唐超蘭, 溫竟青, 張偉祥, 楚瑞坤, 孫 梅
(1.廣東工業(yè)大學(xué),廣州 510006;2.飛而康快速制造科技有限責(zé)任公司,江蘇 無(wú)錫 214145)
3D打印技術(shù)又被稱為“快速成形技術(shù)”、“增材制造技術(shù)”和“實(shí)體自由制造”等,其思想最早在19世紀(jì)末出現(xiàn)于美國(guó),并在20世紀(jì)80年代得到應(yīng)用與發(fā)展,至今已有30多年[1-2]。3D打印技術(shù)基于離散-堆積原理,采用與減材制造技術(shù)相反的加工方式(逐層累加),通過(guò)操作計(jì)算機(jī)使材料逐層累加,最終得到立體實(shí)物的過(guò)程[3-7]。相比于傳統(tǒng)的減材制造技術(shù),3D打印技術(shù)具有精度高、工藝簡(jiǎn)單、自由度高、節(jié)約原材料、節(jié)省時(shí)間等優(yōu)點(diǎn),在航空航天、工業(yè)、國(guó)防、醫(yī)療、汽車、電子等領(lǐng)域得到了廣泛的應(yīng)用[8-9]。目前可用于3D打印的原料主要有高分子材料(樹(shù)脂、塑料、橡膠等)、金屬材料(鋁合金、鈦合金、不銹鋼等)和非金屬材料(陶瓷、石膏、紙張等),其中高分子材料和非金屬材料3D打印技術(shù)起步較早、研究較多,技術(shù)相對(duì)成熟[8]。而金屬材料3D打印技術(shù)則具備巨大的發(fā)展?jié)摿?,有專家預(yù)測(cè),在未來(lái)制造業(yè)中,金屬材料3D打印技術(shù)將會(huì)逐漸占據(jù)整個(gè)快速成形制造領(lǐng)域的主導(dǎo)地位[10]。
鈦合金是一種重要的有色金屬,具有密度小、比強(qiáng)度高,以及良好的耐腐蝕性能、高溫變形性能和生物相容性等諸多優(yōu)點(diǎn),在航空航天、工業(yè)、國(guó)防、醫(yī)療等領(lǐng)域得到廣泛應(yīng)用[1,11-12]。傳統(tǒng)的鍛造和鑄造方法所制得的大型復(fù)雜的鈦合金構(gòu)件,由于成本高、工藝復(fù)雜、材料利用率低以及后續(xù)加工困難等不利影響,嚴(yán)重阻礙了其更為廣泛的應(yīng)用。而3D打印技術(shù)采用與傳統(tǒng)的減材制造相反的加工方法,有著極高的材料利用率,相比傳統(tǒng)的成形加工方法有著極大的優(yōu)勢(shì)。目前對(duì)鈦合金3D打印的研究主要集中在材料、設(shè)備、技術(shù)以及工藝方面,但是對(duì)零件的成形過(guò)程中缺陷問(wèn)題的研究還處于初步階段。本文綜述了國(guó)內(nèi)外幾種常用的鈦合金3D打印技術(shù),重點(diǎn)介紹了其在成形過(guò)程中缺陷的分類、危害以及形成原因的研究現(xiàn)狀,并結(jié)合國(guó)內(nèi)外的研究進(jìn)展,對(duì)合金缺陷的改善方法進(jìn)行探討,對(duì)鈦合金3D打印的發(fā)展前景進(jìn)行展望。
當(dāng)今,國(guó)內(nèi)外常用的鈦合金3D打印方法主要有以下幾種。根據(jù)熱源不同可分為:以激光為熱源的激光選區(qū)燒結(jié)成形技術(shù)(selective laser sintering,SLS)、激光選區(qū)熔化成形技術(shù)(selective laser melting,SLM)和激光近凈成形技術(shù)(laser solid forming,LSF);以電子束為熱源的電子束選區(qū)熔化成形技術(shù)(electron beam selective melting, EBSM)和電子束熔絲沉積成形技術(shù)(electron beam fuse deposition forming, EBF3)。
