国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

下?lián)舯┝髯饔孟缕碌仫L(fēng)場(chǎng)特性研究

2019-02-22 02:27方智遠(yuǎn)汪之松李正良
振動(dòng)與沖擊 2019年4期
關(guān)鍵詞:檐口平地坡地

方智遠(yuǎn), 汪之松,2, 李正良,2

(1.重慶大學(xué) 土木工程學(xué)院,重慶 400045; 2.重慶大學(xué) 山地城鎮(zhèn)建設(shè)與新技術(shù)教育部重點(diǎn)試驗(yàn)室,重慶 400045)

下?lián)舯┝魇抢妆┨鞖庵邢鲁翚饬髅土覜_擊地面并沿地面擴(kuò)散而引起的近地面短時(shí)強(qiáng)風(fēng)的災(zāi)害現(xiàn)象。該強(qiáng)風(fēng)現(xiàn)象在國(guó)內(nèi)外造成了大量工程結(jié)構(gòu)物的破壞,其對(duì)于輸電塔結(jié)構(gòu)的破壞則更為嚴(yán)重和頻繁。實(shí)際氣象資料[1]表明:由于山地和高原地區(qū)具備易于形成雷暴的天氣條件,下?lián)舯┝髟谖覈?guó)的分布呈現(xiàn)出山地多于平原的特征。目前國(guó)內(nèi)外對(duì)于下?lián)舯┝鞯难芯慷嗉杏谄降氐匦?,很少考慮山坡、丘陵等地形因素對(duì)風(fēng)場(chǎng)的影響。以往針對(duì)大氣邊界層風(fēng)場(chǎng)的研究[2-9]表明:地形因素對(duì)于風(fēng)場(chǎng)具有很大影響,其對(duì)于平均風(fēng)速及近地面的湍流強(qiáng)度都會(huì)產(chǎn)生顯著的加速效應(yīng),荷載規(guī)范[10]中也針對(duì)不同地形給出了相應(yīng)的修正公式。

近年來(lái),大量科研工作者通過(guò)現(xiàn)場(chǎng)實(shí)測(cè)、理論推導(dǎo)、物理試驗(yàn)以及數(shù)值模擬等方法對(duì)下?lián)舯┝鏖_(kāi)展研究,并有學(xué)者提出了下?lián)舯┝鲝较蚝拓Q向風(fēng)剖面的解析和經(jīng)驗(yàn)?zāi)P蚚11-16],這些模型僅針對(duì)平地,未考慮地形因素對(duì)于風(fēng)場(chǎng)的影響。Wood等[17]通過(guò)沖擊射流試驗(yàn)及二維穩(wěn)態(tài)數(shù)值模擬,考察了坡度為0.5的坡地地形風(fēng)場(chǎng),得出坡頂最大加速因子等于1.0加上坡度值的結(jié)論。Mason等[18]對(duì)二維坡地、三角形山體及鐘型山體地形風(fēng)場(chǎng)進(jìn)行了數(shù)值模擬,發(fā)現(xiàn)下?lián)舯┝黠L(fēng)場(chǎng)的地形加速效應(yīng)比大氣邊界層風(fēng)場(chǎng)小約30%。Mason等[19-21]采用簡(jiǎn)化的非穩(wěn)態(tài)雷諾平均求解方法(Unsteady Reynolds Average Navier-Storkes,URANS),通過(guò)二維平面模型研究了山丘和坡地地形對(duì)于下?lián)舯┝黠L(fēng)場(chǎng)的影響,發(fā)現(xiàn)地形對(duì)于風(fēng)速具有加速效應(yīng)。汪之松等[22]采用物理試驗(yàn)和數(shù)值模擬的方法,研究了穩(wěn)態(tài)下?lián)舯┝黠L(fēng)場(chǎng)中高層建筑風(fēng)荷載隨坡地坡度的變化規(guī)律,但未對(duì)坡地風(fēng)場(chǎng)結(jié)構(gòu)進(jìn)行細(xì)致研究。

