国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

新疆葉爾羌河流域平原區(qū)淺層地下水咸化空間分布及成因

2019-02-20 13:32周金龍乃尉華曾妍妍陳云飛
農(nóng)業(yè)工程學(xué)報 2019年23期
關(guān)鍵詞:承壓水淺層水樣

張 杰,周金龍,乃尉華,曾妍妍,陳云飛,魏 興

新疆葉爾羌河流域平原區(qū)淺層地下水咸化空間分布及成因

張 杰1,2,周金龍1,2※,乃尉華3,曾妍妍1,2,陳云飛1,2,魏 興1,2

(1. 新疆農(nóng)業(yè)大學(xué)水利與土木工程學(xué)院,烏魯木齊 830052; 2.新疆水文水資源工程技術(shù)研究中心,烏魯木齊 830052;3. 新疆地礦局第二水文地質(zhì)工程地質(zhì)大隊,昌吉 831100)

為了解新疆葉爾羌河流域平原區(qū)地下水咸化特征及成因,該文運用多元統(tǒng)計、地統(tǒng)計等方法并結(jié)合遙感技術(shù)和地球化學(xué)方法對淺層地下水(井深≤100 m)水質(zhì)演化進(jìn)行分析。結(jié)果表明,研究區(qū)地下水呈中性或弱堿性,水化學(xué)類型以HCO3·SO4-Ca·Mg、SO4·HCO3-Na·Ca、SO4·Cl-Na·Ca(Mg)和Cl·SO4-Na型為主。咸化系數(shù)計算結(jié)果表明,單一結(jié)構(gòu)潛水咸化程度較高,承壓水區(qū)潛水咸化程度相對較低,淺層承壓水咸化程度最高。潛水和淺層承壓水Cl-、SO42-、溶解性總固體(TDS)半變異函數(shù)分析表明,各指標(biāo)的空間相關(guān)性較強(qiáng);沿地下水流向,潛水Cl-、SO42-、TDS濃度總體呈現(xiàn)升高的趨勢,淺層承壓水則呈現(xiàn)高低值相間分布的特征。因子分析和聚類分析表明,地下水咸化的影響因素可分為水文地質(zhì)條件控制(GW1)、地下水化學(xué)環(huán)境影響(GW2)和人為活動影響(GW3)3類。GW1類地下水分布范圍較廣,離子濃度主要受蒸發(fā)巖礦物的溶解控制;GW2類地下水分布于草地,地下水化學(xué)環(huán)境對地下水咸化影響相對較大;GW3類地下水主要分布于耕地和建設(shè)用地,地下水咸化受人為活動的影響顯著,潛水受到農(nóng)業(yè)灌溉、生活污水和工業(yè)污水影響較大,淺層承壓水受污染程度相對較低。

因子分析;聚類分析;地統(tǒng)計;地下水咸化;葉爾羌河流域

0 引 言

在內(nèi)陸干旱半干旱地區(qū),地下水是最重要的供水水源[1]。中國新疆[2-4]、內(nèi)蒙古河套平原[5]、寧夏海原[6]、甘肅敦煌[1]等西北干旱地區(qū)已受到地下水咸化的影響,成為地區(qū)經(jīng)濟(jì)發(fā)展的限制性因素。以往研究表明,無論是自然過程還是人類活動都會導(dǎo)致地下水咸化。礦物溶解、蒸發(fā)蒸騰和深層鹵水混合作用等是內(nèi)陸干旱平原地區(qū)地下水咸化的主要機(jī)制[2]。生活污水、工業(yè)廢水及農(nóng)業(yè)灌溉水的入滲等人為活動的影響也會導(dǎo)致地下水咸化[7-8]。研究干旱區(qū)地下水咸化成因,有助于深入了解干旱區(qū)地下水水質(zhì)演化與生態(tài)環(huán)境的相互關(guān)系,對合理規(guī)劃、管理和利用地下水資源具有重要意義。

近年來,主成分分析[9-10]、層次分析[11]、因子分析[12-13]、聚類分析[13-14]等多元統(tǒng)計方法和地統(tǒng)計方法[15-16]逐漸應(yīng)用于地下水咸化的研究。Abu-Alnaeem等對加沙沿海地下水咸化成因進(jìn)行了分析,地統(tǒng)計分析表明海水入侵對地下水礦化度影響較大,層次聚類分析結(jié)果表明地下水咸化特征可分為7類[14];Masoud等將因子分析和層次聚類分析與地統(tǒng)計學(xué)分析相結(jié)合,分析了埃及Dakhla綠洲地下水化學(xué)性質(zhì)及其空間格局,結(jié)果表明蒸發(fā)和離子交換作用是地下水咸化的主要控制因素[12]。目前,地統(tǒng)計學(xué)是研究空間變異的主要方法[17],應(yīng)用半變異函數(shù)分析地下水咸化特征,能更好地描述地下水咸化的空間分布特性;因子分析是將多變量降為少數(shù)幾個綜合變量的一種多元統(tǒng)計分析方法[12],聚類分析則是將樣品或變量按其性質(zhì)上的相似程度進(jìn)行分類的方法[18],因子分析結(jié)合聚類分析可對地下水咸化進(jìn)行定性分類,為不同空間尺度的地下水咸化成因提供了更好的解釋能力;遙感技術(shù)具有提取大尺度土地利用數(shù)據(jù)的優(yōu)勢,其解譯結(jié)果與地下水咸化特征疊加分析,可進(jìn)一步探討土地利用類型與地下水咸化的關(guān)系。

本文采用地統(tǒng)計學(xué)、多元統(tǒng)計分析及遙感等技術(shù)手段,分析新疆葉爾羌河流域平原區(qū)淺層地下水咸化的空間分布特征及成因,以期為干旱地區(qū)防治地下水水質(zhì)惡化提供理論依據(jù),同時對保障區(qū)域飲用水安全具有一定的現(xiàn)實意義。

