袁巨龍,毛美姣,李敏,劉舜,胡自化,吳鋒
?
硬質(zhì)合金刀具材料化學(xué)機(jī)械拋光機(jī)理研究
袁巨龍1,2,3,毛美姣1,4,李敏1,2,3,劉舜4,胡自化4,吳鋒4
(1.湖南大學(xué) 國(guó)家高效磨削工程技術(shù)研究中心,長(zhǎng)沙 410082;2.湖南科技大學(xué) 難加工材料 高效精密加工湖南省重點(diǎn)實(shí)驗(yàn)室,湖南 湘潭 411201;3.浙江工業(yè)大學(xué) 特種裝備制造與先進(jìn)加工技術(shù)教育部重點(diǎn)實(shí)驗(yàn)室,杭州 310014;4.湘潭大學(xué) 復(fù)雜軌跡加工工藝及裝備教育部工程研究中心,湖南 湘潭 411105)
研究硬質(zhì)合金刀具材料化學(xué)機(jī)械拋光(CMP)機(jī)理,為改善硬質(zhì)合金刀具表面質(zhì)量提供理論支持。分析硬質(zhì)合金刀具材料在酸性拋光液中的化學(xué)反應(yīng),研究硬質(zhì)合金刀具材料CMP的化學(xué)反應(yīng)機(jī)理。基于接觸力學(xué)理論計(jì)算拋光墊與工件的實(shí)際接觸面積和單個(gè)磨粒的實(shí)際切削面積,在運(yùn)動(dòng)學(xué)分析的基礎(chǔ)上,建立硬質(zhì)合金刀具材料CMP的材料去除率模型,通過實(shí)驗(yàn)驗(yàn)證材料去除率模型的有效性。在酸性拋光液中,硬質(zhì)合金被氧化成Co3O4。當(dāng)工件、拋光墊、磨粒類型、工件安裝位置確定時(shí),材料去除率與拋光載荷、磨粒濃度和拋光盤轉(zhuǎn)速有關(guān)。常用硬質(zhì)合金拋光條件下,拋光YG8刀具的修正系數(shù)cm為8.53,拋光后刀具的最低表面粗糙度能達(dá)到48 nm,材料去除率為62.381 nm/min,材料去除率的理論值和實(shí)驗(yàn)值的最大相對(duì)誤差為13.25%,消除了表面缺陷,獲得了較好的鏡面效果。建立的材料去除率模型具有一定的有效性,對(duì)硬質(zhì)合金刀具材料進(jìn)行化學(xué)機(jī)械拋光能消除刀具的表面缺陷,改善表面質(zhì)量。
硬質(zhì)合金刀具;化學(xué)機(jī)械拋光;機(jī)理;化學(xué)反應(yīng);運(yùn)動(dòng)軌跡;材料去除率
硬質(zhì)合金由于其具有高硬度和強(qiáng)度、高彈性模量、較小的熱膨脹系數(shù)、良好的紅硬性和耐磨性等優(yōu)點(diǎn),目前已成為現(xiàn)代社會(huì)和新技術(shù)領(lǐng)域中非常重要的一種刀具材料[1-2]。但我國(guó)硬質(zhì)合金刀具大部分均為中低端產(chǎn)品,隨著我國(guó)超高速切削加工、精密模具和工具超精密加工的發(fā)展,對(duì)刀具質(zhì)量和性能的要求日益苛刻[3]。為此,在“十二五”和“十三五”國(guó)家科技發(fā)展規(guī)劃中,有關(guān)高性能刀具材料制備及其產(chǎn)品研發(fā)的重要課題,已被列入項(xiàng)目申報(bào)指南和國(guó)家重點(diǎn)支持的高新技術(shù)領(lǐng)域目錄,同時(shí)也將高性能硬質(zhì)合金刀具的制造列入國(guó)家優(yōu)先發(fā)展的高新技術(shù)產(chǎn)業(yè)。加快提升國(guó)產(chǎn)硬質(zhì)合金刀具的質(zhì)量和性能,拓展高端市場(chǎng)的占有率,是我國(guó)刀具制造行業(yè)亟待攻關(guān)的熱點(diǎn)問題。
