劉延瑩 馮慶鯤
摘 要:目的:探討長(zhǎng)期大強(qiáng)度運(yùn)動(dòng)對(duì)大鼠腓腸肌蛋白質(zhì)組表達(dá)的影響,揭示骨骼肌適應(yīng)性應(yīng)答的分子機(jī)制。方法:SD大鼠隨機(jī)分為安靜對(duì)照組與運(yùn)動(dòng)訓(xùn)練組。對(duì)照組大鼠不給予任何干預(yù),運(yùn)動(dòng)訓(xùn)練組進(jìn)行遞增負(fù)荷跑臺(tái)訓(xùn)練(30 min/天, 6天/周)。分別于第2、4和6周末,腹主動(dòng)脈采血收集血清,測(cè)定肌酸激酶(creatine kinase, CK)和乳酸脫氫酶(lactate dehydrogenase, LDH)活性;第6周末,取大鼠腓腸肌,提取與純化總蛋白,雙向凝膠電泳分離蛋白質(zhì),經(jīng)染色及圖像分析,對(duì)差異表達(dá)顯著的蛋白質(zhì)點(diǎn)進(jìn)行質(zhì)譜分析與蛋白質(zhì)數(shù)據(jù)庫檢索。結(jié)果:與對(duì)照組相比,運(yùn)動(dòng)2周組大鼠血清CK濃度顯著升高(P<0.05),運(yùn)動(dòng)4周組和運(yùn)動(dòng)6周組無明顯變化(P>0.05);運(yùn)動(dòng)2周組、運(yùn)動(dòng)4周組和運(yùn)動(dòng)6周組大鼠血清LDH水平均無顯著變化(P>0.05);與對(duì)照組相比,6周遞增負(fù)荷運(yùn)動(dòng)組大鼠腓腸肌有36個(gè)蛋白質(zhì)斑點(diǎn)差異表達(dá)1.5倍以上,選取9個(gè)目標(biāo)蛋白質(zhì)點(diǎn)進(jìn)行質(zhì)譜鑒定,其中5-羥色胺受體2B (5-hydroxytryptamine receptor 2B, 5-HTR2B)、丙酮酸脫氫酶El元件亞基α (pyruvate dehydrogenase E1 component subunit alpha, PDH-E1α)、蛋白酶體亞基-B4 (proteasome subunit beta type-4, PSMB4)、蛋白酶體亞基-B6 (proteasome subunit beta type-6, PSMB6)和蛋白酶體亞基-B7 (proteasome subunit beta type-7, PSMB7)表達(dá)顯著下調(diào),α-肌動(dòng)蛋白(α-actin)、M型肌酸激酶(creatine kinase M-type, M-CK)、肌球蛋白輕鏈2 (myosin regulatory light chain 2, skeletal muscle isform, MLC2)表達(dá)顯著上調(diào),腺苷酸激酶同工酶1 (adenylate kinase isoenzyme 1, AK1)為新增蛋白質(zhì)點(diǎn)。結(jié)論:6周遞增負(fù)荷運(yùn)動(dòng)后大鼠腓腸肌蛋白質(zhì)組表達(dá)發(fā)生顯著變化,其中5-HTR2B與神經(jīng)-肌肉興奮性有關(guān),PSMB4、PSMB6和PSMB7與骨骼肌蛋白質(zhì)降解有關(guān),α-actin和MLC2與骨骼肌收縮功能有關(guān),PDH-E1α、M-CK和AK1與骨骼肌能量代謝和利用有關(guān)。
關(guān)鍵詞:骨骼肌;遞增負(fù)荷;蛋白質(zhì)組學(xué);適應(yīng)性應(yīng)答
中圖分類號(hào):G804.7 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):1006-2076(2019)06-0071-08
Abstract:Objective: To explore the effects of chronic high-intensity exercise on the proteome expression of gastrocnemius muscle in rats and reveal the molecular mechanism of skeletal muscle adaptive
School of P.E. and Health, Zhaoqing University, Zhaoqing 526000, Guangdong, China