1 研究區(qū)概況

葉爾羌河流域位于新疆塔里木盆地的西南邊緣,地處喀什地區(qū)東部,由葉爾羌河、提孜那甫河、柯克亞河和烏魯克河4條主要河流組成[19]。流域地貌可分為南部山區(qū)和北部平原區(qū)2大單元。本區(qū)年均氣溫為11.9 ℃,降水稀少,時空分布不均,年降水量52.7 mm,年蒸發(fā)量2 454 mm[20]。平原區(qū)以農(nóng)業(yè)生產(chǎn)為主,是新疆最大的灌區(qū)之一,灌溉面積約50萬hm2。隨著人口的增長以及灌區(qū)面積的增大,導(dǎo)致地區(qū)生態(tài)環(huán)境惡化,進(jìn)而影響地區(qū)水資源。

研究區(qū)水文地質(zhì)條件見圖1。平原區(qū)地下水受微弱的大氣降水補(bǔ)給,主要接受側(cè)向補(bǔ)給、河流與水庫滲漏補(bǔ)給、灌溉水和渠系水入滲等補(bǔ)給;地下水由水平徑流至下游細(xì)土平原區(qū);泉溪排泄、蒸發(fā)蒸騰與人工開采為地下水主要排泄方式。

注:地下水富水性為降深5 m時的單井涌水量,m3·d-1。

山前平原區(qū)主要分布于葉城縣北部至莎車縣,為單一結(jié)構(gòu)潛水區(qū),含水層巖性由南向北為中粗砂、中細(xì)砂和細(xì)砂,之間夾有薄層粉質(zhì)粘土,厚度較大[21];該區(qū)域含水層汛期接受冰雪融水補(bǔ)給,較為富水,水交替條件良好。下游為沖湖積平原,分布多層結(jié)構(gòu)的潛水-承壓水,弱透水層位于地下15~20 m,其上為潛水,以下為承壓水;沖湖積平原含水層介質(zhì)顆粒較細(xì),主要以粉細(xì)砂、粉砂、亞砂土和亞粘土組成,其滲透性和導(dǎo)水性較差,水力坡降平緩,地下水徑流不暢,礦化度較高[22]。

2 材料與方法

2.1 地下水采樣與測試

2014年6-7月在葉爾羌河流域平原區(qū)采集淺層地下水水樣72組(采樣點見圖2),井深≤100 m。其中潛水水樣39組(單一結(jié)構(gòu)潛水17組,承壓水區(qū)潛水22組),淺層承壓水水樣33組。現(xiàn)場測定地下水的pH值、水溫、溶解氧(DO)、氧化還原電位(Eh)、電導(dǎo)率(EC),pH值、Eh由哈納(HANNA)HI98121筆式測定儀測定。取樣前,用所取水樣潤洗聚乙烯塑料瓶3次,用0.45m的醋酸纖維濾膜過濾,陽離子分析的水樣加硝酸酸化至pH值<2,貼好標(biāo)簽密封保存。

指標(biāo)測試在中國地質(zhì)科學(xué)院水文地質(zhì)環(huán)境地質(zhì)研究所礦泉水檢測中心完成。K+和Na+采用火焰原子吸收分光光度法測定,Ca2+、Mg2+、HCO3-、CO32-和總硬度(TH,以CaCO3計)采用乙二胺四乙酸二鈉滴定法,Cl-為硝酸銀容量法,SO42-為硫酸鋇比濁法測定,檢測下限均為0.05 mg/L;NO3-采用紫外分光光度法進(jìn)行測定,檢測下限為0.02 mg/L;溶解性總固體(total dissolved solids, TDS)使用電子天平MP8-1測定,檢出限為0.10 mg/L。水樣嚴(yán)格按照《地下水環(huán)境監(jiān)測技術(shù)規(guī)范》(HJ/T164-2004)進(jìn)行采集、保存、測試。所有水樣陰陽離子平衡誤差絕對值小于5%,均可用于分析。

圖2 地下水取樣點分布圖

2.2 遙感數(shù)據(jù)來源

采用遙感技術(shù)解譯研究區(qū)土地利用類型,分析土地利用類型與地下水咸化的關(guān)系。2015年研究區(qū)遙感數(shù)據(jù)來源于中國科學(xué)院資源環(huán)境科學(xué)數(shù)據(jù)中心(http://www.resdc.cn)。土地利用類型基于Landsat8遙感影像數(shù)據(jù),通過人工目視解譯生成,一級、二級土地利用類型綜合評價精度分別達(dá)到94.3%和91.2%,符合制圖精度要求[23]。參照《土地利用現(xiàn)狀分類國家標(biāo)準(zhǔn)》(GBT21010-2017),結(jié)合研究區(qū)土地利用特點,將土地利用類型重分類為耕地、林地、草地、水域、建設(shè)用地和其他用地共6種類型。

2.3 數(shù)據(jù)處理方法

通過計算咸化系數(shù)(salinization coefficient, SC)確定地下水咸化的程度[4],其值越大表示地下水咸化程度越高,公式如下

以Cl-、SO42-、TDS含量為指標(biāo),應(yīng)用地統(tǒng)計學(xué)中的半變異函數(shù)分析地下水咸化的空間特征。半變異函數(shù)的計算要求數(shù)據(jù)符合正態(tài)分布[24-25],對指標(biāo)進(jìn)行正態(tài)性K-S(kolmogorov-smirnov)檢驗后,采用GS+9.0分別計算潛水和淺層承壓水Cl-、SO42-、TDS的變異函數(shù)及相關(guān)參數(shù),分析各指標(biāo)的空間相關(guān)性。由ArcGIS10.2地統(tǒng)計模塊的克里金插值完成各指標(biāo)的空間分布圖,采用交叉驗證的方法對克里金插值精度進(jìn)行評價,以保證估計的無偏性。

