国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

歐亞類禽型H1N1豬流感病毒HA蛋白的表達(dá)及免疫原性評(píng)估

2019-03-29 02:17賈云慧許程志隋金鈺吳運(yùn)譜許榜豐陳艷楊煥良喬傳玲陳化蘭
關(guān)鍵詞:毒株質(zhì)粒抗體

賈云慧,許程志,隋金鈺,吳運(yùn)譜,許榜豐,陳艷,楊煥良,喬傳玲,陳化蘭

?

歐亞類禽型H1N1豬流感病毒HA蛋白的表達(dá)及免疫原性評(píng)估

賈云慧,許程志,隋金鈺,吳運(yùn)譜,許榜豐,陳艷,楊煥良,喬傳玲,陳化蘭

(中國(guó)農(nóng)業(yè)科學(xué)院哈爾濱獸醫(yī)研究所/獸醫(yī)生物技術(shù)國(guó)家重點(diǎn)實(shí)驗(yàn)室/農(nóng)業(yè)部動(dòng)物流感重點(diǎn)開放實(shí)驗(yàn)室,哈爾濱 150069)

【目的】表達(dá)歐亞類禽型(eurasian avian-like,EA)H1N1豬流感病毒(SIV)的血凝素(HA)蛋白,并對(duì)其免疫原性進(jìn)行測(cè)定?!痉椒ā坷肦T-PCR技術(shù)擴(kuò)增病毒A/swine/Zhejiang/245/2013(H1N1)(ZJ245)的HA基因,將其克隆至真核表達(dá)載體pCAGGS中,獲得重組質(zhì)粒pCAGGS-HA(ZJ245),將其轉(zhuǎn)染293T細(xì)胞,采用間接免疫熒光(IFA)檢測(cè)和Western blot檢測(cè)HA蛋白在體外的表達(dá);將重組質(zhì)粒pCAGGS-HA(ZJ245)經(jīng)肌肉注射途徑、以100 μg/只劑量免疫16只6周齡BALB/c小鼠(I組和II組),間隔3周后進(jìn)行加強(qiáng)免疫(二免);同等數(shù)量的小鼠以相同方式注射100 μL無(wú)菌PBS作為非免疫對(duì)照組(III組和IV組)。首免和二免每周采血,分別采用血凝抑制(HI)試驗(yàn)和病毒中和(VN)試驗(yàn)兩種方法測(cè)定不同類型的血清抗體效價(jià);二免2周后,其中兩組小鼠(I組和III組)用50 μL(106.0EID50)的ZJ245病毒經(jīng)滴鼻感染途徑進(jìn)行攻毒,另外兩組(II組和IV組)用A/swine/Heilongjiang/44/2009(H1N1)(HLJ44)病毒進(jìn)行攻毒。攻毒后14 d內(nèi)每天觀察小鼠的臨床癥狀、統(tǒng)計(jì)發(fā)病與死亡情況,且每天稱量小鼠體重,在體重下降比率超過(guò)25%時(shí)判定為小鼠死亡。攻毒后第3 天,每組隨機(jī)剖殺3只小鼠,分別采集腦、鼻甲、肺、脾和腎等臟器,勻漿處理后通過(guò)接種10日齡的非免疫雞胚測(cè)定臟器的病毒含量。通過(guò)小鼠體重變化以及臟器滴定的病毒含量評(píng)估重組質(zhì)粒pCAGGS-HA(ZJ245)的免疫保護(hù)效果?!窘Y(jié)果】經(jīng)酶切鑒定和測(cè)序驗(yàn)證表明ZJ245的HA基因的已正確克隆至真核表達(dá)質(zhì)粒pCAGGS中獲得重組質(zhì)粒pCAGGS-HA(ZJ245),經(jīng)體外轉(zhuǎn)染293T細(xì)胞后,IFA和Western blot證實(shí)了病毒的HA蛋白能夠正確表達(dá),并具有良好的生物學(xué)活性;小鼠的免疫與攻毒試驗(yàn)結(jié)果表明,重組質(zhì)粒pCAGGS-HA(ZJ245)首免后一周可檢測(cè)到針對(duì)同源病毒ZJ245的低水平HI和VN抗體,加強(qiáng)免疫后抗體水平明顯升高,HI抗體達(dá)到76.88、VN抗體達(dá)到152.5;同時(shí)針對(duì)異源病毒HLJ44也產(chǎn)生了較低水平的HI和VN抗體。106.0EID50的同源病毒ZJ245攻毒時(shí),與非免疫組小鼠相對(duì)比,重組質(zhì)粒pCAGGS-HA(ZJ245)的免疫完全阻止了因病毒攻擊而導(dǎo)致的小鼠體重下降以及肺臟和鼻甲內(nèi)病毒的復(fù)制;106.0EID50的異源病毒HLJ44攻毒時(shí),相比非免疫組小鼠,質(zhì)粒免疫組小鼠體重的下降比率、以及肺臟和鼻甲內(nèi)的病毒滴度均顯著降低(<0.0001、<0.001、<0.05)?!窘Y(jié)論】重組質(zhì)粒pCAGGS-HA(ZJ245)能夠有效表達(dá)病毒HA蛋白,免疫后可使小鼠獲得完全抵抗ZJ245感染及部分抵御HLJ44感染的免疫保護(hù)力,表明重組質(zhì)粒 pCAGGS-HA(ZJ245)具有良好的免疫原性。