SLS技術(shù)基于激光粉末床,運(yùn)用激光有選擇地對(duì)粉末進(jìn)行燒結(jié),逐層疊加得到最終的實(shí)體零件。具有材料利用率高、適用范圍廣、無(wú)需模具和支撐結(jié)構(gòu)、可直接制造任意形狀復(fù)雜的結(jié)構(gòu)件等優(yōu)點(diǎn);但是由于燒結(jié)過(guò)程中粉末沒(méi)有完全熔化,且之間沒(méi)有受到壓力,因此孔隙無(wú)法消除,最終得到的制件性能與傳統(tǒng)制件相比仍有較大差距,存在殘余應(yīng)力大、致密度低、強(qiáng)度低等缺陷[10]。
LSF技術(shù)采用同步送粉方式,在激光作用下鈦合金粉末開(kāi)始熔化、凝固,逐層堆積,可實(shí)現(xiàn)鈦合金零件直接制造。該技術(shù)具有低成本、周期短、無(wú)需模具、材料利用率高等優(yōu)點(diǎn),但成形精度低,屬于“近凈成形”,需經(jīng)過(guò)后續(xù)加工才能得到最終的制件[9]。
在SLS技術(shù)基礎(chǔ)上發(fā)展起來(lái)的SLM技術(shù)所使用的激光功率更大,整個(gè)加工進(jìn)程都處于保護(hù)氛圍的成形艙內(nèi),金屬粉末完全熔化,成功彌補(bǔ)了SLS技術(shù)只能成形低熔點(diǎn)金屬、孔隙大、力學(xué)性能差等缺點(diǎn)[13-14];成形件的精度高和表面質(zhì)量好,無(wú)需后續(xù)加工,屬于“凈成形”,但是可成形的尺寸有限,且成本較高。
EBSM技術(shù)與SLM技術(shù)的成形原理基本相似,主要區(qū)別在于EBSM技術(shù)采用能量更大的電子束為熱源,整個(gè)成形過(guò)程均在真空環(huán)境中(≤10-2Pa)進(jìn)行,能夠很好地防止空氣中其他有害雜質(zhì)C、N、O等的影響。具有成形速率快、能量密度高、無(wú)反射、聚焦方便、真空無(wú)污染、尺寸精度高、力學(xué)性能好等優(yōu)點(diǎn)[15-17]。
基于LSF技術(shù)基礎(chǔ)發(fā)展起來(lái)的EBF3技術(shù),具有成形效率快、無(wú)反射、材料和能量的利用率高、真空無(wú)污染等優(yōu)點(diǎn),適合大中型鈦合金零件的成形制造修復(fù)。以絲材代替粉末為原料雖然避免了吹粉問(wèn)題,但是其成形精度差,需要后續(xù)表面處理[18-19]。
表1為幾種常見(jiàn)的鈦合金3D打印技術(shù)比較。綜合對(duì)比,EBSM技術(shù)是未來(lái)最具發(fā)展前景的鈦合金3D打印技術(shù),理由如下:(1)EBSM具有與SLM技術(shù)相當(dāng)?shù)某尚尉?、表面質(zhì)量以及良好的力學(xué)性能,而且也克服了SLM技術(shù)不能成形大尺寸零件的缺點(diǎn);(2)整個(gè)成形過(guò)程均在真空環(huán)境下進(jìn)行,有效防止成形過(guò)程中C、N、O元素對(duì)材料的污染;(3)采用功率更大的電子束代替激光束,不但加快成形效率,而且降低生產(chǎn)成本。
表1 幾種常見(jiàn)主流的鈦合金3D打印技術(shù)比較Table1 Comparison of 3D printing technologies of several popular titanium alloys