以往對(duì)于地形影響的下?lián)舯┝黠L(fēng)場(chǎng)特性的研究較少,且考慮到計(jì)算成本,多采用二維的穩(wěn)態(tài)計(jì)算或簡(jiǎn)化的非穩(wěn)態(tài)的URANS方法來(lái)進(jìn)行計(jì)算,不能很好地捕捉風(fēng)場(chǎng)的瞬態(tài)特征,尤其是對(duì)于結(jié)構(gòu)風(fēng)工程較為關(guān)注的近地面湍流特征,URANS方法模擬得到的結(jié)果則更加具有局限性。以往考慮地形影響的下?lián)舯┝黠L(fēng)場(chǎng)研究均重點(diǎn)考察了平均風(fēng)速,對(duì)于輸電塔等高聳結(jié)構(gòu)風(fēng)振響應(yīng)具有較大影響的脈動(dòng)風(fēng)速特性則均未涉及。

本文通過(guò)平地及三個(gè)不同坡度坡地模型的沖擊射流物理試驗(yàn),結(jié)合大渦模擬(Large eddy Simulation, LES)研究了坡地地形對(duì)于下?lián)舯┝黠L(fēng)場(chǎng)的影響,給出了坡地地形下?lián)舯┝髁鲌?chǎng)的變化規(guī)律、瞬態(tài)風(fēng)速特征以及坡地坡度對(duì)于平均風(fēng)特性和脈動(dòng)風(fēng)速均方根的影響規(guī)律。

1 沖擊射流物理試驗(yàn)概況

物理試驗(yàn)在浙江大學(xué)的下?lián)舯┝黠L(fēng)洞試驗(yàn)室進(jìn)行,試驗(yàn)裝置如圖1所示。

圖1 沖擊射流試驗(yàn)裝置Fig.1 Impinging jet instrument

沖擊射流裝置噴口直徑Djet=600 mm,噴口到底板距離H=1 200 mm,H/D=2; 出流速度Vjet=12 m/s,幾何縮尺比1∶1 000。考慮了平地和坡地兩類地形,坡地地形試驗(yàn)工況示意圖,如圖2所示。R為坡地檐口到下沉氣流沖擊地面中心的徑向距離;h為坡地高度;L為起坡位置到坡頂檐口的徑向距離。以往對(duì)于下?lián)舯┝髌降仫L(fēng)場(chǎng)的研究表明:近地面水平風(fēng)速極大值一般分布在R=1.0Djet~1.5Djet內(nèi),本文以此徑向范圍作為坡體所在位置進(jìn)行典型坡地風(fēng)場(chǎng)特性研究。

圖2 坡地地形試驗(yàn)工況示意圖Fig.2 Definition of terms for slope topography

坡地地形參數(shù)工況,如表1所示。用r表示地面任意位置到?jīng)_擊射流中心的徑向距離。試驗(yàn)分別測(cè)試了起坡位置,坡中位置,檐口位置(r=1.5Djet)、以及檐口后方2h位置離地不同高度處的水平風(fēng)速。

表1 坡地地形模型參數(shù)

為了深入了解沖擊射流在近壁區(qū)的風(fēng)場(chǎng)特性,試驗(yàn)中測(cè)點(diǎn)布置沿高度方向采用下密上疏的排布方式,每個(gè)徑向位置沿高度方向共布置15個(gè)測(cè)點(diǎn),測(cè)點(diǎn)高度范圍為10~180 mm。風(fēng)速采用熱線風(fēng)速儀進(jìn)行采集,每個(gè)測(cè)點(diǎn)采集風(fēng)場(chǎng)穩(wěn)定后的風(fēng)速時(shí)程。