response.Methods: Sprague-Dawley rats were randomly divided into sedentary-control group and exercise training group. The rats in the control group were not given any intervention, and the exercise training group was given increasing load treadmill training (30 min/ day, 6 days/week). At the end of week 2, 4 and 6, serum was collected from the abdominal aorta for the determination of creatine kinase (CK) and lactate dehydrogenase (LDH) activity. Gastrocnemius muscle were taken then total protein was extracted and purified at the end of 6th week. The proteome was analyzed by 2-DE, and the proteins were identified by data retrieved from the protein data bank. Results: Compared with the control group, serum CK concentration was significantly increased in the exercise group for 2 weeks (P<0.05), while there was no significant change in the exercise group for 4 weeks and the exercise group for 6 weeks (P>0.05).There was no significant change in serum LDH level in the 2 week group, 4 week group and 6 week group (P>0.05). There were 36 proteins expressed > 1.5 folds in the gastrocnemius muscle of the rats after the 6-week incremental exercise when compared with the control group. 9 proteins were selected as target protein and analyzed by MS identification. Among them, 5-hydroxytryptamine receptor 2B (5-HTR2B), pyruvate dehydrogenase E1 component subunit alpha (PDH-E1α), proteasome subunit beta type-4 (PSMB4), proteasome subunit beta type-6 (PSMB6) and proteasome subunit beta type-7 (PSMB7) were down-regulated, while α-actin, creatine kinase M-type (M-CK), myosin regulatory light chain 2 (MLC2) were up-regulated, and adenylate kinase isoenzyme 1 (AK1) was the new protein spot. Conclusions:The rats gradually adapted to increasing intensity load during 6 weeks of incremental exercise. The proteasome of the gastrocnemius muscle changed significantly after six incremental exercise. 5-HTR2B is related to the excitability of nerve muscle. PSMB4, PSMB6 and PSMB7 are related to protein degradation of skeletal muscle. α-actin and MLC2 are related to skeletal muscle contraction function, PDH-E1 alpha, M-CK and AK1 are related to skeletal muscle energy metabolism and utilization. The results showed that the adaptive responses of skeletal muscle after long-term high-intensity exercise may be mainly manifested as reduced skeletal muscle fatigue, down-regulated skeletal muscle protein degradation, and enhanced skeletal muscle contraction, fatty acid oxidation, ATP resynthesis and utilization.
Key words:skeletal muscle; incremental load; proteomics; adaptive response