提升硬質(zhì)合金刀具質(zhì)量和性能的重要手段之一是提高刀具表面質(zhì)量[3]。CMP(化學(xué)機(jī)械拋光)是一種重要的終加工方法,能夠降低工件表面粗糙度、去除表面損傷層,獲得光滑、低/無損傷表面[4-6]。有研究表明:前刀面經(jīng)過CMP拋光的硬質(zhì)合金刀具,其表面質(zhì)量明顯比磨削后的好,且在進(jìn)行切削性能實(shí)驗(yàn)時(shí),發(fā)現(xiàn)當(dāng)切削參數(shù)相同時(shí),前刀面經(jīng)過CMP拋光的硬質(zhì)合金刀具的耐用度明顯比磨削的高,切削力和最大殘余應(yīng)力比磨削的低,加工后的工件表面質(zhì)量(粗糙度、表面加工硬化)明顯優(yōu)于磨削刀具,表現(xiàn)出優(yōu)越的切削性能[7-9]。但是,由于CMP涉及的輸入輸出變量多,且相互影響,涉及到摩擦學(xué)、力學(xué)、材料學(xué)、化學(xué)、物理學(xué)等多個(gè)學(xué)科,化學(xué)機(jī)械拋光機(jī)理非常復(fù)雜,目前對(duì)CMP拋光硬質(zhì)合金的機(jī)理研究較少,且集中在工藝參數(shù)優(yōu)化或以實(shí)驗(yàn)手段揭示各工藝參數(shù)對(duì)表面形貌和材料去除率的影響規(guī)律[10-11],因此對(duì)于實(shí)現(xiàn)高性能硬質(zhì)合金刀具的生產(chǎn)制造來說,研究CMP拋光硬質(zhì)合金刀具材料的機(jī)理具有重要的理論和應(yīng)用價(jià)值[4,6,12]。本文研究了硬質(zhì)合金刀具材料CMP的化學(xué)反應(yīng)機(jī)理和機(jī)械去除機(jī)理,基于接觸力學(xué)和運(yùn)動(dòng)學(xué)理論建立了硬質(zhì)合金刀具材料CMP的材料去除率模型,并以目前廣泛應(yīng)用于金屬加工中的YG8硬質(zhì)合金刀具為研究對(duì)象開展實(shí)驗(yàn)研究,獲得常用硬質(zhì)合金拋光條件下的修正系數(shù),驗(yàn)證材料去除率模型的有效性,為有效改善硬質(zhì)合金刀具表面質(zhì)量提供理論支持。
硬質(zhì)合金刀具材料的CMP拋光裝置如圖1所示,系統(tǒng)由拋光盤、夾具、拋光液供給裝置、拋光墊組成。拋光墊與拋光盤粘接在一起,夾具放置在拋光墊上,用于固定工件,并通過夾具給工件施加一定的載荷。當(dāng)拋光盤旋轉(zhuǎn)時(shí),拋光墊一起旋轉(zhuǎn),夾具在摩擦力的作用下自轉(zhuǎn),并帶動(dòng)工件一起旋轉(zhuǎn),同時(shí)由拋光液供給裝置自動(dòng)向拋光墊上提供拋光液。拋光液由磨粒和拋光液組成。拋光液中的化學(xué)成分與工件發(fā)生化學(xué)反應(yīng),生成易于去除的、硬度低于工件本身的軟質(zhì)層,拋光液中的磨粒對(duì)工件表面進(jìn)行機(jī)械研磨,去除化學(xué)反應(yīng)時(shí)所生成的軟質(zhì)層,露出工件材料的新生表面,從而再次發(fā)生化學(xué)反應(yīng)。如此交替進(jìn)行化學(xué)反應(yīng)和研磨,最終實(shí)現(xiàn)被拋光工件表面平坦化。
圖1 硬質(zhì)合金刀具材料CMP裝置示意圖