2 沖擊射流數(shù)值模擬概況

用計(jì)算流體動(dòng)力學(xué)方法(Computation Fluid Dynamics, CFD)軟件Fluent 14.5來(lái)模擬不可壓縮的下?lián)舯┝髁鲌?chǎng)。為了和風(fēng)洞試驗(yàn)進(jìn)行對(duì)比,CFD數(shù)值模擬采用了與試驗(yàn)同比例的三維縮尺模型。其數(shù)值模型尺寸、射流參數(shù)均與物理試驗(yàn)?zāi)P捅3忠恢?,沖擊射流計(jì)算域噴口直徑Djet=600 mm,噴口到底板距離H=1 200 mm,出流速度Vjet=12 m/s,幾何縮尺比1∶1 000,相應(yīng)的時(shí)間縮尺為(D/Vjet)Present model/(D/Vjet)Equivalent model=3∶1 000[23],足尺中生命周期1 000 s相當(dāng)于數(shù)值模型中的3 s。平地和坡地地形計(jì)算域剖面圖,如圖3所示。

圖3 計(jì)算域的剖面示意圖Fig.3 Sectional diagram of the computational domain

本文數(shù)值模型利用LES對(duì)風(fēng)場(chǎng)進(jìn)行瞬態(tài)模擬,時(shí)間步長(zhǎng)取0.001 s,整個(gè)計(jì)算周期為2 s,利用監(jiān)測(cè)點(diǎn)采集完整計(jì)算周期的風(fēng)速時(shí)程。為了得到更精確的數(shù)值模擬結(jié)果,本文的CFD模擬前處理采用ICEM對(duì)計(jì)算

域進(jìn)行結(jié)構(gòu)化網(wǎng)格劃分,在沖擊射流中心區(qū)域采用雙層O型網(wǎng)格。在近壁面區(qū)域,采用增強(qiáng)壁面處理的近壁面模型來(lái)修正LES模型,以模擬近壁區(qū)的復(fù)雜流動(dòng)。近壁面首層網(wǎng)格至壁面的距離Δy要滿足無(wú)量綱距離

(1)

式中: △y為首層網(wǎng)格至壁面距離,m;v為空氣的運(yùn)動(dòng)黏性系數(shù), m2/s;τω為壁面切應(yīng)力,Pa;ρ為空氣密度, kg/m3。模型第一層距壁面網(wǎng)格距離為△y=2×10-5,使得數(shù)值模擬結(jié)果的y+<1,滿足增強(qiáng)壁面處理方法的要求。

3 結(jié)果分析及討論

3.1 速度云圖和矢量場(chǎng)

以坡地模型Edx1(h/L=0.5)為例,采用沖擊射流模型對(duì)下?lián)舯┝鬟M(jìn)行模擬,坡地地形條件下沖擊射流形成、下沉與擴(kuò)散過(guò)程的速度云圖,如圖4所示,重點(diǎn)考察了下沉氣流撞擊地面后沿徑向發(fā)展并翻越山坡的過(guò)程,如圖4(b)~圖4(h)所示。

圖4 下?lián)舯┝餍纬?、下沉與擴(kuò)散過(guò)程的速度云圖Fig.4 The velocity contour and vector plot of downburst in different times

從圖4可知,當(dāng)t=0.15 s時(shí)(見(jiàn)圖4(a))速度入口形成下沉氣流并準(zhǔn)備沖擊地面,由于下沉氣流與周圍氣體之間的拖拽卷吸作用,下沉氣流前端形成了環(huán)形渦流,此時(shí)風(fēng)場(chǎng)還未受到坡地地形的影響;當(dāng)t=0.25 s時(shí)(見(jiàn)圖4(b)),下沉氣流剛剛沖擊地面并沿徑向發(fā)展,受地面剪切作用,沿徑向發(fā)展的氣流前端形成新的環(huán)形渦流,環(huán)渦處產(chǎn)生風(fēng)速的極大值。在有坡一側(cè),氣流開(kāi)始爬坡;當(dāng)t=0.3 s時(shí)(見(jiàn)圖4(c)),環(huán)渦結(jié)構(gòu)到達(dá)坡頂檐口位置,由于受到坡地地形的影響,環(huán)渦結(jié)構(gòu)在翻越山坡的過(guò)程中被整體抬升,其極值風(fēng)速也得到增強(qiáng);當(dāng)t=0.35 s時(shí)(見(jiàn)圖4(d)),先前產(chǎn)生的環(huán)渦由于慣性作用而繼續(xù)向斜上方運(yùn)動(dòng),其體積增大而極值風(fēng)速有所減小;當(dāng)t=0.4~0.6 s時(shí)(見(jiàn)圖4(e)~圖4(h)),先前產(chǎn)生的環(huán)渦結(jié)構(gòu)受慣性作用而繼續(xù)發(fā)展,逐漸與近地面的氣流脫離并最終消散,后續(xù)的近地面氣流越過(guò)山坡,并在坡頂檐口位置附近產(chǎn)生明顯的加速效應(yīng);當(dāng)t=0.9 s(見(jiàn)圖4(i))和t=1.2 s(見(jiàn)圖4(j))時(shí),風(fēng)場(chǎng)結(jié)構(gòu)已基本穩(wěn)定,可以看出,在穩(wěn)定階段,風(fēng)場(chǎng)的極值風(fēng)速基本出現(xiàn)在山坡坡頂檐口位置附近,檐口后方風(fēng)速整體較小。