歐亞類禽型H1N1豬流感病毒;HA蛋白;重組質(zhì)粒;免疫原性;DNA疫苗

0 引言

【研究意義】豬流感(swine influenza, SI)是由豬流感病毒(swine influenza virus, SIV)引起的一種急性、高度接觸性呼吸道傳染病,臨床以發(fā)熱、咳嗽、噴嚏和食欲下降等為主要特征。SI普遍存在于規(guī)?;B(yǎng)殖場(chǎng)中,雖單獨(dú)感染引起的死亡率不高,但以該病為誘因引起的其他病原的混合感染,使病情復(fù)雜且加重,最終導(dǎo)致豬的死亡率上升,嚴(yán)重危害養(yǎng)豬業(yè)的健康發(fā)展?!厩叭搜芯窟M(jìn)展】目前豬群中流行的SIV主要是H1N1、H1N2和H3N2[1-2],其中H1N1又分為經(jīng)典型、類人型、類禽型和2009年造成全球人流感大流行的H1N1病毒(pdm H1N1/2009)等不同基因譜系[3]。pdm H1N1/2009的HA基因來(lái)源于經(jīng)典型H1N1,NA基因來(lái)自源于歐亞類禽型H1N1(eurasian avian-like H1N1, EA H1N1)病毒[4]。EA H1N1于1979年首次于歐洲豬群中被分離出,是由H1N1亞型禽流感病毒突破種間屏障傳染給豬的[5],目前,EA H1N1在歐洲和亞洲的多個(gè)國(guó)家的豬群中廣泛流行[6-7];中國(guó)于1993年首次分離出該病毒,與經(jīng)典型H1N1共同廣泛流行于豬群中[8]。近年來(lái),SI病原學(xué)監(jiān)測(cè)結(jié)果表明,EA H1N1已成為我國(guó)豬群中的主要流行毒株[9];該毒株與經(jīng)典型H1N1 SIV相比,具有更多的選擇優(yōu)勢(shì)[10],且EA H1N1感染人的情況在歐洲和我國(guó)均時(shí)有發(fā)生[11-13]。疫苗免疫是防制SI發(fā)生與流行的重要措施,基于EA H1N1 SIV研制的滅活疫苗[14- 16]及重組腺病毒載體疫苗[17]均證實(shí)具有良好的免疫保護(hù)效果?!颈狙芯壳腥朦c(diǎn)】HA是流感病毒的一種重要表面糖蛋白,其中HA蛋白在介導(dǎo)受體結(jié)合、膜融合、病毒粒子包裝及致病性方面發(fā)揮著重要作用[4],該蛋白是宿主獲得性免疫應(yīng)答識(shí)別的主要抗原,具有刺激機(jī)體產(chǎn)生中和抗體、阻止病毒感染的能力[18]。DNA疫苗是將含有目的基因的重組表達(dá)質(zhì)粒導(dǎo)入機(jī)體內(nèi),由宿主細(xì)胞合成抗原蛋白,進(jìn)而誘導(dǎo)有效的體液免疫和細(xì)胞免疫應(yīng)答,當(dāng)前已成為流感基因工程疫苗研發(fā)的一個(gè)重要方向[19]。在我國(guó),用于H5亞型高致病性禽流感防控的DNA疫苗已研制成功,并率先獲得了生產(chǎn)許可?!緮M解決的關(guān)鍵問(wèn)題】本研究擬以EA H1N1 SIV毒株ZJ245的HA 蛋白作為靶抗原,構(gòu)建真核表達(dá)質(zhì)粒,制備DNA疫苗,并在BALB/c小鼠體內(nèi)評(píng)估其免疫原性及對(duì)不同抗原型H1N1 SIV的免疫保護(hù)效果。

1 材料與方法

1.1 病毒、細(xì)胞及實(shí)驗(yàn)動(dòng)物等

EA H1N1毒株A/swine/Zhejiang/245/2013 (ZJ245)[20]和pdm H1N1/2009毒株A/swine/Heilongjiang/44/2009 (HLJ44)[21]均由農(nóng)業(yè)部動(dòng)物流感重點(diǎn)開放實(shí)驗(yàn)室分離、鑒定并保存;雞抗ZJ245病毒的多克隆血清由農(nóng)業(yè)部動(dòng)物流感重點(diǎn)開放實(shí)驗(yàn)室制備、保存;真核表達(dá)載體pCAGGS、293T細(xì)胞由農(nóng)業(yè)部動(dòng)物流感重點(diǎn)開放實(shí)驗(yàn)室保存;6周齡雌性BALB/c小鼠購(gòu)自北京維通利華實(shí)驗(yàn)動(dòng)物技術(shù)有限公司。

1.2 主要試劑

限制性內(nèi)切酶I和Ⅱ購(gòu)自New England Biolabs公司;RNA提取試劑盒購(gòu)自天根生化科技有限公司、膠回收試劑盒購(gòu)自O(shè)MEGA公司、質(zhì)粒提取試劑盒購(gòu)自QIAGEN公司;胎牛血清購(gòu)自ExCell公司;DMEM和Opti-MEM培養(yǎng)基購(gòu)自Gibco公司;異硫氰酸熒光素標(biāo)記羊抗雞 IgG 抗體(IgG-FITC)購(gòu)自SIGMA公司、IRDye800CW羊抗雞IgG抗體購(gòu)自LI-COR公司;DNA分子Marker購(gòu)自TaKaRa公司;感受態(tài)細(xì)胞DH5α購(gòu)自TaKaRa公司;轉(zhuǎn)染試劑Lipofectamine 3000購(gòu)自Invitrogen公司;受體破壞酶 (Receptor destroying enzyme,RDE)購(gòu)自日本生研;雞抗ZJ245病毒的多克隆血清由農(nóng)業(yè)部動(dòng)物流感重點(diǎn)開放實(shí)驗(yàn)室制備。

1.3 病毒RNA提取及HA基因的擴(kuò)增與鑒定

按照RNA提取試劑盒說(shuō)明書進(jìn)行病毒RNA的提取,以Uni12引物(序列為:5′-AGCAAAAGCAGG-3′)按照M-MLV說(shuō)明書進(jìn)行反轉(zhuǎn)錄,以獲得的cDNA為模板,以HA基因的特異性引物擴(kuò)增目的基因的開放閱讀框(ORF)。引物:HAF: 5′-GCAATG GAAACAAAACTATTTGTATTA-3′、HAR: 5′-GCATTAAATGCATACTCTGCATTGC-3′(上游引物HAF帶有I酶切位點(diǎn),下游引物HAR帶有Ⅱ酶切位點(diǎn))。PCR程序?yàn)椋?5℃預(yù)變性5 min,94℃變性1 min,55℃退火40 s,72℃延伸2 min,循環(huán)擴(kuò)增35次,72℃終延伸10 min。PCR產(chǎn)物經(jīng)電泳、膠回收目的片段備用。