運用SPSS軟件進(jìn)行數(shù)據(jù)統(tǒng)計分析、因子分析和聚類分析。因子分析前,對水化學(xué)指標(biāo)的相關(guān)性程度進(jìn)行KMO(kaiser-meyer-olkin)檢驗和Bartlett球形檢驗(bartlett test of sphericity),采用主成分分析法提取特征值,選取特征值大于1的因子作為主因子[13]。采用回歸法(技術(shù)簡單、應(yīng)用方便[26])計算地下水樣品的主因子得分,對因子得分進(jìn)行K-means聚類分析(具有預(yù)先確定集群的數(shù)量的優(yōu)勢[13]),結(jié)合遙感解譯圖分析地下水咸化的主要控制因素。

基于地球化學(xué)理論,運用PHREEQC軟件計算礦物飽和指數(shù)(saturation index,SI),判斷礦物沉淀溶解作用。當(dāng)SI<0時,表示該礦物處于不飽和狀態(tài);SI>0,表示該礦物處于飽和狀態(tài);SI=0,表示水溶液與礦物正好處于平衡狀態(tài)[27-28]。SI計算如下

式中SI為礦物飽和指數(shù);IAP(ion activity product)為礦物溶解反應(yīng)中相關(guān)離子的活度積;為礦物溶解反應(yīng)的平衡常數(shù)。

鈉吸附比(sodium adsorption ration,,SAR)可以反映地下水中Na+與含水介質(zhì)中Ca2+、Mg2+發(fā)生離子交換作用,其值越大,則陽離子交換作用越明顯。計算如下[29]

采用Origin9.1軟件繪制離子比圖等,利用礦物飽和指數(shù)和離子比結(jié)合因子分析和聚類分析結(jié)果,探討葉爾羌河流域平原區(qū)淺層地下水咸化成因。

3 結(jié)果與分析

3.1 地下水化學(xué)特征

葉爾羌河流域平原區(qū)地下水化學(xué)特征如表1。地下水pH值為6.91~8.07,呈中性或弱堿性。單一結(jié)構(gòu)潛水TDS范圍為366.70~2 688.00 mg/L,均值為1 252.42 mg/L;承壓水區(qū)潛水TDS范圍633.40~6 384.00 mg/L,均值為3 132.60 mg/L;淺層承壓水TDS范圍為522.60~8 910.00 mg/L,均值為3 014.98 mg/L。不同含水層地下水化學(xué)類型存在差異,單一結(jié)構(gòu)潛水以HCO3·SO4-Ca·Mg和SO4·HCO3-Na·Ca型為主;承壓水區(qū)潛水則以SO4·Cl-Na·Ca和SO4·Cl-Na·Mg型為主;淺層承壓水水化學(xué)類型主要有Cl·SO4-Na、SO4·Cl-Na·Ca以及HCO3·SO4-Ca·Mg型。

表1 葉爾羌河流域平原區(qū)地下水化學(xué)指標(biāo)統(tǒng)計表

注:為水樣數(shù);TDS、TH、DO、EC、Eh分別為溶解性總固體、總硬度、溶解氧、電導(dǎo)率、氧化還原電位;pH為無量綱,EC和 Eh單位分別為mS·cm-1和mv,其余指標(biāo)單位為mg·L-1。

Note:is groundwater sample number; TDS, TH, DO, EC, Eh, are total dissolved solids, total hardness, dissolved oxygen, electrical conductance, and the electrochemical potential relative to the standard H electrode, respectively; pH is dimensionless; the units of EC and Eh are mS·cm-1and mv, respectively; units of other parameter are mg·L-1.

3.2 地下水咸化程度

地下水SC范圍為≤1、>1~2、>2,分別表示未咸化水、微咸化水、咸化水。由表2可知,全水樣中未咸化水比例最高(45.83%),其次為咸化水(29.17%),微咸化水比例較低(25.00%)。單一結(jié)構(gòu)潛水中未咸化水比例為47.06%,微咸化水、咸化水比例分別為29.41%和23.53%,咸化程度相對較高。承壓水區(qū)潛水中未咸化水比例較高(50.00%),微咸化水比例為36.36%,咸化水比例為13.64%,咸化程度相對較低;淺層承壓水微咸化水比例為15.14%,未咸化水比例為42.43%,咸化水比例高達(dá)42.43%,咸化程度最高。

表2 地下水咸化系數(shù)

3.3 地下水咸化空間分布特征

3.3.1 地下水Cl-、SO42-、TDS的空間變異性

對潛水(為保證空間插值的連續(xù)性,空間分析時將單一結(jié)構(gòu)潛水和承壓水區(qū)潛水合并分析)和淺層承壓水Cl-、SO42-、TDS數(shù)據(jù)進(jìn)行正態(tài)性檢驗,除潛水TDS外,其余指標(biāo)均不服從正態(tài)分布,經(jīng)對數(shù)轉(zhuǎn)換后,其(K-S檢驗)值均大于給定的顯著性水平0.05,服從正態(tài)分布,符合半變異函數(shù)的計算要求。由表3可知,淺層承壓水除Cl-采用球狀模型外,其余指標(biāo)均采用高斯模型,在各向異性條件下,指標(biāo)擬合度2(決定系數(shù))和RSS(最小殘差平方和)分別接近1和0,表明模型擬合效果相對較好[30]。

塊金效應(yīng),即塊金值與基臺值的比值,表明變量的空間相關(guān)性程度。塊金效應(yīng)≤0.25時,空間自相關(guān)性較強(qiáng);>0.25~0.75,呈中等強(qiáng)度的空間相關(guān)性;>0.75時,空間相關(guān)性較弱[17,31]。潛水和淺層承壓水Cl-、SO42-、TDS塊金效應(yīng)均小于0.25,表明潛水和淺層承壓水Cl-、SO42-、TDS具有較強(qiáng)的空間相關(guān)性。

表3 潛水和淺層承壓水Cl-、SO42-、TDS的半變異函數(shù)模型及相關(guān)參數(shù)