沖擊射流沖擊地面并翻越斜坡前后四個(gè)時(shí)刻的瞬時(shí)風(fēng)速矢量場(chǎng)變化過(guò)程,如圖5所示。從圖5可知,坡地的存在改變了風(fēng)場(chǎng)的流向,氣流經(jīng)過(guò)山坡后,風(fēng)速的豎向分量得到增強(qiáng),特別是經(jīng)過(guò)坡地的第一個(gè)環(huán)渦,由于坡后氣流較弱,爬坡氣流到達(dá)坡頂檐口后主要受慣性作用影響,故仍主要沿坡度方向運(yùn)動(dòng),其風(fēng)速的豎向分量明顯;當(dāng)風(fēng)場(chǎng)進(jìn)入穩(wěn)定階段后,如圖5(d)所示。沿坡上升的氣流受到坡頂后方水平氣流黏滯作用的影響,在到達(dá)坡頂檐口位置時(shí)其風(fēng)速方向趨于水平,但較平地風(fēng)場(chǎng)相比,在貼近地面處仍存在較大的豎向風(fēng)速。以往對(duì)于下?lián)舯┝髌降仫L(fēng)場(chǎng)的研究,其近地面豎向風(fēng)速相對(duì)較小,主要關(guān)注水平風(fēng)速,而坡地地形下,受地形的影響,檐口位置在風(fēng)暴發(fā)展的早期存在較為明顯的豎向風(fēng)速。

圖5 下?lián)舯┝鳑_擊地面前后的矢量場(chǎng)Fig.5 The vector plot of downburst impacting the ground

3.2 瞬態(tài)風(fēng)速特征

圖6給出了坡地和平地地形下沖擊射流發(fā)展過(guò)程中r=1.5Djet徑向位置處不同時(shí)刻水平風(fēng)速的豎直風(fēng)剖面。由于地形改變了氣流的運(yùn)動(dòng)方向,致使同一時(shí)刻平地和坡地的水平風(fēng)速剖面存在較大差別,但兩類地形水平風(fēng)速的豎直風(fēng)剖面整體均呈現(xiàn)下大上小的分布規(guī)律,極值風(fēng)速出現(xiàn)高度均在z=0.05Djet(30 mm)附近。當(dāng)t=0.15 s時(shí),沖擊射流還未撞擊地面,故平地與坡地的風(fēng)剖面幾乎一致;當(dāng)t=0.3 s時(shí),平地水平風(fēng)速大于坡地,結(jié)合圖5(b)可知,此時(shí)環(huán)渦剛剛到達(dá)坡頂檐口位置,其風(fēng)速中的豎向分量較大,水平分量與平地相比則略??;在其他時(shí)刻,平地風(fēng)場(chǎng)近地面水平風(fēng)速極大值基本穩(wěn)定在0.8Vjet左右,而坡地風(fēng)場(chǎng)由于受地形影響而產(chǎn)生加速效應(yīng),近地面水平風(fēng)速極大值多數(shù)穩(wěn)定在1.1Vjet附近。