YG類硬質(zhì)合金的主要成分是硬質(zhì)相WC和粘結(jié)相Co,WC晶粒為棱柱形,晶粒之間的鄰接度高,按不規(guī)則的形狀排列,粘結(jié)相Co填充在WC晶粒不聯(lián)貫的邊界處[13]。圖2a、c、e為腐蝕前硬質(zhì)合金刀具YG8的表面形貌及標(biāo)記區(qū)域的波紋度,圖2b、d、f為雙氧水浸泡2 h后被腐蝕的硬質(zhì)合金刀具YG8的形貌及標(biāo)記區(qū)域的波紋度。對(duì)照a和b可以看出硬質(zhì)合金刀具與拋光液中的化學(xué)成分(本實(shí)驗(yàn)中的雙氧水)發(fā)生了化學(xué)反應(yīng),表面出現(xiàn)了凹坑。對(duì)照?qǐng)D2c和d、e和f,比較氧化前、后硬質(zhì)合金刀具的三維 形貌及標(biāo)記區(qū)域(圖2a和b中的紅色直線區(qū)域) 的波紋度,可以發(fā)現(xiàn)氧化前的表面明顯比氧化后的 平整。
為了找出硬質(zhì)合金刀具氧化后的氧化物,采用理學(xué)X射線衍射儀Ultima IV對(duì)氧化后的刀具進(jìn)行XRD分析,陽極靶為Cu靶,加速電壓為40 kV,加速電流為40 mA。圖3為雙氧水浸泡后刀具的XRD衍射圖譜,從圖中可以看出,在酸性拋光液中,粘結(jié)相Co水解成Co2+,Co2+進(jìn)而被氧化成高價(jià)與氧原子結(jié)合形成為易于溶解且易于機(jī)械去除的Co3O4。從圖3還發(fā)現(xiàn)刀具表面存在WH化合物,其為硬質(zhì)合金在氫氣還原爐中燒結(jié)時(shí)生成的產(chǎn)物。硬質(zhì)相wc的性質(zhì)比較穩(wěn)定,在酸性條件下未發(fā)生明顯的化學(xué)反應(yīng)。Co發(fā)生的化學(xué)反應(yīng)為:
圖2 氧化前后硬質(zhì)合金刀具的表面形貌
當(dāng)對(duì)刀具表面進(jìn)行CMP時(shí),拋光液中的化學(xué)成分與刀具表面發(fā)生化學(xué)反應(yīng),生成的Co3O4易于溶解于拋光液中,且易于被機(jī)械去除,剩下的基體WC在沒有粘結(jié)劑Co的作用下,易于被磨粒和拋光墊凸峰去除,然后露出新的工件表面。新的工作表面又再次與拋光液發(fā)生化學(xué)反應(yīng),使得工件表面在化學(xué)氧化與機(jī)械去除的交替過程中變得平整光滑[4,7]。
圖4 磨粒、工件及拋光墊表面的接觸模型[17]
圖5 利用Nanopoli-100型拋光機(jī)拋光工件的示意圖
表1 基本參數(shù)
Tab.1 Basic parameters
表2 三因素兩水平拋光實(shí)驗(yàn)方案及結(jié)果
Tab.2 Polishing experiment scheme and result of three factors and two levels
表3為工藝參數(shù)與實(shí)驗(yàn)結(jié)果,可以看出,拋光后刀具的最低表面粗糙度能達(dá)到48 nm,此時(shí)的材料去除率為62.381 nm/min。材料去除率的理論值和實(shí)驗(yàn)值的最大相對(duì)誤差為13.25%,說明所建立硬質(zhì)合金刀具前刀面CMP的材料去除率模型具有一定的有 效性。
表3 工藝參數(shù)與實(shí)驗(yàn)結(jié)果
Tab.3 Process parameters and experiment results