1.4 表達(dá)HA基因的重組表達(dá)質(zhì)粒構(gòu)建與鑒定

應(yīng)用I和Ⅱ?qū)A基因片段進(jìn)行酶切處理后與進(jìn)行相應(yīng)雙酶切處理的pCAGGS質(zhì)粒大片段連接,轉(zhuǎn)化感受態(tài)細(xì)胞DH5α,提取質(zhì)粒,進(jìn)行I和Ⅱ雙酶切鑒定,并對(duì)重組質(zhì)粒中的HA基因進(jìn)行測(cè)序驗(yàn)證,將構(gòu)建的重組質(zhì)粒命名為pCAGGS-HA (ZJ245)。

1.5 重組質(zhì)粒pCAGGS-HA(ZJ245)的瞬時(shí)表達(dá)及檢測(cè)

1.5.1 IFA檢測(cè) 按照Lipofectamine 3000說(shuō)明書要求,將重組質(zhì)粒pCAGGS-HA(ZJ245)轉(zhuǎn)染293T細(xì)胞,同時(shí)轉(zhuǎn)染質(zhì)粒pCAGGS為載體對(duì)照,并設(shè)立空白對(duì)照。轉(zhuǎn)染后細(xì)胞,于37℃、5%CO2條件下培養(yǎng),48 h后,用70%的冰乙醇4℃固定20 min,PBST洗3次后,以雞抗ZJ245病毒的多克隆血清作為一抗(1﹕100),37℃作用2 h,PBST洗3次后,再以羊抗雞IgG 抗體(IgG-FITC)作為二抗(1﹕500),室溫作用45 min,PBST洗3次后,于熒光顯微鏡下觀察。

1.5.2 Western blot檢測(cè) 用重組質(zhì)粒pCAGGS- HA(ZJ245)轉(zhuǎn)染293T細(xì)胞,48 h后收集細(xì)胞,裂解后進(jìn)行SDS-PAGE電泳,將蛋白轉(zhuǎn)移至聚偏二氟乙烯(PVDF)膜,5%脫脂乳封閉2 h;洗膜3次后,以雞抗ZJ245的多克隆血清作為一抗(1﹕100),室溫孵育2 h;洗膜3次后,以IRDye800CW羊抗雞IgG抗體作為二抗(1﹕5 000),室溫孵育1 h;洗膜3次后,經(jīng)紅外激光成像系統(tǒng)掃膜進(jìn)行Western blot檢測(cè)。

1.6 小鼠的免疫及攻毒試驗(yàn)

將32只6周齡雌性BALB/c小鼠隨機(jī)分為4組,每組8只。兩個(gè)免疫組I、II組經(jīng)腿部肌肉多點(diǎn)注射重組質(zhì)粒pCAGGS-HA(ZJ245),免疫劑量為100 μg/只;剩余兩組(III和IV)作為非免疫組,以相同的方式注射100 μL無(wú)菌PBS。間隔3周后進(jìn)行第二次免疫,各組小鼠于免疫后每周采血,分離血清,測(cè)定抗HA蛋白的抗體。

二免2周后進(jìn)行攻毒,采用滴鼻途徑對(duì)I和III組小鼠用50 μL(106.0EID50)的ZJ245病毒進(jìn)行攻毒, II和IV組小鼠用50 μL(106.0EID50)HLJ44病毒進(jìn)行攻毒。攻毒后14 d,每天觀察試驗(yàn)小鼠的臨床癥狀,統(tǒng)計(jì)發(fā)病和死亡情況,并每天稱量小鼠體重,體重下降比率超過(guò)25%的小鼠判定為死亡。攻毒后第3 天,每組隨機(jī)剖殺3只小鼠,分別采集腦、鼻甲、肺、脾和腎等臟器,進(jìn)行臟器的病毒含量測(cè)定。

1.6.1 HI抗體的測(cè)定 為了去除小鼠血清中非特異性血凝抑制因子,采用RDE對(duì)血清樣品進(jìn)行處理,以ZJ245和HLJ44為HI抗原,采用微量HI方法測(cè)定,以完全抑制4 HAU抗原的血清最高稀釋倍數(shù)作為HI效價(jià)。

1.6.2 VN抗體的測(cè)定 首先測(cè)定病毒ZJ245和HLJ44的TCID50,將病毒適當(dāng)稀釋備用。將RDE處理過(guò)小鼠血清進(jìn)行2倍倍比稀釋,按照每孔50 μL終濃度為1﹕20、1﹕40等作倍比稀釋,至1﹕10 240。將稀釋后的血清樣品與100TCID50的病毒混合,37℃作用1 h,然后將其接種于匯合度80%的MDCK單層細(xì)胞,37℃、5% CO2條件下繼續(xù)培養(yǎng),期間觀察細(xì)胞病變情況,72 h后測(cè)定細(xì)胞上清的HA活性,最終以完全抑制紅細(xì)胞凝集的最高血清稀釋倍數(shù)作為中和效價(jià)。

1.6.3 臟器病毒測(cè)定 攻毒后第3 天,采取小鼠的腦、鼻甲、肺、脾和腎等組織,勻漿后離心取上清液,10倍倍比稀釋后,將各稀釋度接種至10日齡的非免疫雞胚,每一稀釋度接種3枚,0.1 mL/枚,72 h后測(cè)定雞胚尿囊液的HA活性,按照Reed-Muench法計(jì)算結(jié)果。