運(yùn)動(dòng)劑量與骨骼肌適應(yīng)之間的關(guān)系是體育界研究熱點(diǎn)之一[1]。大強(qiáng)度運(yùn)動(dòng)訓(xùn)練往往引起體內(nèi)某些酶活性和蛋白質(zhì)水平發(fā)生改變[2-3]。血清肌酸激酶(creatine kinase, CK)和乳酸脫氫酶(lactate dehydrogenase, LDH)是用于監(jiān)控和評(píng)定運(yùn)動(dòng)訓(xùn)練負(fù)荷、機(jī)能恢復(fù)情況的較敏感指標(biāo)之一[4-5]。研究發(fā)現(xiàn),一次長(zhǎng)時(shí)間大強(qiáng)度運(yùn)動(dòng)后,血清CK和LDH水平升高,隨著運(yùn)動(dòng)重復(fù)次數(shù)的增加,CK和LDH水平升高幅度逐漸減小[6]。Chen等也發(fā)現(xiàn),一組大強(qiáng)度運(yùn)動(dòng)后,血清CK活性增加,而在接下來的重復(fù)運(yùn)動(dòng)后,CK活性沒有增加[7]。提示,機(jī)體對(duì)大強(qiáng)度的運(yùn)動(dòng)產(chǎn)生了適應(yīng)。最新研究進(jìn)一步揭示,運(yùn)動(dòng)員賽前訓(xùn)練期間,骨骼肌對(duì)大強(qiáng)度或新訓(xùn)練方法的適應(yīng)需要一周的“過渡期”[8]。然而,大強(qiáng)度運(yùn)動(dòng)誘導(dǎo)的骨骼肌適應(yīng)性應(yīng)答的內(nèi)在分子機(jī)制尚不完全明確。
近年來,蛋白組學(xué)技術(shù)以其高分辨率、高流通量等優(yōu)點(diǎn)對(duì)系統(tǒng)、全面、綜合研究機(jī)體運(yùn)動(dòng)過程中蛋白質(zhì)組的應(yīng)答性變化產(chǎn)生深遠(yuǎn)影響。二維聚丙烯酰胺凝膠電泳(Two-dimensional polyacrylamide gel electrophoresis, 2-DE)作為經(jīng)典的蛋白質(zhì)組學(xué)技術(shù)已被作為探究運(yùn)動(dòng)引起的蛋白質(zhì)組變化的標(biāo)準(zhǔn)方法[9]。6周遞增負(fù)荷運(yùn)動(dòng)是常用的大鼠大強(qiáng)度運(yùn)動(dòng)訓(xùn)練模型[10-11]。但骨骼肌在此運(yùn)動(dòng)過程中的應(yīng)答變化尚無深入研究。鑒于此,本研究通過蛋白組學(xué)技術(shù)探究6周遞增負(fù)荷運(yùn)動(dòng)引起骨骼肌差異表達(dá)的蛋白質(zhì),并揭示這些蛋白的運(yùn)動(dòng)應(yīng)答機(jī)制,為科學(xué)訓(xùn)練提供理論依據(jù)。
1 研究對(duì)象與方法
1.1 研究對(duì)象
選用SPF級(jí)雄性Sprague-Dawley(SD)大鼠,購于廣州中醫(yī)藥大學(xué)實(shí)驗(yàn)動(dòng)物中心,8周齡,平均體重為212±23 g。采用標(biāo)準(zhǔn)嚙齒類動(dòng)物飼料喂食,分籠飼養(yǎng),自由進(jìn)食和飲水,人工光照控制晝夜節(jié)律,光照時(shí)間7:00~19:00,室溫20℃~24℃,濕度65%±10%。適應(yīng)性訓(xùn)練1周后,大鼠隨機(jī)分為安靜對(duì)照組(n=24)和運(yùn)動(dòng)訓(xùn)練組(n=24),分別于第2、4和6周最后一次訓(xùn)練結(jié)束48 h后取材(各8只)。
1.2 運(yùn)動(dòng)方案
運(yùn)動(dòng)方案參照六周遞增負(fù)荷訓(xùn)練模型[10-11]。大鼠適應(yīng)性喂養(yǎng)一周后,進(jìn)行10 m/min負(fù)荷強(qiáng)度的適應(yīng)性跑臺(tái)訓(xùn)練,隨后分組開始正式實(shí)驗(yàn)。正式實(shí)驗(yàn)時(shí),對(duì)照組大鼠不給予任何干預(yù),運(yùn)動(dòng)組大鼠進(jìn)行為期6周的遞增負(fù)荷強(qiáng)度跑臺(tái)運(yùn)動(dòng)。具體運(yùn)動(dòng)方案為:跑臺(tái)坡度為0度,第1周跑臺(tái)速度為15 m/min,此后每周遞增5 m/min,至第6周時(shí)速度達(dá)40 m/min(表1),每次30 min,每天1次,每周6次(周日休息)。
1.3 樣品制備
1.3.1 血清制備
分別于第2、4和6周最后一次訓(xùn)練結(jié)束48 h后,腹腔注射水合氯醛將大鼠麻醉,腹主動(dòng)脈采血。常溫靜置30分鐘,以2 500 r/min轉(zhuǎn)速離心20分鐘后收集上清,于-80℃冰箱保存待用。
1.3.2 腓腸肌蛋白質(zhì)提取與純化
第6周最后一次訓(xùn)練結(jié)束48 h后,腹腔注射水合氯醛將大鼠麻醉,取腓腸肌組織,加入液氮研磨直至組織變成粉末。加入裂解液,充分溶解后4℃、12000r/min離心20min,收集上清液,提取蛋白質(zhì)。對(duì)離心后的上清液進(jìn)行超聲處理,破碎核酸,然后再加入丙酮-20℃沉淀過夜,沉淀完的蛋白質(zhì)經(jīng)純化后,-80℃保存?zhèn)溆谩?/p>