如圖6所示,當(dāng)拋光盤轉(zhuǎn)速升高時(shí),單位時(shí)間內(nèi)參與材料去除的有效磨粒數(shù)量增加,材料去除率隨著拋光盤轉(zhuǎn)速的上升而增大;磨粒濃度越大,單位體積的磨粒數(shù)越多,參與材料去除的有效磨粒數(shù)量也越多,材料去除率越大,材料去除率與磨粒濃度是線性關(guān)系;載荷增大時(shí),拋光墊微凸峰的變形量大,拋光墊與工件表面的實(shí)際接觸面積大,則實(shí)際參與材料去除的有效磨粒數(shù)增加,材料去除率大,材料去除率與載荷的2/3次方成正比。
使用超景深顯微鏡觀察拋光前后的表面形貌,如圖7所示,拋光前的表面比較粗糙,存在大量表面劃痕缺陷。經(jīng)過CMP拋光后,發(fā)現(xiàn)表面變得光滑、平整,消除了幾乎所有表面缺陷,提高了表面光潔度,明顯改善了工件表面質(zhì)量。
圖6 工藝參數(shù)對(duì)材料去除率的影響
圖7 硬質(zhì)合金刀具的表面微觀形貌
1)在酸性拋光液中,硬質(zhì)合金中的粘結(jié)相Co被氧化成易于溶解和易于機(jī)械去除的Co3O4,基體WC在沒有粘結(jié)劑Co的作用下,易于被磨粒和拋光墊凸峰去除,使工件表面在化學(xué)氧化與機(jī)械去除的交替過程中變得平整光滑。
2)基于接觸力學(xué)和運(yùn)動(dòng)學(xué)理論建立了外形對(duì)稱的硬質(zhì)合金刀具材料CMP的材料去除率模型,該模型表明在CMP過程中,當(dāng)工件、拋光墊、磨粒類型、工件安裝位置確定時(shí),材料去除率與拋光載荷的2/3次方成正比,與磨粒濃度成正比,隨拋光盤轉(zhuǎn)速升高而增大,且隨著速度的升高,材料去除率的增大速率更快。
3)通過實(shí)驗(yàn)獲得了硬質(zhì)合金拋光常用工藝條件(H2O2氧化劑、Al2O3磨粒和聚氨脂拋光墊)下拋光YG8刀具的修正系數(shù)cm=8.53。在Nanopoli-100型拋光機(jī)上對(duì)YG8前刀面進(jìn)行CMP拋光實(shí)驗(yàn),發(fā)現(xiàn)拋光后最低表面粗糙度能達(dá)到48 nm,此時(shí)的材料去除率為62.381 nm/min,消除了幾乎所有表面缺陷,改善了工件表面質(zhì)量。材料去除率理論值和實(shí)驗(yàn)值的最大相對(duì)誤差為13.25%,表明建立的硬質(zhì)合金刀具材料CMP的材料去除率模型具有一定的有效性。
[1] ZHANG W, LIU X, Chen Z, et al. Latest development of WC-Co cemented carbide[J]. Chinese journal of rare metals, 2015, 39: 178-186.
[2] UHLMANN E, REIMERS W, BYRNE F, et al. Analysis of tool wear and residual stress of CVD diamond coated cemented carbide tools in the machining of aluminum silicon alloys[J]. Production engineering, 2010, 4(2-3): 203-209.
[3] 陳明, 安慶龍, 劉志強(qiáng). 高速切削技術(shù)基礎(chǔ)與應(yīng)用[M]. 上海: 上??茖W(xué)技術(shù)出版社, 2012. CHEN Ming, AN Qing-long, LIU Zhi-qiang. Foundation and application of high speed cutting technology[M]. Shanghai: Shanghai Science and Technology Press, 2012.
