKERMENEZES D, SEIFERT E, CAPPARELLI C, TULUC M, BIRBE R C, TASSONE P, CURRY J M, NAVARRO-SABATE A, MANZANO A, BARTRONS R, CARO J, MARTINEZ-OUTSCHOORN U. TP53-inducible glycolysis and apoptosis regulator (TIGAR) metabolically reprograms carcinoma and stromal cells in breast cancer.The Journal of Biological Chemistry,2016, 291(51): 26291-26303.
[26] 張騰, 袁梅, 俞同福. 腫瘤中 TP53誘導(dǎo)的糖酵解和凋亡調(diào)節(jié)因子及其靶向治療研究進(jìn)展. 腫瘤, 2016(12): 1383-1388.ZHANG T, YUAN M, YU T F. Advances in TP53-induced glycolysis and apoptosis regulator in tumor and its targeted therapy.TUMOR,2016(12): 1383-1388. (in Chinese)
[27] 顧志冬, 倪培華, 吳蓓穎, 吳華成, 樊綺詩, 肖家誠(chéng). TIGAR 基因真核表達(dá)載體的構(gòu)建及在 HepG_2細(xì)胞中的作用初探. 診斷學(xué)理論與實(shí)踐, 2009(6): 617-622.GU Z D, NI P H, WU B Y, WU H C, FAN Y S, XIAO J C.Construction of TIGAR gene eukaryotic expression vector and effect of TIGAR expression in HepG2 cells.Journal of Diagnostics Concepts & Practice,2009(6): 617-622. (in Chinese)
[28] MA T, ZHANG Y, ZHANG C, LUO J G, KONG L Y. Downregulation of TIGAR sensitizes the antitumor effect of physapubenolide through increasing intracellular ROS levels to trigger apoptosis and autophagosome formation in human breast carcinoma cells.Biochemical Pharmacology,2017, 143: 90-106.
[29] 周駿浩. TIGAR 通過清除活性氧和抑制凋亡參與腦預(yù)適應(yīng)介導(dǎo)缺血耐受[D]. 蘇州: 蘇州大學(xué), 2016.ZHOU J H. TIGAR contributes to ischemic tolerance induced by cerebral preconditioning through scavenging of reactive oxygen species and inhibition of apoptosis[D]. Suzhou: Suzhou University,2016. (in Chinese)
[30] 馮婧. TIGAR對(duì)鼻咽癌細(xì)胞自噬、凋亡及線粒體降解作用研究[D].瀘州: 西南醫(yī)科大學(xué), 2018.FENG J. Study on autophagy, apoptosis and mitochondrial degradation in nasopharyngeal carcinoma cells induced by TIGAR[D]. Luzhou:Southwest Medical University, 2018. (in Chinese)
[31] 梁思佳, 黃金麗, 魏東軒, 劉洪波, 石春薇. 細(xì)胞自噬與人腸道病毒感染的研究進(jìn)展. 華中科技大學(xué)學(xué)報(bào)(醫(yī)學(xué)版), 2018, 47(01):126-130.LIANG S J, HUANG J L, WEI D X, LIU H B, SHI C W. Advances in the study of autophagy and human enterovirus infection.Acta Medicinae Universitatis Scientiae et Technologiae Huazhong, 2018,47(01): 126-130. (in Chinese)
[32] 孟春春. ClassⅠ新城疫弱毒的毒力演化及自噬在新城疫病毒感染腫瘤細(xì)胞中的作用[D]. 北京: 中國(guó)農(nóng)業(yè)科學(xué)院, 2012.MENG C C. ClassⅠ virulence evolution of attenuated Newcastle Disease virus and the role of autophagy in Newcastle Disease virus infection with tumor cells[D]. Beijing: Chinese Academy of Agricultural Sciences, 2012. (in Chinese)
[33] 陶冶, 任曉峰. 細(xì)胞自噬與病毒感染. 病毒學(xué)報(bào), 2013, 29(01):76-84.TAO Y, REN X F. Autophagy and virus infection.Chinese Journal of Virology,2013, 29(01): 76-84. (in Chinese)