1.6.4 數(shù)據(jù)統(tǒng)計(jì)分析 應(yīng)用軟件GraphPad Prism 6.0對(duì)免疫組與非免疫組的抗體滴度、病毒滴度采用Two way ANOVA進(jìn)行統(tǒng)計(jì)分析,對(duì)其體重變化應(yīng)用t-test進(jìn)行統(tǒng)計(jì)分析。<0.05表示統(tǒng)計(jì)學(xué)差異顯著,<0.01表示差異極顯著。

2 結(jié)果

2.1 重組質(zhì)粒pCAGGS-HA(ZJ245)的構(gòu)建與鑒定

以病毒ZJ245的RNA為模板,RT-PCR擴(kuò)增得到HA基因的ORF,大小為1 701bp(圖1-A)。重組質(zhì)粒pCAGGS-HA(ZJ245)經(jīng)I和Ⅱ雙酶切后,可得到兩個(gè)條帶,大小分別與空質(zhì)粒pCAGGS和插入基因HA的大小相符(圖1-B)。通過(guò)對(duì)重組質(zhì)粒中的HA基因進(jìn)行測(cè)序,發(fā)現(xiàn)與之前測(cè)得的序列完全一致,表明重組質(zhì)粒pCAGGS-HA(ZJ245) 構(gòu)建正確。

2.2 重組質(zhì)粒表達(dá)的HA的IFA與Western blot檢測(cè)

IFA檢測(cè)結(jié)果表明,轉(zhuǎn)染pCAGGS-HA(ZJ245)的293T細(xì)胞可觀察到明顯的綠色熒光(圖2-A),對(duì)照組細(xì)胞未觀察到熒光(圖2-B)。Western blot結(jié)果顯示,轉(zhuǎn)染pCAGGS-HA(ZJ245)的293T細(xì)胞樣品在72kD處有目的條帶(圖3)。表明HA蛋白在真核細(xì)胞中能正確表達(dá),并具有良好的生物學(xué)活性。

(A)M:DL 2000 DNA 相對(duì)分子質(zhì)量標(biāo)準(zhǔn);1:HA基因;2:水對(duì)照。(B)M:DL 5000 DNA 相對(duì)分子質(zhì)量標(biāo)準(zhǔn);1:pCAGGS-HA(ZJ245)酶切鑒定;2:pCAGGS酶切鑒定

A:pCAGGS-HA轉(zhuǎn)染293T細(xì)胞;B:pCAGGS轉(zhuǎn)染293T細(xì)胞

2.3 重組質(zhì)粒pCAGGS-HA(ZJ245)免疫小鼠誘導(dǎo)產(chǎn)生的抗體水平

為了評(píng)價(jià)重組質(zhì)粒pCAGGS-HA(ZJ245)的免疫原性,將pCAGGS-HA(ZJ245)免疫BALB/c小鼠,一免3周后進(jìn)行二免,首免和二免后每周對(duì)各組小鼠采血,分離血清,進(jìn)行RDE處理后,分別以ZJ245和HLJ44作為檢測(cè)抗原,采用HI試驗(yàn)和VN試驗(yàn)檢測(cè)抗體效價(jià)。pCAGGS-HA(ZJ245)免疫組,利用ZJ245作為HI抗原,首免后1周可檢測(cè)到較低水平的HI抗體,效價(jià)為10.63,二免后1周HI抗體顯著升高,達(dá)到76.88(<0.0001);用HLJ44作為HI抗原,首免后1周檢測(cè)不到HI抗體,二免后1周HI抗體略有升高,為15.63(圖4-A)。首免后1周可檢測(cè)到抗ZJ245的VN抗體,效價(jià)為21.87,二免后1周VN抗體效價(jià)顯著提升(<0.01),達(dá)到152.5;首免后1周可檢測(cè)到抗HLJ44的VN抗體,效價(jià)為13.13,二免后1周抗體略有升高,效價(jià)為32.5(圖4-B)。

圖4 pCAGGS-HA(ZJ245)免疫小鼠的HI抗體效價(jià)(A)和VN抗體效價(jià)(B)

2.4 重組質(zhì)粒對(duì)小鼠的免疫保護(hù)效果

根據(jù)小鼠攻毒后的體重變化情況及臟器病毒含量滴定結(jié)果來(lái)評(píng)估pCAGGS-HA(ZJ245)的免疫保護(hù)效果。

2.4.1 小鼠體重變化 用同源H1N1病毒ZJ245攻毒后,pCAGGS-HA(ZJ245)免疫組小鼠未出現(xiàn)體重下降,而非免疫組小鼠在攻毒后體重出現(xiàn)下降(最大下降比率達(dá)4.39%),攻毒后免疫組與非免疫組之間小鼠體重變化差異非常顯著(<0.0001)(圖5-A);而當(dāng)采用異源H1N1病毒HLJ44攻毒時(shí),非免疫組小鼠體重出現(xiàn)了明顯下降(最大下降比率達(dá)16.19%),而pCAGGS-HA(ZJ245)免疫組小鼠的體重在攻毒后3 d內(nèi)體重略有下降,之后緩慢上升,二者體重變化差異非常顯著(<0.0001)(圖5-B)。

2.4.2 臟器病毒測(cè)定 ZJ245攻毒時(shí),免疫組和非免疫組小鼠的腦、腎臟和脾臟均未滴定到病毒(統(tǒng)計(jì)分析時(shí)賦值為100.5EID50);非免疫組小鼠的肺臟和鼻甲中的病毒含量較高,滴度分別為 106.5EID50和 102.75EID50,而在pCAGGS-HA(ZJ245)免疫組小鼠的肺臟與鼻甲中均未檢測(cè)到病毒(<0.0001、<0.0001)(圖6-A)。類似的,HLJ44攻毒時(shí),免疫組和非免疫組小鼠的腦、腎臟和脾臟也未滴定到病毒;非免疫組小鼠的肺臟和鼻甲中均檢測(cè)到高滴度的病毒(分別為107.64EID50和106.67EID50),與非免疫組相比,pCAGGS- HA(ZJ245)免疫組小鼠的肺臟和鼻甲中病毒含量均明顯降低,分別為103.98EID50和104.33EID50(<0.001、<0.05)(圖6-B)。