[4] 袁巨龍, 張飛虎, 戴一帆, 等. 超精密加工領(lǐng)域科學(xué)技術(shù)發(fā)展研究[J]. 機(jī)械工程學(xué)報(bào), 2010, 46(15): 161-177. YUAN Ju-long, ZHANG Fei-hu, DAI Yi-fan, et al. Development research of science and technologies in ultra- precision machining field[J]. Journal of mechanical engineering, 2010, 46(15): 161-177.
[5] LI M, LYU B H, Yuan J L, et al. Evolution and equivalent control law of surface roughness in shear-thickening polishing[J]. International journal of machine tools & manufacture, 2016, 108: 113-126.
[6] 李敏, 袁巨龍, 吳喆, 等. 復(fù)雜曲面零件超精密加工方法的研究進(jìn)展[J]. 機(jī)械工程學(xué)報(bào), 2015(5): 178-191. LI Min, YUAN Ju-long, WU Zhe, et al. Progress in ultra- precision machining methods of complex curved parts[J]. Journal of mechanical engineering, 2015(5): 178-191.
[7] 李敏, 袁巨龍, 呂冰海, 等. Si3N4陶瓷的剪切增稠拋光[J]. 機(jī)械工程學(xué)報(bào), 2017, 53(9): 193-200. LI Min, YUAN Ju-long, Lyu Bing-hai, et al. Shear- thickening polishing of Si3N4ceramics[J]. Journal of mechanical engineering, 2017, 53(9): 193-200.
[8] 潘旸. CMP拋光硬質(zhì)合金刀片的切削性能試驗(yàn)研究[D]. 湘潭: 湘潭大學(xué), 2015. PAN Yang. Experimental study on the cutting performance of CMP polished cemented carbide blade[D]. Xiangtan: Xiangtan University, 2015.
[9] LI M, LYU B H, YUAN J L, et al. Shear-thickening polishing method[J]. International journal of machine tools & manufacture, 2015, 94: 88-99.
[10] 毛美姣, 吳鋒, 胡自化. 拋光墊特性對(duì)硬質(zhì)合金刀片CMP加工效果的影響[J]. 表面技術(shù), 2017, 46(12): 270-276. MAO Mei-jiao, WU Feng, HU Zi-hua. Effects of polishing pad characteristics on CMP (chemical mechanical polishing) result of cemented carbide tool[J]. Surface technology, 2017, 46(12): 270-276.
[11] 彭姣. 硬質(zhì)合金刀片CMP拋光機(jī)理及工藝參數(shù)決策研究[D]. 湘潭: 湘潭大學(xué), 2014. PENG Jiao. Study on the polishing mechanism and process parameter decision of CMP polished cemented carbide blade[D]. Xiangtan: Xiangtan University, 2014.
[12] Forsberg M. Effect of process parameters on material removal rate in chemical mechanical polishing of Si(100) [J]. Microelectronic engineering, 2005, 77(3): 319-326.
[13] 李寧, 龍堅(jiān)戰(zhàn), 周永貴, 等. 超細(xì)WC-Co硬質(zhì)合金的組織與性能特征[J]. 硬質(zhì)合金, 2005, 22(2): 107-111. LI Ning, LONG Jian-zhan, ZHOU Yong-gui, et al. Structure and performance features of ultra-fine WC-Co cemented carbides[J]. Cemented carbide, 2005, 22(2): 107- 111.
[14] 布尚B. 摩擦學(xué)導(dǎo)論[M]. 葛世榮譯. 北京: 機(jī)械工業(yè)出版社, 2007. Bhushan B. Introduction to tribology[M]. ge shi-rong translated. Beijing: China Machine Press, 2007.
[15] Greenwood J A, Williamson J B P. Contact of nominally flat surface [J]. Proceedings of the royal society of London, 1996, 295(1442): 300-319.
[16] Zhao D, He Y, Wang T, et al. Effect of kinematic parameters and their coupling relationships on global uniformity of chemical-mechanical polishing[J]. IEEE transactions on semiconductor manufacturing, 2012, 25(3): 502-510.