3.3.2 地下水Cl-、SO42-、TDS空間分布特征

ArcGIS10.2克里金插值交叉驗證參數(shù)的均方根誤差(root mean square error,RMSE)越趨于0,標(biāo)準(zhǔn)均方根誤差(root mean square standardized error,RMSSE)越接近1時,插值精度越高[15]。潛水和淺層承壓水Cl-、SO42-、TDS插值精度的檢驗參數(shù)RMSE和RMSSE分別介于?0.073~?0.032和0.931~0.999,RMSE均接近0,RMSSE均接近于1,表明插值結(jié)果精度較高,可反映指標(biāo)的空間分布狀況。

葉爾羌河流域平原區(qū)潛水Cl-、SO42-、TDS空間分布較為相似(圖3a),總體呈現(xiàn)南低北高的趨勢,即沿地下水徑流方向,Cl-、SO42-、TDS逐漸增加;澤普縣地下水Cl-、SO42-、TDS分別小于100、500、1 000 mg/L,同屬于單一結(jié)構(gòu)潛水區(qū)的葉城縣北部則相對較高,這可能與徑流相對較大的葉爾羌河對澤普縣附近地下水補(bǔ)給較大有關(guān)。承壓水區(qū)潛水受地表水補(bǔ)給有限,地下水徑流不暢,蒸發(fā)濃縮作用等導(dǎo)致Cl-、SO42-、TDS相對南部單一結(jié)構(gòu)潛水較高;此外,研究區(qū)中部的巴楚縣西南和麥蓋提縣西部地下水的Cl-、SO42-、TDS相對較高,可能是受到農(nóng)業(yè)灌溉等人類活動的影響。

淺層承壓水Cl-、SO42-、TDS呈現(xiàn)高低值相間分布的特征(圖3b)。淺層承壓水Cl-、SO42-、TDS整體上較承壓水區(qū)潛水高,由于承壓水處于一個較封閉的環(huán)境中,水巖作用時間長,含水介質(zhì)中的礦物溶解使得地下水離子濃度升高。承壓水區(qū)南部的Cl-、SO42-、TDS相對較低,這與單一結(jié)構(gòu)潛水對其補(bǔ)給有關(guān);巴楚縣南部也有1個低值區(qū),這可能是深層承壓淡水(喀什地區(qū)深層承壓水TDS<1 000 mg/L[4])越流補(bǔ)給所致;巴楚縣西部和麥蓋提縣城附近出現(xiàn)高值區(qū),這可能與人類活動有關(guān)。

圖3 潛水和淺層承壓水CI-、SO42-、TDS空間分布圖

3.4 地下水咸化成因分析

3.4.1 因子分析

對研究區(qū)72組水樣的14項水化學(xué)指標(biāo)進(jìn)行檢驗。其KMO檢驗值為0.594,Bartlett球形檢驗顯著性水平小于0.01,表明數(shù)據(jù)具有一定的相關(guān)性,可以做因子分析[9]。利用方差最大旋轉(zhuǎn)法計算成分矩陣的旋轉(zhuǎn)因子荷載矩陣,結(jié)果見表4。主因子F1、F2和F3的貢獻(xiàn)率分別為49.383%、19.528%和13.520%,其累計方差的貢獻(xiàn)率為82.431%。主因子與成分的相關(guān)性強(qiáng)弱,以載荷的絕對值表示,載荷絕對值>0.30~0.50、>0.50~0.75和>0.75分別表示相關(guān)性弱、中、強(qiáng)[26]。

因子F1主要荷載包括Na+、Ca2+、Mg2+、Cl-、SO42-、TDS、TH及EC,表明地下水咸化主要受水文地質(zhì)條件控制,地下水流動過程中礦物溶解等過程對地下水咸化影響較大,如鹽巖(Na+、Cl-)、方解石(Ca2+、HCO3-)、石膏(Ca2+、SO42-)、鉀長石(K+)、菱鎂礦(Mg2+)等礦物的溶解[9,13,26]。

因子F2中,HCO3-為主要荷載,K+的相關(guān)性較強(qiáng)(載荷為0.686),表明地下水受碳酸鹽和含鉀巖類溶解影響,或者來源于淡水補(bǔ)給。此外,pH值與F2具有較強(qiáng)的負(fù)相關(guān)性(載荷為?0.739),表明水環(huán)境酸堿度對地下水咸化影響較大。

因子F3與NO3-具有強(qiáng)相關(guān)性,Eh和DO的相關(guān)性較強(qiáng)(載荷分別為0.700和0.628)。NO3-濃度反映地下水是否受到人類活動的影響[18,32],Eh反映氧化還原能力的相對強(qiáng)弱程度,DO是衡量水體自凈能力的重要指標(biāo)。因此,F(xiàn)3表示人為污染對地下水咸化的影響。

表4 地下水水化學(xué)指標(biāo)的旋轉(zhuǎn)因子載荷矩陣

3.4.2 聚類分析

對地下水水樣的主因子得分進(jìn)行聚類分析,聚類結(jié)果為水文地質(zhì)條件控制(GW1)、地下水化學(xué)環(huán)境影響(GW2)和人為活動影響(GW3)3類。

GW1類地下水有42組(單一結(jié)構(gòu)潛水、承壓水區(qū)潛水和淺層承壓水分別有8組、14組和20組),占總水樣的58.33%。GW1類地下水在各類土地利用類型中均有分布(圖4a),其主要離子K+、Ca2+、Mg2+、Cl-、SO42-及TDS均值低于GW2和GW3(圖4b),表明地下水咸化受溶濾作用等自然過程影響,其咸化程度相對較低。