采用3D打印技術(shù)制備鈦合金,成功克服了使用傳統(tǒng)方法制備鈦合金結(jié)構(gòu)件時(shí),所面臨的費(fèi)用高、材料浪費(fèi)嚴(yán)重、加工工藝復(fù)雜,以及后續(xù)加工困難等不利因素,但采用3D打印技術(shù)成形鈦合金零件時(shí),由于粉末/絲材特殊的加工性能,或者工藝參數(shù)選擇不當(dāng),工件容易出現(xiàn)球化、裂紋、孔隙以及翹曲變形等缺陷。如圖1所示,嚴(yán)重影響鈦合金的機(jī)械性能和成形精度,阻礙了鈦合金3D打印技術(shù)的發(fā)展。另外,缺陷無(wú)損檢測(cè)是3D打印件能否實(shí)現(xiàn)廣泛應(yīng)用的基礎(chǔ),也是影響3D打印技術(shù)進(jìn)一步發(fā)展的決定因素。目前,國(guó)內(nèi)外對(duì)3D打印件缺陷進(jìn)行無(wú)損檢測(cè)的方法主要有[20-22]:滲透檢測(cè)、X射線檢測(cè)、磁粉檢測(cè)和超聲檢測(cè)等。隨著3D打印件向結(jié)構(gòu)大型化、復(fù)雜化和精細(xì)化方向發(fā)展,傳統(tǒng)的無(wú)損檢測(cè)方法已經(jīng)不再適用于3D打印件的缺陷檢測(cè)和分析,新型的無(wú)損檢測(cè)技術(shù)工業(yè)CT檢測(cè)和激光超聲在線無(wú)損檢測(cè)相繼問(wèn)世。Plessis等[23]采用CT技術(shù)檢測(cè)3D打印成形的復(fù)雜鈦合金結(jié)構(gòu)件,成功檢出了孔隙率僅為0.005%的微孔隙,這在采用常規(guī)無(wú)損檢測(cè)方法是幾乎不可能檢出的。國(guó)內(nèi)一專利[24]發(fā)明了激光超聲無(wú)損檢測(cè)技術(shù),利用激光激勵(lì)的超聲表面波幅的變化檢測(cè)3D打印過(guò)程中產(chǎn)生的缺陷,實(shí)現(xiàn)制造過(guò)程同步對(duì)零件進(jìn)行檢測(cè)。表2列出幾種常見(jiàn)的無(wú)損檢測(cè)技術(shù)比較。
隨著科學(xué)技術(shù)的進(jìn)步,3D打印技術(shù)也在不停地完善和發(fā)展,目前國(guó)內(nèi)外逐漸對(duì)這些缺陷形成的原因、分類及其危害進(jìn)行了大量的研究,以期使鈦合金3D打印技術(shù)得到更為廣泛的應(yīng)用。
圖1 金屬3D打印成形過(guò)程中常見(jiàn)的缺陷 (a)球化;(b)翹曲;(c)孔隙;(d)裂紋Fig.1 Common defects in metal 3D printing forming (a) spheroidization;(b) warpage;(c) pore;(d) crack
表2 幾種常見(jiàn)的無(wú)損檢測(cè)技術(shù)比較[20-24]Table2 Comparison of several common nondestructive testing techniques[20-24]
球化現(xiàn)象是3D打印金屬材料成形過(guò)程中常見(jiàn)的一種缺陷,是指金屬粉末經(jīng)激光或電子束熔化后,不能均勻地鋪展于前一層,而是產(chǎn)生大量相互隔離的球狀金屬,這種現(xiàn)象被稱為球化現(xiàn)象[25]。該缺陷主要的危害有以下兩個(gè)方面:(1)導(dǎo)致金屬件組織內(nèi)部存在孔隙,大大降低成形件的力學(xué)性能并增加了表面粗糙度;(2)凝固后的金屬球又會(huì)使下一層的鋪粉不均勻,且鋪粉輥又會(huì)與前一層所產(chǎn)生的金屬球相互摩擦,不但會(huì)破壞成形件的表面質(zhì)量,而且當(dāng)他們之間摩擦非常大時(shí),鋪粉輥將無(wú)法動(dòng)彈,致使成形過(guò)程終止。
近年來(lái),越來(lái)越多的學(xué)者對(duì)球化現(xiàn)象形成原因進(jìn)行了大量的研究,但各持不同的意見(jiàn)。其中“液態(tài)金屬與固態(tài)表面的潤(rùn)濕問(wèn)題”的說(shuō)法較為普遍接受[26]。球化根據(jù)尺寸不同可分為大尺寸球化和小尺寸球化,對(duì)大尺寸球化的形成原因歸結(jié)于液-固潤(rùn)濕問(wèn)題。