1.4 血清CK和LDH活性測(cè)定
血清CK活性測(cè)定采用酶聯(lián)免疫法,LDH活性測(cè)定采用微板法。試劑盒購自南京建成生物公司,具體操作按照說明書進(jìn)行。
1.5 雙向凝膠電泳檢測(cè)與質(zhì)譜分析
提取與純化后的蛋白質(zhì)團(tuán)塊,依次進(jìn)行一向等點(diǎn)聚焦、二向SDS-PAGE、染色、凝膠的掃描和圖像分析,選取蛋白點(diǎn)進(jìn)行挖點(diǎn)、酶切、肽段抽提和點(diǎn)靶后利用德國布魯克(Bruker Dalton) UltrafleX III MALDI TOF & TOF/TOF質(zhì)譜儀進(jìn)行質(zhì)譜分析。
1.6 數(shù)據(jù)分析
數(shù)據(jù)庫檢索:利用軟件flex Analysis (Bruker Dalton)過濾基線峰、識(shí)別信號(hào)峰。搜索Uniprot數(shù)據(jù)庫,尋找匹配的相關(guān)蛋白質(zhì),同時(shí)查詢其功能,明確鑒定的蛋白質(zhì)為何種蛋白質(zhì)。
血清CK和LDH測(cè)定結(jié)果以均值±標(biāo)準(zhǔn)差(X±SD)表示,采用SPSS17.0統(tǒng)計(jì)軟件單因素方差分析法。P<0.05為顯著性差異水平,P<0.01為極顯著性差異水平。
2 研究結(jié)果
2.1 大鼠血清CK和LDH活性的變化
[JP2]表2結(jié)果顯示,與對(duì)照組相比,運(yùn)動(dòng)2周組大鼠血清CK活性顯著升高(P<0.05),運(yùn)動(dòng)4周組和運(yùn)動(dòng)6周組無明顯變化(P>0.05);與運(yùn)動(dòng)2周組相比,運(yùn)動(dòng)4周組和運(yùn)動(dòng)6周組大鼠血清CK活性均顯著降低(P<0.05)。與對(duì)照組相比,運(yùn)動(dòng)2周組、運(yùn)動(dòng)4周組和運(yùn)動(dòng)6周組大鼠血清LDH活性均無顯著變化(P>0.05)。
2.2 大鼠腓腸肌蛋白質(zhì)2-DE圖譜分析結(jié)果
圖1為對(duì)照組(C組)和運(yùn)動(dòng)6周組(E組)大鼠腓腸肌總蛋白經(jīng)一向等點(diǎn)聚焦、二向SDS-PAGE、染色、凝膠掃描和圖像分析后得到的代表圖譜。[FL)]
2.3 大鼠腓腸肌蛋白質(zhì)組差異表達(dá)分析
采用ImageMaster 2D platinum 5.0 (GE)分析軟件,對(duì)C組和E組的二維凝膠進(jìn)行差異對(duì)比分析;按照1.5倍篩選差異比值,得到全部差異斑點(diǎn),并截取差異斑點(diǎn)整體截圖(圖2a)和差異斑點(diǎn)局部截圖(圖2b&c),并在圖中綠色標(biāo)出。與C組相比,6周遞增負(fù)荷運(yùn)動(dòng)后大鼠腓腸肌有36個(gè)蛋白斑點(diǎn)的表達(dá)發(fā)生1.5倍以上變化(圖2a,表3),下調(diào)1.5倍以上的蛋白斑點(diǎn)為24個(gè),其中缺失蛋白斑點(diǎn)8個(gè)(圖2b,表3);上調(diào)15倍以上的蛋白斑點(diǎn)為12個(gè),其中新增蛋白斑點(diǎn)1個(gè)(圖2c,表3)。
PSMB4、PSMB6和PSMB7與骨骼肌蛋白質(zhì)降解有關(guān)。由26S蛋白酶體和一系列泛素酶等多個(gè)催化活性蛋白酶組成的泛素-蛋白酶體通路是細(xì)胞內(nèi)蛋白質(zhì)選擇性降解的重要途徑。26S蛋白酶體是UPP的識(shí)別和降解中心,由20S核心蛋白酶和19S調(diào)節(jié)顆粒構(gòu)成。PSMB4、PSMB6和 PSMB7屬于20S核心蛋白酶β環(huán)亞基家族,形成26S蛋白酶體的蛋白水解中心,催化泛素化蛋白的降解。大量研究表明,一次性急性運(yùn)動(dòng)或大強(qiáng)度運(yùn)動(dòng)引起泛素-蛋白酶體通路激活導(dǎo)致骨骼肌蛋白質(zhì)降解[25-26],20S核心蛋白酶在上述過程中起重要作用。因此,PSMB4、PSMB6和 PSMB7的蛋白水平可表征肌肉蛋白質(zhì)的降解程度。蛋白質(zhì)組學(xué)研究揭示,與一次大強(qiáng)度運(yùn)動(dòng)相比,重復(fù)大強(qiáng)度運(yùn)動(dòng)后即刻,股四頭肌26S蛋白酶體非ATP酶調(diào)節(jié)亞基6蛋白水平下調(diào)4.8倍,泛素羧基末端水解酶14蛋白水平下調(diào)3.3倍;48 h時(shí),泛素羧基末端水解酶同工酶L3和泛素羧基末端水解酶14蛋白表達(dá)量分別下調(diào)1.6倍和4倍;72 h時(shí),泛素羧基末端水解酶14蛋白表達(dá)量分別下調(diào)3.1倍[24]。提示,重復(fù)性大強(qiáng)度運(yùn)動(dòng)可抑制泛素-蛋白酶體通路的激活。