注:GW1、GW2和GW3為地下水水樣聚類的類型。pH為無量綱,其余指標(biāo)單位為mg·L-1。

圖5a顯示,大多數(shù)地下水樣的碳酸鹽巖如白云石、方解石飽和指數(shù)(SIDolomite、SICalcite)大于零,說明白云石、方解石已達(dá)飽和狀態(tài),礦物溶解微弱,趨于形成方解石、白云石沉淀。局部地區(qū),碳酸鹽達(dá)飽和狀態(tài)可能是由于硅酸鹽風(fēng)化過程中Ca2+、Mg2+輸入過量造成的[29]。鹽巖、石膏的飽和指數(shù)(SIHalite、SIGypsum)小于0,且隨TDS增加飽和指數(shù)呈指數(shù)上升(圖5b),表明水體中TDS的增加可能是受鹽巖和石膏等蒸發(fā)巖礦物的溶解控制。

圖5 地下水礦物飽和指數(shù)與TDS關(guān)系

GW2類地下水有11組,占總水樣的15.28%。Na+、Ca2+、Mg2+、Cl-、SO42-、TDS指標(biāo)均值在3類地下水中最高,主要分布于草地,表明GW2類地下水咸化程度較高,受人類活動影響相對較小。GW2中的82.82%的水樣屬于淺層承壓水(淺層承壓水有9組,單一結(jié)構(gòu)潛水和承壓水區(qū)潛水各有1組),因承壓水處于相對封閉的環(huán)境,該環(huán)境對地下水咸化影響程度相對較大。分析特定的離子關(guān)系,可以判別含水層中發(fā)生的主要水化學(xué)過程。圖6a顯示,大多數(shù)水樣位于鹽巖溶解線以上,說明Na+來源于鹽巖溶解作用外,還存在陽離子交換等的影響[33]。

圖6b顯示,SAR與TDS成正相關(guān)關(guān)系(2=0.770),即,TDS越高其SAR值越大,離子交換作用越明顯。GW2類地下水的SAR高于GW1和GW3,因GW2中絕大部分水樣屬于承壓水,其地下水徑流條件差,水巖作用時間長,沉積物顆粒較細(xì),比表面積大,使得Na+與Ca2+、Mg2+之間的交替吸附作用更加明顯。沉積物富含的吸附性Na+發(fā)生陽離子交替吸附作用,Ca2+便置換巖土所吸附的一部分Na+,導(dǎo)致水中Na+升高,使地下水趨于咸化。

圖6 地下水中Na+-Cl-和SAR-TDS關(guān)系圖

19組水樣屬于GW3類地下水(單一結(jié)構(gòu)潛水8組、承壓水區(qū)潛水7組、淺層承壓水4組),占總水樣的26.39%。NO3-均值是3類地下水中最高的,主要離子Na+、Ca2+、Mg2+、Cl-、SO42-、及TDS均值較GW1類高,低于GW2。主要分布于耕地和建設(shè)用地,受人類活動的影響較大。

研究區(qū)地下水NO3-濃度為0.20~35.48 mg/L,根據(jù)《地下水質(zhì)量標(biāo)準(zhǔn)》(GB /T14848-2017)分類,Ⅰ類(≤2.00 mg/L,39組)、Ⅱ類(>2.00~5.00 mg/L,14組)、Ⅲ類(>5.00~20.00 mg/L,14組)、Ⅳ類(>20.00~30.00 mg/L,3組)、Ⅴ類(>30.00 mg/L,2組)地下水分別占總水樣的54.17%、19.44%、19.44%、4.17%和2.78%,Ⅳ類和Ⅴ類地下水為6.95%,說明地下水受到人類活動影響。由表1可以看出,潛水中NO3-濃度極大值較淺層承壓水高,表明潛水受人為污染程度較淺層承壓水大。因潛水與地表聯(lián)系密切,直接受人為污染影響較大,農(nóng)業(yè)施用化肥隨灌溉水下滲對地下水形成污染,生活污水與工業(yè)廢水未經(jīng)處理排入河流沿地下水通道入滲污染地下水,導(dǎo)致地下水咸化[18]。由于隔水頂板的存在,淺層承壓水受人為污染影響較小,但一些成井工藝不規(guī)范和劣質(zhì)井的使用,使得隔水層遭到破壞,受污染的高礦化度地下水沿井壁下滲,導(dǎo)致部分淺層承壓水受污染[3,29]。

4 結(jié) 論

1)葉爾羌河流域平原區(qū)地下水pH值范圍為6.91~8.07,呈中性或弱堿性。水化學(xué)類型以HCO3·SO4-Ca·Mg、SO4·HCO3-Na·Ca、SO4·Cl-Na·Ca(Mg)和Cl·SO4-Na型為主。單一結(jié)構(gòu)潛水中未咸化水比例為47.06%,微咸化水、咸化水比例分別為29.41%和23.53%,咸化程度相對較高;承壓水區(qū)潛水中未咸化水、微咸化水、咸化水比例分別為50.00%、36.36%和13.64%,咸化程度相對較低;淺層承壓水中未咸化水比例為42.43%,微咸化水、咸化水比例分別為15.14%和42.43%,咸化程度最高。

2)潛水和淺層承壓水地下水Cl-、SO42-、TDS對數(shù)轉(zhuǎn)換后,服從正態(tài)分布。變異函數(shù)計算結(jié)果表明各指標(biāo)空間相關(guān)性較強(qiáng)。潛水Cl-、SO42-、TDS的空間分布較為相似,總體呈南低北高的趨勢;淺層承壓水的Cl-、SO42-、TDS呈高低值相間分布的特征,由于承壓水環(huán)境較封閉,水巖作用時間長,離子濃度較承壓水區(qū)潛水高。

3)因子分析表明地下水咸化受水文地質(zhì)條件、水化學(xué)環(huán)境和人為污染因素控制。聚類分析表明:GW1(水文地質(zhì)條件控制)占總水樣的58.33%,各類土地利用類型均有分布,水文地質(zhì)過程對地下水咸化影響較大;15.28%的水樣屬于GW2(地下水化學(xué)環(huán)境影響),主要分布于草地,地下水咸化受水化學(xué)環(huán)境影響較大;26.39%的水樣屬于GW3(人為活動影響),分布于耕地和建設(shè)用地,受人為活動的影響較大。

[1]Lin Jingjing, Ma Rui, Hu Yalu, et al. Groundwater sustainability and groundwater/surface-water interaction in arid Dunhuang Basin, northwest China[J]. Hydrogeology Journal, 2018, 26(5): 1559-1572.