圖5 ZJ245和HLJ44攻毒后小鼠的體重變化

圖6 ZJ245(A)和HLJ44(B)攻毒后小鼠的臟器滴定

3 討論

EA H1N1亞型SIV已經(jīng)在歐洲和亞洲的許多國(guó)家的豬群中傳播[7, 22],近年來(lái)的SI病原學(xué)和血清學(xué)監(jiān)測(cè)結(jié)果顯示當(dāng)前EA H1N1 SIV已成為國(guó)內(nèi)豬群中的主要流行毒株[9]。EA H1N1 SIV 不但能夠造成豬的感染,并且能夠作為基因供體,與其他基因型及亞型毒株之間形成新的基因重配毒株。自2009年以來(lái),EA H1N1 SIV與pdm2009/H1N1、H1N2、H3N2病毒的重配型毒株多次在豬群中被檢測(cè)到[23-25]。因此,該亞型病毒給畜牧業(yè)和人類公共衛(wèi)生安全產(chǎn)生潛在威脅[9]。疫苗免疫作為流感防控的重要手段,SI滅活疫苗已發(fā)揮了重要的作用,但此類疫苗對(duì)新出現(xiàn)的抗原變異毒株無(wú)法提供有效保護(hù),同時(shí)又會(huì)因?yàn)楦腥径局昱c疫苗毒株抗原性的差異進(jìn)一步導(dǎo)致動(dòng)物呼吸道疾病的發(fā)生,加重病理?yè)p傷,這種情況被稱之為疫苗相關(guān)增強(qiáng)呼吸系統(tǒng)疾?。╲accine-associated enhanced respiratory disease,VAERD)[26]。因此,加快對(duì)安全、高效新型基因工程疫苗的研發(fā),為更好的防制SI具有重要的意義。

DNA疫苗能夠同時(shí)誘導(dǎo)機(jī)體產(chǎn)生體液免疫應(yīng)答和細(xì)胞免疫應(yīng)答,具備產(chǎn)生長(zhǎng)期免疫應(yīng)答和交叉保護(hù)抗體的能力[27]。DNA疫苗的一系列優(yōu)勢(shì),奠定了其在通用型流感疫苗的研制方面具有巨大潛力和良好前景。真核表達(dá)載體pCAGGS作為一種DNA疫苗載體,已成功應(yīng)用于DNA疫苗的研究,并證實(shí)了其良好的免疫效果[28-29]。HA蛋白是流感病毒的主要保護(hù)性抗原,本研究選取EA H1N1 SIV毒株ZJ245的HA基因作為靶抗原,構(gòu)建了重組表達(dá)質(zhì)粒pCAGGS- HA(ZJ245),經(jīng)體外活性檢測(cè),證實(shí)HA蛋白得到正確表達(dá),進(jìn)而制備DNA疫苗,通過(guò)免疫BALB/c小鼠評(píng)估了重組質(zhì)粒的免疫原性及對(duì)不同抗原型H1N1 SIV的免疫保護(hù)效果。

針對(duì)流感病毒HA蛋白產(chǎn)生的抗體是機(jī)體抵抗病毒感染的主要保護(hù)性抗體,研究發(fā)現(xiàn)HI抗體水平達(dá)到40或者40以上時(shí)即可對(duì)同源病毒的攻擊提供完全保護(hù)[30]。本研究中,pCAGGS-HA(ZJ245)首免及二免后每周測(cè)定HI和VN抗體結(jié)果發(fā)現(xiàn)二免后2周,免疫組小鼠針對(duì)ZJ245的HI抗體水平達(dá)到61.87,VN抗體比HI抗體出現(xiàn)的早,且高于同期的HI水平。攻毒保護(hù)試驗(yàn)中,分別通過(guò)體重變化和小鼠臟器病毒含量測(cè)定評(píng)價(jià)疫苗的免疫保護(hù)效果。結(jié)果表明,pCAGGS-HA(ZJ245)兩次免疫后,免疫組小鼠能夠?qū)A H1N1 SIV毒株ZJ245的感染產(chǎn)生完全的免疫保護(hù)能力。已有研究證實(shí)由EA H1N1 SIVs感染引起的機(jī)體免疫應(yīng)答能夠抵抗含有CS H1N1 SIV的HA基因的北美H1N1 SIVs的感染,并對(duì)pdm H1N1/2009病毒的感染提供一定的交叉保護(hù)[31]。本研究中,也評(píng)估了pCAGGS-HA(ZJ245)免疫對(duì)pdm H1N1/2009毒株HLJ44的攻毒保護(hù)力,結(jié)果顯示,免疫組小鼠在一免后3周可產(chǎn)生針對(duì)HLJ44抗原的較低水平的HI抗體,VN抗體在一免后1周即可檢測(cè)到,但兩者均低于同期針對(duì)ZJ245的HI和VN抗體,表明EA H1N1和pdm H1N1/2009病毒抗原性的不同,且它們之間存在部分血清學(xué)交叉反應(yīng)。HLJ44攻毒后,免疫組小鼠的體重下降水平以及肺臟、和鼻甲內(nèi)的病毒含量均顯著低于非免疫組,由此可見(jiàn)pCAGGS-HA(ZJ245)免疫在一定程度上對(duì)pdm H1N1/2009 SIVs提供了交叉保護(hù)。BRAUCHER等[32]通過(guò)對(duì)一株表達(dá)pdm H1N1/2009流感病毒HA蛋白復(fù)制缺陷型腺病毒的免疫原性研究發(fā)現(xiàn),重組腺病毒誘導(dǎo)小鼠產(chǎn)生的細(xì)胞免疫應(yīng)答在清除同源 pdm H1N1/2009病毒感染與抵御異源H1N2亞型SIV交叉保護(hù)方面起到了重要作用。本研究pCAGGS-HA (ZJ245)的免疫在低水平抗體出現(xiàn)時(shí)依然能夠誘導(dǎo)對(duì)異源病毒攻擊有效的交叉保護(hù),經(jīng)分析認(rèn)為DNA疫苗的免疫保護(hù)效果不單單依賴于體液免疫應(yīng)答,細(xì)胞免疫應(yīng)答也具有關(guān)鍵作用。因此,在后續(xù)研究中會(huì)對(duì)該疫苗誘導(dǎo)的細(xì)胞免疫應(yīng)答水平開展系統(tǒng)的檢測(cè),并進(jìn)一步評(píng)估該DNA疫苗對(duì)豬的免疫保護(hù)效果。