本研究發(fā)現(xiàn),骨骼肌PSMB4、PSMB6和PSMB7蛋白水平均下降,據(jù)此推測(cè),6周遞增負(fù)荷運(yùn)動(dòng)后大鼠骨骼肌蛋白質(zhì)降解減少。此外,大強(qiáng)度運(yùn)動(dòng)通常伴隨肌細(xì)胞凋亡增加,隨著對(duì)運(yùn)動(dòng)的適應(yīng),凋亡的骨骼肌細(xì)胞逐漸減少。有研究發(fā)現(xiàn),PSMB4和促凋亡因子Bim可以相互作用并可能存在功能聯(lián)系[27-28]。值得指出的是,Bim在骨骼肌凋亡過程中起重要作用。由此可見,6周遞增負(fù)荷運(yùn)動(dòng)引起骨骼肌PSMB4蛋白表達(dá)減少可能降低肌細(xì)胞凋亡。進(jìn)一步表明,長(zhǎng)期大強(qiáng)度遞增負(fù)荷運(yùn)動(dòng)后骨骼肌降解程度降低,對(duì)大強(qiáng)度運(yùn)動(dòng)產(chǎn)生了適應(yīng)。
細(xì)肌絲的肌動(dòng)蛋白和粗肌絲的肌球蛋白是兩種主要的收縮蛋白,二者的相對(duì)滑動(dòng)是骨骼肌收縮的基礎(chǔ)。目前,已發(fā)現(xiàn)6 種不同亞型的肌動(dòng)蛋白。根據(jù)等電點(diǎn)的不同,可分為α、β、γ三類。其中,
SymbolaA@
-actin普遍存在于骨骼肌、心肌和血管平滑肌中。不同運(yùn)動(dòng)方式對(duì)骨骼肌
SymbolaA@
-actin蛋白質(zhì)及其基因表達(dá)的影響不同。連續(xù) 2 周75% VO2 max耐力訓(xùn)練(18.5~24 m/min, 跑臺(tái), 坡度為0度, 50 min/次, 2次/天)后,股四頭肌
SymbolaA@
-actin信使核糖核酸(messenger RNA, mRNA)表達(dá)增加22%[29]。于新凱和田野[30]對(duì)比研究了大鼠一次下坡跑臺(tái)訓(xùn)練和一周下坡跑臺(tái)訓(xùn)練后腓腸肌
SymbolaA@
-actin基因表達(dá)的差異。結(jié)果顯示,連續(xù)離心運(yùn)動(dòng)可加速一次離心運(yùn)動(dòng)后肌肉損傷的恢復(fù),腓腸肌
SymbolaA@
-actin mRNA表達(dá)水平顯著高于對(duì)照組,提示大鼠骨骼肌對(duì)連續(xù)離心運(yùn)動(dòng)逐漸產(chǎn)生適應(yīng)。有研究發(fā)現(xiàn),骨骼肌
SymbolaA@
-actin mRNA水平在7周遞增負(fù)荷強(qiáng)度運(yùn)動(dòng)后顯著升高[31]。一次遞增負(fù)荷運(yùn)動(dòng)至力竭后對(duì)大鼠骨骼肌進(jìn)行蛋白質(zhì)組學(xué)分析發(fā)現(xiàn),骨骼肌SymbolaA@-actin蛋白表達(dá)明顯下降[23]。蛋白質(zhì)組學(xué)研究揭示,與一次大強(qiáng)度運(yùn)動(dòng)相比,重復(fù)大強(qiáng)度運(yùn)動(dòng)48 h后,股四頭肌中泛素-蛋白酶體系統(tǒng)成員—泛素羧基末端水解酶同工酶L3和泛素羧基末端水解酶14蛋白表達(dá)量分別下調(diào)1.6倍和4倍[24]。本研究顯示,6周遞增負(fù)荷運(yùn)動(dòng)后大鼠腓腸肌SymbolaA@-actin蛋白水平升高1.76倍。不難發(fā)現(xiàn),本研究結(jié)果與上述文獻(xiàn)研究結(jié)果一致。據(jù)此推測(cè),SymbolaA@-actin蛋白水平升高是骨骼肌對(duì)長(zhǎng)期大強(qiáng)度運(yùn)動(dòng)產(chǎn)生的適應(yīng)性應(yīng)答反應(yīng)。
肌球蛋白是一個(gè)六聚體的蛋白質(zhì)大分子,由多條重鏈和多條輕鏈(myosin light chain, MLC)組成,是骨骼肌中含量最多的結(jié)構(gòu)蛋白和收縮蛋白。肌球蛋白受MLC磷酸化調(diào)控[32],磷酸化的肌球蛋白是維持細(xì)胞骨架活性和細(xì)胞功能的重要效應(yīng)因子[33]。運(yùn)動(dòng)過程中,Ca2+在胞漿聚集,與鈣調(diào)蛋白結(jié)合形成復(fù)合物激活肌球蛋白輕鏈激酶(Myosin light chain kinase, MLCK)進(jìn)而使MLC磷酸化,激活肌球蛋白頭部的ATP酶產(chǎn)生ATP,使肌球蛋白與肌動(dòng)蛋白相互作用,從而引發(fā)骨骼肌收縮。MLC有3種類型:MLC1、MLC2和MLC3。MLC2是肌球蛋白復(fù)合體的一個(gè)小蛋白,通過調(diào)節(jié)肌絲Ca2+的敏感性來調(diào)節(jié)骨骼肌的收縮功能。研究發(fā)現(xiàn),力竭跑臺(tái)運(yùn)動(dòng)引起大鼠比目魚肌MLC2去磷酸化并降低肌絲MLCK2水平,導(dǎo)致運(yùn)動(dòng)能力降低[34]。Hortemo等[35]探究了縮短收縮引起大鼠骨骼肌慢肌纖維疲勞的內(nèi)在機(jī)制,發(fā)現(xiàn)在疲勞發(fā)生的前20 s內(nèi),調(diào)節(jié)蛋白MLC2快速去磷酸化并伴隨力量生成速率下降和收縮能力降低。