[2]Huang Tianming, Pang Zhonghe. The role of deuterium excess in determining the water salinization mechanism: A case study of the arid Tarim River Basin, NW China[J]. Applied Geochemistry, 2012, 27(12): 2382-2388.

[3]林麗,曾妍妍,周金龍. 塔里木盆地平原區(qū)深層承壓水咸化成因分析[J]. 人民黃河,2017,39(5):72-75.

Lin Li, Zeng Yanyan, Zhou Jinlong. Cause analysis of salinization of deep confined groundwater in Tarim Basin Plain[J]. Yellow River, 2017, 39(5): 72-75. (in Chinese with English abstract)

[4]Li Qiao, Zhou Jinlong, Zhou Yinzhu, et al. Salinization of deep groundwater in plain areas of Xinjiang: Causes and countermeasures[J]. Desalination and Water Treatment, 2014, 52(13/14/15): 2724-2733.

[5]Jia Yongfeng, Guo Huaming, Xi Beidou, et al. Sources of groundwater salinity and potential impact on arsenic mobility in the western Hetao Basin, Inner Mongolia[J]. Science of the Total Environment, 2017(601/602): 691-702.

[6]王雨山,李戍,李海學(xué),等.海原盆地地下水咸化特征和控制因素[J]. 水文地質(zhì)工程地質(zhì),2019,46(4):10-17,57.

Wang Yushan, Li Shu, Li Haixue, et al. Groundwater salinization characteristics and controlling factors in the Haiyuan Basin[J]. Hydrogeology & Engineering Geology, 2019, 46(4): 10-17, 57. (in Chinese with English abstract)

[7]Pulido-Bosch A, Rigol-Sanchez J P, Vallejos A, et al. Impacts of agricultural irrigation on groundwater salinity[J/OL]. Environmental Earth Sciences, 2018, 77(5): 197.

[8]Li Qinghua, Zhang Yanpeng, Chen Wen, et al. The integrated impacts of natural processes and human activities on groundwater salinization in the coastal aquifers of Beihai, southern China[J]. Hydrogeology Journal, 2018, 26(5): 1513-1526.

[9]Zhang Xuedi, Qian Hui, Wu Hao, et al. Multivariate analysis of confined groundwater hydrochemistry of a long-exploited sedimentary basin in Northwest China[J/OL]. Journal of Chemistry, 2016, 2016:3812125.

[10]Mohammed B, Driss O, Salah O. Characterization of mechanisms and processes controlling groundwater salinization in coastal semi-arid area using hydrochemical and isotopic investigations (Essaouira basin, Morocco)[J]. Environmental Science and Pollution Research, 2018, 25(25): 24992-25004.

[11]劉宏偉,胡云壯,馬震,等.萊州灣南岸淺層地下水咸化特征及其指示意義[J]. 節(jié)水灌溉,2019(5):71-76.

Liu Hongwei, Hu Yunzhuang, Ma Zhen, et al. Characteristics of shallow groundwater salinization and its indication in southern Laizhou Bay Area[J]. Water Saving Irrigation, 2019(5): 71-76. (in Chinese with English abstract)

[12]Masoud A A, El-Horiny M M, Atwia M G, et al. Assessment of groundwater and soil quality degradation using multivariate and geostatistical analyses, Dakhla Oasis, Egypt[J]. Journal of African Earth Sciences, 2018, 142: 64-81.

[13]Kazakis N, Mattas C, Pavlou A, et al. Multivariate statistical analysis for the assessment of groundwater quality under different hydrogeological regimes[J/OL]. Environmental Earth Sciences, 2017, 76(9): 349.

[14]Abu-Alnaeem M F, Yusoff I, Ng T F, et al. Assessment of groundwater salinity and quality in Gaza coastal aquifer, Gaza Strip, Palestine: An integrated statistical, geostatistical and hydrogeochemical approaches study[J]. Science of the Total Environment, 2018, 615: 972-989.

[15]Arslan H. Spatial and temporal mapping of groundwater salinity using ordinary kriging and indicator kriging: The case of Bafra Plain, Turkey[J]. Agricultural Water Management, 2012, 113: 57-63.

[16]徐存東,王榮榮,程慧,等. 基于遙感數(shù)據(jù)分析干旱區(qū)人工綠洲灌區(qū)的水鹽時空分異特征[J]. 農(nóng)業(yè)工程學(xué)報,2019,35(2):80-89.

Xu Cundong, Wang Rongrong, Cheng Hui, et al. Spatial-temporal distribution of water and salt in artificial oasis irrigation area in arid area based on remote sensing analysis[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(2): 80-89. (in Chinese with English abstract)

[17]王全九,畢磊,張繼紅. 新疆包頭湖灌區(qū)農(nóng)田土壤水鹽熱特性空間變異特征[J]. 農(nóng)業(yè)工程學(xué)報,2018,34(18):138-145.

Wang Quanjiu, Bi Lei, Zhang Jihong. Spatial variability analysis of large-scale soil water, salt and heat characteristics in Baotou lake irrigation area of Xinjiang[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(18): 138-145. (in Chinese with English abstract)

[18]張勇,郭純青,朱彥光,等. 云南蕎麥地流域地下水水化學(xué)特征及物質(zhì)來源分析[J]. 環(huán)境科學(xué),2019,40(6):2686-2695.