圖7給出了坡地和平地地形下沖擊射流發(fā)展過(guò)程中r=1.5Djet徑向位置處各時(shí)刻豎向風(fēng)速的豎直風(fēng)剖面。結(jié)果表明,坡地地形對(duì)沖擊射流的豎向風(fēng)速具有很大影響,其中,在t=0.3時(shí)豎向風(fēng)速的增大最為顯著,結(jié)合圖5(b)可知,此時(shí)環(huán)渦結(jié)構(gòu)首次抵達(dá)坡頂檐口位置,坡后氣流對(duì)風(fēng)速方向影響甚小,氣流主要受慣性作用支配,故豎向風(fēng)速較大;而當(dāng)坡頂氣流有所發(fā)展后,沿坡上升的氣流到達(dá)檐口后受坡后氣流的黏滯作用而趨于水平向運(yùn)動(dòng),在貼近地面處豎向分量較大,而隨著高度的增加,檐口位置處風(fēng)速的豎向分量迅速減小。

圖6 不同地形徑向位置r=1.5Djet處水平風(fēng)速的豎直風(fēng)剖面Fig.6 Vertical profiles of radial velocity of flat and slope topography at r=1.5Djet in different terrain

3.3 坡地地形下沖擊射流的平均風(fēng)加速效應(yīng)

在大氣邊界層風(fēng)中,考察地形對(duì)于風(fēng)場(chǎng)的影響,常通過(guò)引入加速因子Mt來(lái)進(jìn)行研究。對(duì)于下?lián)舯┝鳎@里也采取同樣的方法,通過(guò)加速因子來(lái)具體分析坡地地形對(duì)于下?lián)舯┝黠L(fēng)場(chǎng)的影響。Mt是由坡地與平地離地相同高度處風(fēng)速之比得到的一個(gè)無(wú)量綱值,其計(jì)算公式為

(2)

圖7 不同地形徑向位置r=1.5Djet處豎向風(fēng)速的豎直風(fēng)剖面Fig.7 Vertical profiles of vertical velocity of flat and slope topography at r=1.5Djet in different terrain

式中:z為距地面高度,這里主要考察水平風(fēng)速的加速效應(yīng),故u為水平風(fēng)速值。u(z)topography和u(z)flat分別為坡地與平地相同高度處的水平風(fēng)速。

為了對(duì)坡地加速效應(yīng)進(jìn)行充分論證,將試驗(yàn)結(jié)果及LES的時(shí)均結(jié)果進(jìn)行對(duì)比分析。圖8給出了平地與各坡度坡地地形在起坡位置、檐口位置、坡中位置和坡后2h位置處時(shí)均風(fēng)剖面的比較。

圖8 坡地與平地各徑向位置風(fēng)剖面對(duì)比Fig.8 Comparison of the wind profile between flat and slope topography at different radial positions

由圖8可知,LES數(shù)值模擬的時(shí)均風(fēng)剖面與試驗(yàn)風(fēng)剖面取得了較好的一致,說(shuō)明了采用LES方法研究坡地下?lián)舯┝黠L(fēng)場(chǎng)的有效性。數(shù)值模擬與風(fēng)洞試驗(yàn)結(jié)果均表明:與平地風(fēng)場(chǎng)相比,除坡頂檐口位置(見(jiàn)圖8(c))在近地面具有顯著的加速效應(yīng)外,起坡位置(見(jiàn)圖8(a))、坡中位置(見(jiàn)圖8(b))以及坡后2h位置(見(jiàn)圖8(d))均未發(fā)現(xiàn)加速效應(yīng)。針對(duì)坡頂檐口位置,結(jié)合圖8(c)的水平風(fēng)速,給出坡地地形下的加速因子,如圖9所示。

從圖9可知,數(shù)值模擬與物理試驗(yàn)結(jié)果的加速因子沿高度變化的曲線較為一致,在近地面吻合良好。坡地檐口位置處,在z=0.06Djet(36 mm,實(shí)際風(fēng)場(chǎng)下為36 m)高度以下均具有加速效應(yīng),近地面最大加速因子達(dá)到約1.3。在研究的三種坡地地形中,隨著坡度的增大,近地面加速因子略有增大,但由于本次研究的坡地地形有限,且坡度均小于30°(h/L=0.58),故針對(duì)陡坡地形,其坡地風(fēng)場(chǎng)加速因子的變化規(guī)律還有待進(jìn)一步研究。