4 結(jié)論

構(gòu)建的重組質(zhì)粒pCAGGS-HA(ZJ245)可有效表達(dá)EA H1N1 SIV 的HA蛋白,兩次免疫能夠有效誘導(dǎo)機(jī)體產(chǎn)生針對(duì)同源EA H1N1 SIV的高水平的HI和VN抗體,對(duì)同源EA H1N1 SIV的感染提供完全保護(hù),對(duì)異源pdm H1N1/2009 SIV的感染也具有一定的交叉免疫保護(hù)效果。

[1] BROWN I. The epidemiology and evolution of influenza viruses in pigs., 2000, 74(1/2): 29-46.

[2] WEBBY R J, WEBSTER R G. Emergence of influenza A viruses., 2001, 356(1416): 1817-1828. doi:10.1098/rstb.2001.0997.

[3] BAUDON E, PEYRE M, PEIRIS M, COWLING B J. Epidemiological features of influenza circulation in swine populations: A systematic review and meta-analysis., 2017, 12(6): e179044.doi: 10.1371/journal.pone.0179044.

[4] NEUMANN G, NODA T, KAWAOKA Y. Emergence and pandemic potential of swine-origin H1N1 influenza virus., 2009, 459(7249): 931-939.doi: 10.1038/nature08157.

[5] SCHULTZ U, FITCH W M, LUDWIG S, MANDLER J, SCHOLTISSEK C. Evolution of pig influenza viruses., 1991, 183(1): 61-73.

[6] LIU J, BI Y, QIN K, FU G, YANG J, PENG J, MA G, LIU Q, PU J, TIAN F. Emergence of European avian influenza virus-like H1N1 swine influenza A viruses in China., 2009, 47(8): 2643-2646. doi: 10.1128/JCM.00262-09.

[7] VINCENT A, AWADA L, BROWN I, CHEN H, CLAES F, DAUPHIN G, DONIS R, CULHANE M, HAMILTON K, LEWIS N, MUMFORD E, NGUYEN T, PARCHARIYANON S, PASICK J, PAVADE G, PEREDA A, PEIRIS M, SAITO T, SWENSON S, VAN REETH K, WEBBY R, WONG F, CIACCI-ZANELLA J. Review of influenza A virus in swine worldwide: a call for increased surveillance and research., 2014, 61(1): 4-17.doi: 10.1111/zph.12049.

[8] GUAN Y, SHORTRIDGE K F, KRAUSS S, LI P H, KAWAOKA Y, WEBSTER R G. Emergence of avian H1N1 influenza viruses in pigs in China., 1996, 70(11): 8041-8046.

[9] YANG H, CHEN Y, QIAO C, HE X, ZHOU H, SUN Y, YIN H, MENG S, LIU L, ZHANG Q, KONG H, GU C, LI C, BU Z, KAWAOKA Y, CHEN H. Prevalence, genetics, and transmissibility in ferrets of Eurasian avian-like H1N1 swine influenza viruses., 2016, 113(2): 392-397.doi: 10.1073/pnas.1522643113.

[10] CAMPITELLI L, DONATELLI I, FONI E, CASTRUCCI M R, FABIANI C, KAWAOKA Y, KRAUSS S, WEBSTER R G. Continued evolution of H1N1 and H3N2 influenza viruses in pigs in Italy., 1997, 232(2): 310-318.doi: 10.1006/viro.1997.8514.

[11] DE JONG J C, PACCAUD M F, DE RONDE-VERLOOP F M, HUFFELS N H, VERWEI C, WEIJERS T F, BANGMA P J, VAN KREGTEN E, KERCKHAERT J A, WICKI F, WUNDERLI W. Isolation of swine-like influenza A (H1N1) viruses from man in Switzerland and the Netherlands., 1988, 139(4): 429-437.

[12] WANG D Y, QI S X, LI X Y, GUO J F, TAN M J, HAN G Y, LIU Y F, LAN Y, YANG L, HUANG W J, CHENG Y H, ZHAO X, BAI T, WANG Z, WEI H J, XIAO N, SHU Y L. Human infection with Eurasian avian-like influenza A(H1N1) virus, China., 2013, 19(10): 1709-1711.doi: 10.3201/eid1910. 130420.

[13] YANG H, QIAO C, TANG X, CHEN Y, XIN X, CHEN H. Human infection from avian-like influenza A (H1N1) viruses in pigs, China., 2012, 18(7): 1144-1146. doi:10.3201/ eid1807.120009.

[14] SUI J, YANG D, QIAO C, XU H, XU B , WU Y, YANG H, CHEN Y, CHEN H. Protective efficacy of an inactivated Eurasian avian-like H1N1 swine influenza vaccine against homologous H1N1 and heterologous H1N1 and H1N2 viruses in mice., 2016, 34(33): 3757-3763.doi:10.1016/j.vaccine.2016.06.009.

[15] RUAN B, WEN F, GONG X, LIU X M, WANG Q, YU L X, WANG S Y, ZHANG P, YANG H M, SHAN T L, ZHENG H, ZHOU Y J, TONG W, GAO F, TONG G Z, YU H. Protective efficacy of a high-growth reassortant H1N1 influenza virus vaccine against the European avian-like H1N1 swine influenza virus in mice and pigs., 2018, 222: 75-84.doi: 10.1016/j.vetmic. 2018.07.003.