Stevens等[36]研究揭示,女性受試者經(jīng)60天臥床休息后,比目魚肌MLC2磷酸化水平增強(qiáng),總MLC2糖基化水平下降,而體育運(yùn)動(dòng)(有氧+抗阻)能有效阻止臥床后MLC2磷酸化和糖基化水平的改變,改善骨骼肌功能和萎縮程度。本研究發(fā)現(xiàn),6周遞增負(fù)荷運(yùn)動(dòng)后大鼠腓腸肌MLC2蛋白水平升高2.26倍。結(jié)合本研究結(jié)果SymbolaA@-actin蛋白水平升高,推測(cè)大鼠進(jìn)行6周遞增負(fù)荷運(yùn)動(dòng)后骨骼肌收縮功能增強(qiáng)。
CK是能量快速轉(zhuǎn)換過程中維持ATP/ADP比值恒定的關(guān)鍵酶,與細(xì)胞內(nèi)能量運(yùn)轉(zhuǎn)、肌肉收縮和ATP再生有直接關(guān)系。骨骼肌中CK有兩種主要形式:一種存在于細(xì)胞質(zhì)基質(zhì)(M-CK),另一種與線粒體有關(guān)。M-CK在快收縮型骨骼肌高能量轉(zhuǎn)換過程中起重要作用[37]。研究顯示,CK完全失活與骨骼肌力量生成和功率輸出即刻顯著下降有關(guān)[38-41]。Ak1屬于腺苷酸激酶(adenylate kinase, AK)家族。AK是催化腺苷酸(adenosine monophosphate, AMP)磷酸化生成ADP反應(yīng)的一種磷酸轉(zhuǎn)移酶,AK及其下游的AMP信號(hào)組成了一個(gè)完整的能量代謝監(jiān)測(cè)系統(tǒng),在維持細(xì)胞能量平衡中起著重要的作用。研究發(fā)現(xiàn),AK與CK協(xié)同作用,共同完成細(xì)胞能量監(jiān)測(cè)。基礎(chǔ)狀態(tài)下,CK對(duì)生成/消耗的大部分ATP分子的轉(zhuǎn)移起主要作用,然而,當(dāng)骨骼肌收縮增強(qiáng)或CK活性抑制后,CK向AK系統(tǒng)的磷酸轉(zhuǎn)移催化作用增強(qiáng)。Zhao等[3]通過蛋白質(zhì)組學(xué)研究發(fā)現(xiàn),大強(qiáng)度運(yùn)動(dòng)導(dǎo)致運(yùn)動(dòng)性疲勞時(shí),骨骼肌M-CK和AK1蛋白水平均顯著下降,α-actin蛋白水平也下調(diào)。本研究發(fā)現(xiàn),6周遞增負(fù)荷運(yùn)動(dòng)后大鼠腓腸肌M-CK蛋白水平上調(diào)1.60倍,AK1為新增蛋白質(zhì)點(diǎn)。結(jié)合本研究α-actin和MLC2蛋白水平顯著上調(diào)以及Zhao等[3]研究,可以進(jìn)一步推測(cè),大鼠經(jīng)6周遞增負(fù)荷運(yùn)動(dòng)后骨骼肌骨骼肌能量代謝升高,有利于增強(qiáng)收縮力量,提高運(yùn)動(dòng)能力。
4 結(jié)論
4.1 6周遞增負(fù)荷運(yùn)動(dòng)后大鼠腓腸肌蛋白質(zhì)組發(fā)生了顯著變化,有36個(gè)蛋白質(zhì)斑點(diǎn)差異表達(dá)1.5倍以上。
4.2 選取鑒定出9種目標(biāo)差異蛋白,其中5-HTR2B與神經(jīng)-肌肉興奮性有關(guān),PSMB4、PSMB6和PSMB7與骨骼肌蛋白質(zhì)降解有關(guān),α-actin和MLC2與骨骼肌收縮功能有關(guān),PDH-E1α、M-CK和AK1與骨骼肌能量代謝和利用有關(guān)。
參考文獻(xiàn):
[1]Safdar A, Abadi A, Akhtar M, et al. miRNA in the regulation of skeletal muscle adaptation to acute endurance exercise in C57Bl/6J male mice[J]. PLoS One, 2009(4):e5610.
[2]Brown, SJ, Child RB, Day SH,et al. Exercise-induced skeletal muscle damage and adaptation following repeated bouts of eccentric muscle contractions[J]. Journal of Sports Sciences, 1997(15):215-222.
[3]Zhao L, Yan W, Xiang H, et al. Proteomic investigation of changes in rat skeletal muscle after exercise-induced fatigue[J]. Biological Research, 2012(45):75-80.
[4]周越,李揚(yáng),王瑞元,等.運(yùn)動(dòng)性骨骼肌損傷評(píng)價(jià)指標(biāo)——血清CK、LDH、Mb的比較[J].運(yùn)動(dòng)醫(yī)學(xué)雜志, 2008, 27(2): 206-208.