[17] Zhao Y, Chang L. A micro-contact and wear model for chemical-mechanical polishing of silicon wafers[J]. Wear, 2002, 252(3): 220-226.
[18] 蘇建修. IC制造中硅片化學(xué)機(jī)械拋光材料去除機(jī)理研究[D]. 大連: 大連理工大學(xué), 2006. SU Jian-xiu. Study on material removal mechanism of wafer chemical mechanical polishing in IC manufacturing [D]. Dalian: Dalian University of Technology, 2006.
Chemical and Mechanical Polishing Mechanism of Cemented Carbide Tool Material
1,2,3,1,4,1,2,3,4,4,4
(1.National Engineering Research Center for High Efficiency Grinding, Hunan University, Changsha 410082, China; 2.Hunan Provincial Key Laboratory of High Efficiency and Precision Machining for Difficult-to-Cut Material, Hunan University of Science and Technology, Xiangtan 411201, China; 3.Key Laboratory of Special Purpose Equipment and Advanced Processing Technology of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China; 4.Engineering Research Center of Complex Tracks Processing Technology and Equipment of Ministry of Education, Xiangtan University, Xiangtan 411105, China)
The work aims to study the chemical and mechanical polishing (CMP) mechanism of cemented carbide tool material, so as to provide theoretical support for improving the surface quality of cemented carbide tool. The chemical reaction of cemented carbide tool material in acid polishing solution was analyzed andthe chemical reaction mechanism of cemented carbide tool material CMP was studied.The actual contact area between polishing pad and workpiece and the actual cutting area of a single abrasive particle were calculated based on contact mechanics theory, the material removal rate model of cemented carbide tool material CMP was established on the basis of kinematics analysis, and the effectiveness of the material removal rate model was verified by experiments. In acid polishing solution, cemented carbide tool was oxidized to Co3O4. When the workpiece, polishing pad, abrasive particle type and installation position were determined, the material removal rate was related to polishing load, abrasive particle concentration and polishing disc speed. The correction coefficientcmwas 8.53 for the YG8 tools CMP under common cemented carbide polishing conditions, and the lowest surface roughness of the polished tools could reach 48 nm. At this time, the material removal rate was 62.381 nm/min and the maximum relative error between the theoretical value and the experimental value of material removal rate was 13.25%. Thus, surface defects were eliminated and good mirror effect was obtained. The material removal rate model is effective certainly, and CMP of cemented carbide tool material can eliminate the surface defects of the tool and improve surface quality.
cemented carbide tool; Chemical Mechanical Polishing; mechanism; chemical reaction; motion trajectory; material removal rates
2018-10-25;
2018-12-25
YUAN Ju-long (1962—), Male, Doctor, Professor, Research focus: precision/ultra-precision machining technology and equipment.
Supported by the National Natural Science Foundation of China (51605163), Hunan Natural Science Foundation (2017JJ4055) and the Key Research Program of Science and Technology Supported by Hunan Provincial Science & Technology Department (2016GK2014, 2017GK2050)
LI Min (1983—), Male, Doctor, Associate professor, Research focus: precision/ultra-precision machining technology and equipment. E-mail: li-min-wax@hnust.edu.cn
李敏(1983—),男,博士,副教授,主要研究方向?yàn)榫芘c超精密加工技術(shù)及裝備。郵箱:li-min-wax@hnust.edu.cn
TG356.28
A
1001-3660(2019)02-0260-08
10.16490/j.cnki.issn.1001-3660.2019.02.037
2018-10-25;
2018-12-25
國(guó)家自然科學(xué)基金(51605163);湖南省自然科學(xué)基金(2017JJ4055);湖南省科技廳科技計(jì)劃重點(diǎn)研發(fā)項(xiàng)目(2016GK2014,2017GK2050)
袁巨龍(1962—),男,博士,教授,主要研究方向?yàn)榫芘c超精密加工技術(shù)及裝備。