[16] LIU L, LU J, ZHOU J, LI Z, ZHANG H, WANG D, SHU Y. Construction and comparison of different source neuraminidase candidate vaccine strains for human infection with Eurasian avian-like influenza H1N1 virus., 2017, 19(12): 635-640.doi: 10.1016/j.micinf.2017.08.004.

[17] WU Y, YANG D, XU B, LIANG W, SUI J, CHEN Y, YANG H, CHEN H, WEI P, QIAO C. Immune efficacy of an adenoviral vector-based swine influenza vaccine against antigenically distinct H1N1 strains in mice., 2017, 147: 29-36. doi: 10.1016/j.antiviral.2017.09.009.

[18] SHVARTSMAN D E, KOTLER M, TALL R D,ROTH M G, HENIS Y I. Differently anchored influenza hemagglutinin mutants display distinct interaction dynamics with mutual rafts., 2003, 163(4): 879-888. doi: 10.1083/jcb.200308142.

[19] TREGONING J S, KINNEAR E. Using plasmids as DNA vaccines for infectious diseases., 2014, 2(6):1-16.doi: 10.1128/microbiolspec.PLAS-0028-2014.

[20] 徐匯洋,許榜豐,陳艷,隋金鈺,楊煥良,尹航,楊大為,喬傳玲,陳化蘭. 一株H1N1豬流感病毒的進(jìn)化分析與分子特征[J]. 中國(guó)農(nóng)業(yè)科學(xué), 2015(15): 3071-3078. doi:10.3864/j.issn.0578-1752. 2015.15.018.

XU H Y, XU B F, CHEN Y, SUI J Y, YANG H L, YIN H, YANG D W, QIAO C L, CHEN H L. Phylogenetic analysis and molecular characteristics of an H1N1subtype swine influenza virus., 2015(15): 3071-3078. (in Chinese). doi: 10.3864/ j.issn.0578-1752.2015.15.018.

[21] CHEN Y, ZHANG J, QIAO C, YANG H, ZHANG Y, XIN X, CHEN H. Co-circulation of pandemic 2009 H1N1, classical swine H1N1 and avian-like swine H1N1 influenza viruses in pigs in China.2013, 13: 331-338.doi: 10.1016/j.meegid. 2012.09.021.

[22] PENSAERT M, OTTIS K, VANDEPUTTE J, KAPLAN M M, BACHMANN P A. Evidence for the natural transmission of influenza A virus from wild ducts to swine and its potential importance for man., 1981, 59(1): 75-78.

[23] DUCATEZ M F, HAUSE B, STIGGER-ROSSER E, DARNELL D, CORZO C, JULEEN K, SIMONSON R, BROCKWELL-STAATS C, RUBRUM A, WANG D, WEBB A, CRUMPTON J C, LOWE J, GRAMER M, WEBBY R J. Multiple reassortment between pandemic (H1N1) 2009 and endemic influenza viruses in pigs, United States., 2011, 17(9): 1624-1629. doi:10.3201/ eid1709.110338.

[24] QIAO C, LIU L, YANG H, CHEN Y, XU H, CHEN H. Novel triple reassortant H1N2 influenza viruses bearing six internal genes of the pandemic 2009/H1N1 influenza virus were detected in pigs in China., 2014, 61(4): 529-534. doi: 10.1016/j.jcv. 2014.10.014.

[25] WATSON S J, LANGAT P, REID S M, LAM TT, COTTEN M, KELLY M, VAN REETH K, QIU Y, SIMON G, BONIN E, FONI E, CHIAPPONI C, LARSEN L, HJULSAGER C, MARKOWSKA- DANIEL I, URBANIAK K, DüRRWALD R, SCHLEGEL M, HUOVILAINEN A, DAVIDSON I, DáN á, LOEFFEN W, EDWARDS S, BUBLOT M, VILA T, MALDONADO J, VALLS L, ESNIP3 CONSORTIUM, BROWN IH, PYBUS OG, KELLAM P.Molecular epidemiology and evolution of influenza viruses circulating within European swine between 2009 and 2013., 2015, 89(19): 9920-9931. doi: 10.1128/JVI.00840-15.

[26] RAJ?O D S, CHEN H, PEREZ D R, SANDBULTE M R, GAUGER P C, LOVING C L, SHANKS G D, VINCENT A. Vaccine-associated enhanced respiratory disease is influenced by Haemagglutinin and Neuraminidase in whole inactivated influenza virus vaccines.irology, 2016, 97(7): 1489-1499. doi:10.1099/jgv.0. 000468.

[27] PILLET S, KOBASA D, MEUNIER I, GRAY M, LADDY D, WEINER D B, VON MESSLING V, KOBINGER G P. Cellular immune response in the presence of protective antibody levels correlates with protection against 1918 influenza in ferrets., 2011, 29(39): 6793-6801. doi: 10.1016/j.vaccine.2010.12.059.

[28] JIANG Y, YU K, ZHANG H, ZHANG P, LI C, TIAN G, LI Y, WANG X, GE J, BU Z, CHEN H. Enhanced protective efficacy of H5 subtype avian influenza DNA vaccine with codon optimized HA gene in a pCAGGS plasmid vector., 2007, 75(3): 234-241. doi:10.1016/j.antiviral.2007.03.009.

[29] PING X, HU W, XIONG R, ZHANG X, TENG Z, DING M, LI L, CHANG C, XU K. Generation of a broadly reactive influenza H1 antigen using a consensus HA sequence., 2018, 36(32 Pt B): 4837-4845. doi:10.1016/j.vaccine.2018.06.048.

[30] MURPHY B R, CLEMENTS M L. The systemic and mucosal immune response of humans to influenza A virus.1989, 146: 107-116.

[31] DE VLEESCHAUWER A R, VAN POUCKE S G, KARASIN A I, OLSEN CW, VAN REETH K. Cross-protection between antigenically distinct H1N1 swine influenza viruses from Europe and North America., 2011, 5(2): 115-122. doi: 10.1111/j.1750-2659.2010.00164.x.