Zhang Yong, Guo Chunqing, Zhu Yanguang, et al. Chemical characteristics of groundwater and material sources analysis in Buckwheat field, Yunnan Province[J]. Environmental Science, 2019, 40(6): 2686-2695. (in Chinese with English abstract)

[19]Chang Jianxia, Kan Yanbin, Wang Yimin, et al. Conjunctive operation of reservoirs and ponds using a simulation- optimization model of irrigation systems[J]. Water Resources Management, 2017, 31(3): 995-1012.

[20]Tang Hong, Yang Degang, Zhang Yufang. Food security and agricultural structural adjustment in Yarkant River Basin, northwest China[J]. Journal of Food Agriculture and Environment, 2013, 11(1): 324-328.

[21]欒風(fēng)嬌,周金龍,曾妍妍,等. 新疆南部典型地區(qū)地下水中氟的分布特征及其富集因素分析[J]. 環(huán)境化學(xué),2016,35(6):1203-1211.

Luan Fengjiao, Zhou Jinlong, Zeng Yanyan, et al. Distribution characteristics and enrichment factors of fluorine in groundwater in typical areas of southern Xinjiang[J]. Environmental Chemistry, 2016, 35(6): 1203-1211. (in Chinese with English abstract)

[22]武倩倩,任加國,許模. 新疆葉爾羌河流域地下水同位素特征及其補(bǔ)給來源分析[J]. 中國地質(zhì),2008,35(2):331-336.

Wu Qianqian, Ren Jiaguo, Xu Mo. Isotope features and supply sources of groundwater in the Yarkant River drainage area, Xinjiang[J]. Geology in China, 2008, 35(2): 331-336. (in Chinese with English abstract)

[23]劉紀(jì)遠(yuǎn),匡文慧,張增祥,等. 20世紀(jì)80年代末以來中國土地利用變化的基本特征與空間格局[J]. 地理學(xué)報,2014,69(1):3-14.

Liu Jiyuan, Kuang Wenhui, Zhang Zengxiang, et al. Spatiotemporal characteristics, patterns and causes of land use changes in China since the late 1980s[J]. Acta Geographica Sinica, 2014, 69(1): 3-14. (in Chinese with English abstract)

[24]王賀,谷洪彪,遲寶明,等. 柳江盆地淺層地下水硝酸鹽分布特征及影響因素分析[J]. 環(huán)境科學(xué),2016,37(5):1699-1706.

Wang He, Gu Hongbiao, Chi Baoming, et al. Distribution characteristics and influencing factors of nitrate pollution in shallow groundwater of Liujiang Basin[J]. Environmental Science, 2016, 37(5): 1699-1706. (in Chinese with English abstract)

[25]陳云飛,曾妍妍,周金龍,等.新疆于田縣綠洲區(qū)土壤重金屬空間分布特征與影響因素[J]. 農(nóng)業(yè)機(jī)械學(xué)報,2019,50(4):263-273.

Chen Yunfei, Zeng Yanyan, Zhou Jinlong, et al. Spatial distribution and influence factors of soil heavy metal contents in oasis area of Yutian County, Xinjiang [J].Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(4): 263-273. (in Chinese with English abstract)

[26]Cao Yingjie, Tang Changyuan, Song Xianfang, et al. Identifying the hydrochemical characteristics of rivers and groundwater by multivariate statistical analysis in the Sanjiang Plain, China[J]. Applied Water Science, 2016, 6(2): 169-178.

[27]Luo Wenting, Gao Xubo, Zhang Xin. Geochemical processes controlling the groundwater chemistry and fluoride contamination in the Yuncheng Basin, China: An area with complex hydrogeochemical conditions[J]. Plos One, 2018, 13(7): 1-25.

[28]李霄,林學(xué)鈺,都基眾,等. 齊齊哈爾市潛水水化學(xué)演化規(guī)律分析[J]. 水利學(xué)報,2014,45(7):815-827.

Li Xiao, Lin Xueyu, Du Jizhong, et al. Analysis of hydrochemical evolution of phreatic water in Qiqihar City[J]. Journal of Hydraulic Engineering, 2014, 45(7): 815-827. (in Chinese with English abstract)

[29]Ferchichi H, Farhat B, Ben-Hamouda M F, et al. Understanding groundwater chemistry in Mediterranean semi-arid system using multivariate statistics techniques and GIS methods: Case of Manouba aquifer (Northeastern Tunisia)[J]. Arabian Journal of Geosciences, 2017, 10(23): 530.

[30]Kaur L, Rishi M S. Integrated geospatial, geostatistical, and remote-sensing approach to estimate groundwater level in North-western India[J/OL]. Environmental Earth Sciences, 2018, 77(23): 786.

[31]徐英,葛洲,王娟,等. 基于指示Kriging法的土壤鹽漬化與地下水埋深關(guān)系研究[J]. 農(nóng)業(yè)工程學(xué)報,2019,35(1):123-130.

Xu Ying, Ge Zhou, Wang Juan, et al. Study on relationship between soil salinization and groundwater table depth based on indicator Kriging[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(1): 123-130. (in Chinese with English abstract)

[32]Jalali M. Nitrate pollution of groundwater in Toyserkan, western Iran[J]. Environmental Earth Sciences, 2011, 62(5): 907-913.

[33]Argamasilla M, Barberá J A, Andreo B. Factors controlling groundwater salinization and hydrogeochemical processes in coastal aquifers from southern Spain[J]. Science of the Total Environment, 2017, 580: 50-68.