圖9 數(shù)值模擬和物理試驗(yàn)結(jié)果加速因子對(duì)比Fig.9 Topographic multiplier profiles of numerical simulation and experimental results

3.4 沖擊射流的脈動(dòng)風(fēng)速湍流強(qiáng)度特性

坡地地形下下?lián)舯┝鞯拿}動(dòng)風(fēng)速特性在已有的研究中幾乎是空白。在輸電塔、高層建筑等的響應(yīng)中,脈動(dòng)響應(yīng)往往遠(yuǎn)大于平均風(fēng)響應(yīng),而脈動(dòng)風(fēng)速特性是確定脈動(dòng)響應(yīng)的直接因素,其重要性完全不低于山地的平均風(fēng)特性。同平均風(fēng)速加速因子定義類似,可以定義脈動(dòng)風(fēng)速的湍流強(qiáng)度加速因子MI為

(3)

式中:z為距地面高度;I(z)topography與I(z)flat分別為坡地和平地離地相同高度處的湍流強(qiáng)度。

試驗(yàn)中平地和坡地Edx3模型在各個(gè)徑向位置脈動(dòng)風(fēng)速湍流強(qiáng)度剖面特性,如圖10所示。圖中實(shí)線和虛線分別為風(fēng)洞試驗(yàn)測(cè)得的平地和坡地湍流強(qiáng)度值,分別對(duì)比了起坡位置(r=1.0Djet)、坡中位置(r=1.25Djet)、檐口位置(r=1.5Djet)、檐口之后2h位置處;圖11所示為坡地各個(gè)位置處湍流度加速因子剖面圖。從圖11可知,離下沉氣流沖擊中心越遠(yuǎn),湍流度越大。在r=1.0Djet~2.0Djet徑向位置范圍內(nèi),湍流度剖面沿高度均是先減小,后增大。平均風(fēng)速大的位置,湍流度??;平均風(fēng)速小的地方,湍流度大。受到坡地地形的影響,在近地面區(qū)域,坡中和檐口位置處的湍流強(qiáng)度相對(duì)平地增大不明顯,但超過(guò)一定高度(0.02Djet)后,坡地地形湍流強(qiáng)度都顯著增大;起坡和坡后位置相對(duì)于平地風(fēng)場(chǎng)在近地面區(qū)域湍流強(qiáng)度有顯著增大,超過(guò)一定高度后(0.1Djet)后坡地地形湍流強(qiáng)度增大不明顯。上述對(duì)比說(shuō)明坡地地形對(duì)沖擊射流的湍流強(qiáng)度有顯著影響。

圖12所示為試驗(yàn)中不同坡度坡地(h/L=0.25,h/L=0.375和h/L=0.5)在檐口位置與平地的湍流強(qiáng)度對(duì)比,圖13所示為不同坡度坡地湍流強(qiáng)度加速因子沿高度變化曲線。從圖13可知,在近地面區(qū)域,各坡度坡地地形湍流強(qiáng)度相對(duì)平地增大不明顯,但超過(guò)一定高度(0.02Djet)后,湍流強(qiáng)度顯著增大,且當(dāng)坡度較大時(shí)(h/L=0.5),湍流強(qiáng)度增大更為明顯。

圖10 坡地與平地各徑向位置湍流度剖面對(duì)比Fig.10 Comparison of turbulence intensity profiles between flat and slope topography at different radial positions

圖11 坡地各位置湍流度加速因子對(duì)比Fig.11 Comparison of multiplier profiles between flat and slope topography at different radial positions

圖12 不同坡度坡地與平地湍流度剖面對(duì)比Fig.12 Comparison of turbulence intensity profiles between flat and different slopes

圖13 不同坡地湍流度加速因子對(duì)比Fig.13 Comparison of multiplier profiles in different slopes