[32] BRAUCHER D R, HENNINGSON J N, LOVING C L, VINCENT A L, KIM E, STEITZ J, GAMBOTTO A A, KEHRLI ME J R. Intranasal vaccination with replication-defective adenovirus type 5 encoding influenza virus hemagglutinin elicits protective immunity to homologous challenge and partial protection to heterologous challenge in pigs., 2012, 19(11): 1722-1729. doi:10.1128/CVI.00315-12.

Immunogenicity Evaluation of Eukaryotic Expressing Plasmids Encoding HA Protein of Eurasian Avian-like H1N1 Swine Influenza Virus

JIA YunHui, XU ChengZhi, SUI JinYu, WU YunPu, XU BangFeng, CHEN Yan, YANG HuanLiang, QIAO ChuanLing, CHEN HuaLan

(Animal Influenza Key Laboratory of the Ministry of Agriculture/State Key Laboratory of Veterinary Biotechnology/Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069)

【Objective】This study aimed to construct the recombinant plasmid expressing HA gene of Eurasian avian-like H1N1 (EA H1N1) swine influenza virus (SIV) and then evaluate its immunogenicity in mice. 【Method】HA gene of A/swine/Zhejiang/ 245/2013(H1N1) (ZJ245) was amplified by RT-PCR, and inserted into an eukaryotic expression vector pCAGGS. The recombinant plasmid, designated as pCAGGS-HA(ZJ245), was transfected into 293T cells, and the expressed HA protein was identified by indirect fluorescence assay (IFA) and western blot. In order to evaluate the immunogenicity of the recombinant plasmid pCAGGS- HA(ZJ245), sixteen six-week-old female BALB/c mice were immunized with 100 μg of the recombinant plasmid by intramuscular injection, and then were boosted once with a 3-week interval. Another group of sixteen mice received 100 μL of phosphate-buffered saline (PBS) were used as unvaccinated control. Serum samples were collected every week after prime and boost immunization in order to detect the hemagglutinin inhibition (HI) antibodies, virus neutralization (VN) antibodies, respectively. Two weeks after the boost immunization, pCAGGS-HA(ZJ245)-immunized and PBS-inoculated mice were intranasally challenged with 50 μL(106.0EID50) of the homologous ZJ245 and heterologous A/swine/Heilongjiang/44/2009(H1N1) (HLJ44), respectively. All mice per group were monitored daily for clinical signs of infection and body weight changes for two weeks. The mice that lost more than 25% of their initial body weight were euthanized on humane ground. On day 3 post-challenge three mice per group were euthanized and their organs including brain, nasal turbinate, lung, spleen and kidney were collected for virus titration in eggs.Immune efficacy of the recombinant plasmid pCAGGS-HA(ZJ245) was evaluated by body weight loss and virus replication titer in mice, respectively.【Result】The recombinant plasmid pCAGGS-HA(ZJ245) was constructed by inserting HA gene of ZJ245 virus and verified by restriction endonuclease analysis and plasmid sequencing. IFA and western blot analysis confirmed that the HA protein could be correctly expressed by the recombinant plasmid pCAGGS-HA(ZJ245) and had a good biological activity in vitro. Immunization and challenge trial indicated that low levels of HI and VN antibody against the homologous ZJ245 virus were initially detected one week after the first immunization, and significantly increased after the second immunization, with the HI titer of 76.88 and the VN titer of 152.5, respectively. Meanwhile, low levels of HI and VN antibodies against the heterologous HLJ44 virus were also detected. Compared with PBS-inoculated mice, the weight loss and viral replication rate of the pCAGGS-HA(ZJ245)-vaccinated mice when challenged with 106.0EID50of the homologous ZJ245 virus were completely inhibited. When challenged with 106.0EID50of the heterologous HLJ44 virus, the extent of weight loss and viral titer of the challenge virus detected in the pCAGGS-HA(ZJ245)- vaccinated mice were significantly lower than those in the PBS-inoculated mice (<0.0001,<0.001,<0.05).【Conclusion】The recombinant plasmid pCAGGS-HA(ZJ245) could efficiently express HA protein, and provided complete protection for the immunized mice against the homologous ZJ245 virus infection and partial cross-protection against the heterologous HLJ44 virus infection, which indicated that the recombinant plasmid pCAGGS-HA(ZJ245) had good immunogenicity.

Eurasian avian-like H1N1 swine influenza virus; hemagglutinin protein; recombinant plasmid; immunogenicity; DNA vaccine

10.3864/j.issn.0578-1752.2019.05.014

2018-09-03;

2019-01-15

國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2017YFD0500604)、黑龍江省自然基金項(xiàng)目(C2018072)

賈云慧,Tel:15004602635;E-mail:jiayunhui1993@163.com。通信作者喬傳玲,Tel:0451-51051686;E-mail:qiaochuanling@caas.cn

(責(zé)任編輯 林鑒非)

猜你喜歡
毒株質(zhì)粒抗體
豬繁殖與呼吸綜合征病毒基因測(cè)序的臨床應(yīng)用
農(nóng)桿菌轉(zhuǎn)化法中的“Ti質(zhì)粒轉(zhuǎn)化載體系統(tǒng)”的簡(jiǎn)介
——一道江蘇高考題的奧秘解讀和拓展
全基因組測(cè)序后質(zhì)粒的組裝與鑒定研究進(jìn)展*
法國(guó)發(fā)現(xiàn)新冠新變異毒株IHU
肌炎自身抗體檢測(cè)在間質(zhì)性肺疾病中的臨床應(yīng)用
奧密克戎毒株為何“需要關(guān)注”
抗GD2抗體聯(lián)合細(xì)胞因子在高危NB治療中的研究進(jìn)展
mcr-1陽(yáng)性類噬菌體質(zhì)粒與F33∶A-∶B-質(zhì)粒共整合形成的融合質(zhì)粒的生物學(xué)特性分析
Ro52抗體與其他肌炎抗體共陽(yáng)性的相關(guān)性研究
開發(fā)新方法追蹤植物病害的全球傳播(2020.6.7 iPlants)