Spatial distribution and cause of salinization of shallow groundwater in plain terrain of the Yarkant River Basin, Xinjiang

Zhang Jie1,2, Zhou Jinlong1,2※, Nai Weihua3, Zeng Yanyan1,2, Chen Yunfei1,2, Wei Xing1,2

(1.,830052; 2.,830052,; 3..2,831100,)

In order to understand the characteristics and causes of groundwater salinization in the plain area of Yarkant River Basin, the water quality evolution of the shallow groundwater (buried depth ≤100 m) was analyzed by means of multivariate statistics, geostatistics, remote sensing technology and geochemical methods. The groundwater pH value ranged from 6.91 to 8.07, which mainly occurred under neutral to alkaline environment in the study area. Groundwater types in single structure unconfined groundwater were mainly HCO3·SO4-Ca·Mg, SO4·HCO3-Na·Ca, and unconfined groundwater in confined area were SO4·Cl-Na·Ca and SO4·Cl-Na·Mg, while Cl·SO4-Na, SO4·Cl-Na·Ca and HCO3·SO4-Ca·Mg were dominant in shallow confined groundwater. The calculation results of salinization coefficient(SC) showed that the proportion of SC≤1, between >1 and 2, >2 in the water samples with single structure unconfined groundwater (17 groups of groundwater samples) were 47.06%, 29.41% and 23.53%, respectively, and the degree of salinization was high. The proportion of SC≤1 in unconfined groundwater of confined area (22 groups of groundwater samples) was 50.00%. The proportion of Sc between >1 and 2 was 36.36%, the proportion of SC>2 was 13.64%, and the degree of salinization was low. The SC≤1, >1-2 and > 2 of shallow confined groundwater (33 groups groundwater samples) was 42.43%, 15.14% and 42.43% respectively, which the salinization degree was the highest. Kolmogorov-Smirnov tests were carried out on Cl-, SO42-, TDS of unconfined and shallow confined groundwater, and the results obeyed normal distribution. To examine the degree of spatial correlation, the ratio of nugget to sill was advised generally. The nugget/sill≤0.25, > 0.25-0.75, and > 0.75 were the conditions in which spatial structures were supposed to be strong, moderate, and weak, respectively. In this study, the ratio of nugget to sill for all parameters of Cl-, SO42-, TDS of unconfined and shallow confined groundwater were < 0.25, suggested the strong spatial correlation for the studied regionalized variable. The trend of Cl-, SO42-, TDS in unconfined groundwater was generally low in the South and high in the North, while that of shallow confined groundwater was characterized by the distribution of high and low values. Factor analysis was carried out on 14 hydrochemical indices of 72 groups of groundwater samples. The results showed that the contribution rates of main factors F1, F2 and F3 were 49.383%, 19.528% and 13.520% respectively, and the contribution rate of cumulative variance was 82.431%. Cluster analysis showed that GW1 (controlled by hydrogeological conditions) groundwater accounted for 58.33% of the all groundwater samples, which was widely distributed and mainly affected by natural processes. The saturation indices (SI) of carbonate minerals tended to be saturated, while the SI of evaporite minerals was unsaturated. The ion concentration was mainly controlled by the dissolution of evaporite minerals. GW2 (affected by groundwater chemical environment) groundwater accounted for 15.28%, mainly distributed in grassland, and hydrochemical environment had a relatively large impact on groundwater salinization. Sodium adsorption ratio (SAR) was positively correlated with total dissolved solids (TDS) (2=0.770), which showed that Na+in groundwater had obvious ion exchange with Ca2+and Mg2+in aquifer medium. 26.39% of the all groundwater samples belong to GW3 (affected by human activities), mainly distributed in cultivated land and construction land, and groundwater salinization was significantly affected by human activities. Unconfined groundwater was greatly affected by agricultural irrigation, domestic sewage and industrial sewage, however, the pollution degree of shallow confined groundwater was relatively low.

factor analysis; cluster analysis; geostatistics; groundwater salinization; Yarkant River basin

張 杰,周金龍,乃尉華,曾妍妍,陳云飛,魏 興. 新疆葉爾羌河流域平原區(qū)淺層地下水咸化空間分布及成因[J]. 農(nóng)業(yè)工程學(xué)報,2019,35(23):126-134.doi:10.11975/j.issn.1002-6819.2019.23.016 http://www.tcsae.org

Zhang Jie, Zhou Jinlong, Nai Weihua, Zeng Yanyan, Chen Yunfei, Wei Xing. Spatial distribution and cause of salinization of shallow groundwater in plain terrain of the Yarkant River Basin, Xinjiang[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(23): 126-134. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.23.016 http://www.tcsae.org

2019-07-08

2019-10-30

國家自然科學(xué)基金資助項目(41662016)。

張 杰,博士生,主要從事地下水資源與環(huán)境方面的研究。Email:zj4537@126.com

周金龍,博士,教授,博士生導(dǎo)師,主要從事干旱區(qū)地下水資源與水土環(huán)境地球化學(xué)等研究工作。Email:zjzhoujl@163.com

10.11975/j.issn.1002-6819.2019.23.016

P641

A

1002-6819(2019)-23-0126-09

猜你喜歡
承壓水淺層水樣
晉西黃土區(qū)極端降雨后淺層滑坡調(diào)查及影響因素分析
地鐵深基坑承壓水控制研究
深層承壓水污染途徑及防治研究
水樣不同處理方式對高錳酸鹽指數(shù)測定值的影響初探
承壓水降壓引起的高速鐵路橋梁摩擦型群樁沉降特性分析
淺層換填技術(shù)在深厚軟土路基中的應(yīng)用
四川盆地太陽背斜淺層頁巖氣儲層特征及試采評價
承壓水條件下基坑降水研究
磁性四氧化三鐵氮摻雜石墨烯磁性固相萃取測定水樣中的6種醛酮化合物
平行水樣分配器在環(huán)境監(jiān)測中的應(yīng)用
城步| 上杭县| 凉山| 油尖旺区| 略阳县| 灵宝市| 右玉县| 威海市| 镇雄县| 白城市| 桂平市| 桃园市| 图们市| 株洲市| 淳化县| 文化| 舒兰市| 文昌市| 彝良县| 云龙县| 剑川县| 罗山县| 二连浩特市| 云浮市| 盐源县| 扬中市| 彰化市| 青岛市| 都兰县| 鄄城县| 枣强县| 山阴县| 淅川县| 观塘区| 休宁县| 始兴县| 密云县| 英山县| 株洲市| 如东县| 本溪|