[5]Bessa AL, Oliveira VN, Agostini GG, et al. Exercise Intensity and Recovery: Biomarkers of Injury, Inflammation, and Oxidative Stress[J]. Journal of Strength and Conditioning Research,2016,(30):311-319.
[6]于新凱, 田野, 左群,等.下坡跑訓(xùn)練對(duì)大鼠腓腸肌和比目魚肌-肌動(dòng)蛋白基因表達(dá)的影響[J].上海體育學(xué)院學(xué)報(bào), 2002, 26(2):47-51.
[7]Chen TC, Yang TJ, Huang MJ, et al. Damage and the repeated bout effect of arm, leg, and trunk muscles induced by eccentric resistance exercises[J]. Scandinavian Journal of Medicine & Science in Sports,2019, 29(5):725-735.
[8]Rusnak M, Vander Meulen M, Byrd B, et al. Muscle Damage, Soreness, and Stress During Preseason Training in Collegiate Swimmers[J]. Clin J Sport Med, 2019(1).
[9]Petriz BA, Gomes CP, Rocha LA, et al. Proteomics applied to exercise physiology: a cutting-edge technology[J]. Journal of Cellular Physiology,2012(227):885-898.
[10]曹偉,郝選明.六周遞增負(fù)荷運(yùn)動(dòng)對(duì)大鼠胸腺蛋白組表達(dá)的影響[J]. 體育科學(xué), 2013, 33(6): 64-68.
[11]張馨蕾,郝選明,阮洋,等.長(zhǎng)期遞增負(fù)荷運(yùn)動(dòng)對(duì)胸腺細(xì)胞凋亡及其細(xì)胞周期調(diào)控蛋白的影響[J].體育科學(xué), 2015, 35(12): 52-57.
[12]Clarkson PM,Hubal MJ. Exercise-induced muscle damage in humans[J]. American Journal of Physical Medicine & Rehabilitation, 2002(81):S52-69.
[13]Koch AJ, Pereira R, Machado M. The creatine kinase response to resistance exercise[J]. J Musculoskelet Neuronal Interact, 2014(14): 68-77.
[14]Callegari GA, Novaes JS, Neto GR, et al. Creatine Kinase and Lactate Dehydrogenase Responses after Different Resistance and Aerobic Exercise Protocols[J]. J Hum Kinet, 2017(58):65-72.
[15]Armstrong RB, Ogilvie RW,Schwane JA. Exercise-induced injury to rat skeletal muscle[J]. Appl Physiol, 1983, 54(1):80-93.
[16][JP2]Seo JH, Sung YH, Kim KJ, et al. Effects of Phellinus linteus Administration on Serotonin Synthesis in the Brain and Expression of Monocarboxylate Transporters in the Muscle during Exhaustive Exercise in Rats[J]. J Nutr Sci Vitaminol, 2011, 57(1): 95-103.
[17]Kiilerich K, Birk JB, Damsgaard R, et al. Regulation of PDH in human arm and leg muscles at rest and during intense exercise[J]. Am J Physiol Endocrinol Metab, 2008, 294(1): E36-42.
[18]Kiilerich K,Gudmundsson M,Birk JB, et al. Low muscle glycogen and elevated plasma free fatty acid modify but do not prevent exercise-induced PDH activation in human skeletal muscle[J]. Diabetes, 2010, 59(1): 26-32.
[19]Pilegaard H,Birk JB, Sacchetti M, et al. PDH-E1alpha dephosphorylation and activation in human skeletal muscle during exercise: effect of intralipid infusion[J]. Diabetes, 2006, 55(11): 3020-3027.
[20]Putman CT, Jones NL, Lands LC,et al. Skeletal muscle pyruvate dehydrogenase activity during maximal exercise in humans[J]. Am J Physiol, 1995, 269(3 Pt 1): E458-68.
[21]Biens RS, Knudsen JG, Brandt N,et al. Effects of IL-6 on pyruvate dehydrogenase regulation in mouse skeletal muscle[J]. Pflugers Arch, 2014, 466(8): 1647-1657.
[22]Gudiksen A, Schwartz CL, Bertholdt L, et al. Lack of Skeletal Muscle IL-6 Affects Pyruvate Dehydrogenase Activity at Rest and during Prolonged Exercise[J]. PLoS One, 2016, 11(6): e0156460.
[23]Gandra PG, Valente RH, Perales J, et al. Proteomic analysis of rat skeletal muscle submitted to one bout of incremental exercise[J]. Scand J Med Sci Sports, 2012, 22(2): 207-216.
[24]葛新發(fā),董貴俊,王玉站,等.重復(fù)大強(qiáng)度運(yùn)動(dòng)對(duì)骨骼肌蛋白質(zhì)組變異研究[J].體育科學(xué), 2013, 33(5): 41-49.