4 結(jié) 論

本文通過(guò)沖擊射流物理試驗(yàn)以及大渦數(shù)值模擬對(duì)下?lián)舯┝髯饔孟碌钠降丶捌碌仫L(fēng)場(chǎng)進(jìn)行研究,給出了坡地地形對(duì)于下?lián)舯┝黠L(fēng)場(chǎng)、瞬態(tài)風(fēng)速特征、平均風(fēng)特性以及近地面湍流強(qiáng)度影響的基本規(guī)律。主要結(jié)論如下:

(1) 下?lián)舯┝髟谄马旈芸谖恢锰幘哂酗@著的加速效應(yīng),且越過(guò)山坡的第一個(gè)環(huán)渦在檐口位置形成下?lián)舯┝髡麄€(gè)生命周期中的最大風(fēng)速。氣流越過(guò)山坡的初期,受慣性力作用,檐口位置處風(fēng)速的豎向分量較大,后期由于受到坡后氣流的黏滯作用,豎向分量有所減小。

(2) 坡地的存在改變了風(fēng)場(chǎng)的原始結(jié)構(gòu),致使檐口位置處的水平風(fēng)速與豎向風(fēng)速都有所增大。風(fēng)場(chǎng)穩(wěn)定后,平地風(fēng)場(chǎng)近地面水平風(fēng)速極大值約為0.8Vjet,而坡地(L/h=0.5)風(fēng)場(chǎng)水平風(fēng)速極大值多數(shù)穩(wěn)定在1.1Vjet附近。豎向風(fēng)速在初始環(huán)渦經(jīng)過(guò)時(shí)較大,之后受坡后氣流的影響而有所減弱,但與平地風(fēng)場(chǎng)相比,在貼近地面處其豎向風(fēng)速增大明顯。

(3) 在近地面區(qū)域,坡地地形條件下沖擊射流數(shù)值模擬和物理試驗(yàn)給出了一致的結(jié)論,檐口位置有加速效應(yīng),而起坡位置、坡中位置和坡后2h位置處都沒(méi)有加速效應(yīng)。在緩坡地形下(L/h≤0.5),坡頂檐口位置處近地面水平風(fēng)速最大加速因子達(dá)到約1.3。

(4) 試驗(yàn)結(jié)果表明,與平地風(fēng)場(chǎng)相比,坡地風(fēng)場(chǎng)近地面湍流強(qiáng)度增大的區(qū)域?yàn)槠鹌挛恢煤推潞笪恢?,而坡中和檐口位置在近地面湍流度相?duì)較小,但隨著高度的增加,湍流度明顯增大,其變化符合平均風(fēng)速大的位置,湍流度小;平均風(fēng)速小的地方,湍流度大的規(guī)律。對(duì)不同坡度坡地檐口湍流度加速因子的研究則表明,緩坡地形下(L/h≤0.5),隨著坡度的增大,其湍流度有所增大,但湍流度隨坡度變化的完整規(guī)律還需通過(guò)增加坡度工況來(lái)做進(jìn)一步研究。

猜你喜歡
檐口平地坡地
擺線的起始
——金貝爾美術(shù)館檐口細(xì)部分析
雙曲面船形檐口折角鋼構(gòu)屋面施工探究
大懸挑屋面異形鋁板幕墻施工技術(shù)
黃土區(qū)坡地和壩地土壤電阻率分布特征及應(yīng)用*
高樓萬(wàn)丈平地起
任意多邊形坡屋面屋脊線生成方法
淺談坡地建筑設(shè)計(jì)
邊走邊看
遇到一條蛇
幸福我一輩子
临西县| 昆明市| 利辛县| 万年县| 东宁县| 定结县| 潜山县| 新平| 花垣县| 朝阳县| 会同县| 施秉县| 商洛市| 札达县| 秦皇岛市| 长汀县| 瑞金市| 遂溪县| 自贡市| 高密市| 凌海市| 昌平区| 邛崃市| 南阳市| 包头市| 香格里拉县| 行唐县| 信宜市| 阿尔山市| 临桂县| 晋城| 廉江市| 山西省| 平邑县| 黔南| 闵行区| 广安市| 互助| 黔西县| 宁远县| 津市市|