[25]Willoughby DS, Taylor M, Taylor L. Glucocorticoid receptor and ubiquitin expression after repeated eccentricexercise[J]. Med Sci Sports Exercise, 2003, 35(12): 2023-2031.
[26]Willoughby DS, Priest JW, Jennings RA. Myosin heavy chain isoform and ubiquitin protease mRNA expression after passive leg cycling in persons with spinal cordinjury[J]. Arch Phys Med Rehabil, 2000, 81(2): 157-163.
[27]夏鵬,陳金中,王臻臻,等.人蛋白酶體亞基型與一家族中促凋亡蛋白分子的相互作用[J].長(zhǎng)江大學(xué)學(xué)報(bào)自然科學(xué)版醫(yī)學(xué), 2012, 9(9): 1-4.
[28]Shi J, Liu X, Xu C, et al. Up-regulation of PSMB4 is associated with neuronal apoptosis after neuroinflammation induced by lipopolysaccharide[J]. J Mol Histol, 2015, 46(6): 457-466.
[29]逄金柱,王瑞元. 2周耐力訓(xùn)練對(duì)大鼠骨骼肌肌動(dòng)蛋白和肌球蛋白重鏈基因表達(dá)的影響[J].中國運(yùn)動(dòng)醫(yī)學(xué)雜志, 2005,24(4): 415-418 .
[30]于新凱,田野. 1周跑臺(tái)訓(xùn)練對(duì)大鼠骨骼肌α-actin基因表達(dá)的影響[J].中國運(yùn)動(dòng)醫(yī)學(xué)雜志, 2001, 20(1): 16-18.
[31]趙中應(yīng),馮連世,宗丕芳.運(yùn)動(dòng)后恢復(fù)過程中大鼠骨骼肌α-肌動(dòng)蛋白基因的表達(dá)[J].中國應(yīng)用生理學(xué)雜志, 2000,16(1):56-58.
[32]Matsumura F, Hartshorne DJ. Myosin phosphatase target subunit: Many roles in cell function[J]. Biochem Biophys Res Commun, 2008, 369(1): 149-156.
[33]Chardin P. GTPase regulation: getting aRnd Rock and Rho inhibition[J]. Curr Biol, 2003, 13(18): R702-R704.
[34]Hortemo KH, Aronsen JM, Lunde IG, et al. Exhausting treadmill running causes dephosphorylation of sMLC2 and reduced level of myofilament MLCK2 in slow twitch rat soleus muscle[J]. Physiol Rep, 2015, 3(2): e12285.
[35]Hortemo KH, Munkvik M, Lunde PK, et al. Multiple causes of fatigue during shortening contractions in rat slow twitch skeletal muscle[J]. PLoS One, 2013, 8(8):e71700.
[36]Stevens L, Bastide B, Hedou J, et al. Potential regulation of human muscle plasticity by MLC2 post-translational modifications during bed rest and countermeasures[J]. Arch Biochem Biophys, 2013, 540(1-2):125-132.
[37]LaBella JJ, Daood MJ, Koretsky AP, et al. Absence of myofibrillar creatine kinase and diaphragm isometric function during repetitive activation[J]. J Appl Physiol(1985), 1988, 84(4): 1166-1173.
[38]Steeghs K, Benders A, Oerlemans F, et al. Altered Ca2+ responses in muscles with combined mitochondrial and cytosolic creatine kinase deficiencies[J]. Cell, 1997, 89(1): 93-103.
[39]Dahlstedt AJ, Katz A, Wieringa B, et al. Is creatine kinase responsible for fatigue? Studies of isolated skeletal muscle deficient increatine kinase[J]. FASEB J, 2000, 14(7): 982-990.
[40]Watchko JF, Daood MJ, Sieck GC, et al. Combined myofibrillar and mitochondrial creatine kinase defi ciency impairs mouse diaphragm isotonic function[J]. J Appl Physiol, 1997(82):1416-1423.
[41]Momken I, Lechene P, Koulmann N, et al. Impaired voluntary running capacity of creatine kinase-deficient mice[J]. J Physiol, 2005, 15(565) (Pt 3): 951-964.
收稿日期:2019-05-19
基金項(xiàng)目:廣東省高等學(xué)校青年創(chuàng)新人才項(xiàng)目(2015KQNCX184),肇慶學(xué)院博士科研啟動(dòng)項(xiàng)目(612276),肇慶學(xué)院自然科學(xué)基金項(xiàng)目(201733&201915)。
作者簡(jiǎn)介:劉延瑩(1986- ), 女,山東濰坊人,博士,講師,研究方向運(yùn)動(dòng)與骨骼肌適應(yīng)。
作者單位:肇慶學(xué)院體育與健康學(xué)院,廣東 肇慶 526000