圖2所示為液態(tài)金屬與固態(tài)金屬的潤(rùn)濕示意圖,當(dāng)熔融金屬液均勻鋪展時(shí),潤(rùn)濕角θ <90°,固液金屬潤(rùn)濕性良好,不會(huì)出現(xiàn)球化,當(dāng)金屬液很難鋪展于固態(tài)表面時(shí),θ > 90°,固液金屬潤(rùn)濕性差,產(chǎn)生球化反應(yīng)。對(duì)于小尺寸球化的成因,則認(rèn)為是加工過(guò)程中發(fā)生液滴飛濺,在熔道或熔道周圍凝固成金屬球,因?yàn)榻饘僖猴w濺相對(duì)較少,所以金屬球的尺寸也較小。Sallica等[12]通過(guò)研究SLM成形件Ti-6Al-4V的微觀組織,發(fā)現(xiàn)過(guò)高的激光功率會(huì)減小熔融金屬的表面能,并導(dǎo)致球化現(xiàn)象的產(chǎn)生。張曉博[27]研究了加工環(huán)境對(duì)球化現(xiàn)象的影響,認(rèn)為成形氣氛中的氧元素容易與熔融金屬液發(fā)生反應(yīng),形成一層致密的氧化物薄膜,該薄膜并不利于金屬液與固體基底潤(rùn)濕、粘合,容易導(dǎo)致球化的產(chǎn)生,且球化現(xiàn)象隨氧含量的增加,效果越明顯;他還研究了工藝參數(shù)對(duì)球化現(xiàn)象的影響,認(rèn)為激光功率過(guò)高,會(huì)出現(xiàn)“飛濺”,導(dǎo)致熔道間的金屬球大量出現(xiàn),球化現(xiàn)象明顯;掃描速率過(guò)快,激光在粉末上停留的時(shí)間較短,金屬液溫度低,流動(dòng)性及潤(rùn)濕性差導(dǎo)致球化現(xiàn)象明顯。沈以赴等[15]認(rèn)為球化是由于液相表面張力大、黏度高,或熔融粉末與未熔化的粉末顆粒和基板未發(fā)生浸潤(rùn)等的影響下產(chǎn)生,進(jìn)一步分析表明,激光快速成形過(guò)程中的氧氣是導(dǎo)致球化的直接原因。Gusarov等[28]借助Plateau-Rayleigh毛細(xì)不穩(wěn)定理論[29]指出:球化現(xiàn)象與熔池的幾何形狀密切相關(guān),在二維層面上,熔池長(zhǎng)度與寬度的比值大于2.1時(shí),容易出現(xiàn)球化現(xiàn)象。
圖2 液態(tài)金屬與固態(tài)金屬的潤(rùn)濕示意圖Fig.2 Schematic diagram of wetting between liquid metal and solid metal
孔隙是成形過(guò)程中的另一種重要缺陷,對(duì)于一些高性能致密的鈦合金制件,由于孔隙的存在嚴(yán)重降低了制件的力學(xué)性能和致密性,阻礙了鈦合金的廣泛應(yīng)用。對(duì)于孔隙的成因研究報(bào)道較多,上面談到的球化現(xiàn)象會(huì)引起制件的孔隙問(wèn)題;裂紋也會(huì)導(dǎo)致孔隙的形成,隨著裂紋尺寸的不斷變大,裂紋會(huì)相遇連接,最后形成孔隙;另外粉末本身的缺陷也會(huì)導(dǎo)致孔隙產(chǎn)生,在快速熔化和凝固過(guò)程中,空心粉中含有的氣體來(lái)不及逃逸,從而在成形件中殘留形成孔隙,此類孔隙形貌多為球形或類球形。
Gong等[30]通過(guò)使用較大范圍的工藝參數(shù)成形Ti-6Al-4V合金,根據(jù)孔隙率大小將工藝參數(shù)進(jìn)行分類,并對(duì)孔隙的產(chǎn)生機(jī)理進(jìn)行了討論。薛雷等[31]分別采用未經(jīng)干燥處理和經(jīng)真空干燥處理的TC4粉末對(duì)制件進(jìn)行激光快速修復(fù),認(rèn)為修復(fù)過(guò)程中孔隙的形成原因歸因于以下兩種:(1)粉末鋪放時(shí)吸附了空氣中的其他雜質(zhì)氣體,在隨后的成形過(guò)程中受到激光/電子束加熱、熔化后,又經(jīng)快速凝固得到成形件,其組織內(nèi)部的氣體析出不及時(shí),保留在成形件中并形成孔隙;(2)粉末不夠干燥且存在水分,在加熱熔融后,一部分在熔池表面附近的水分以水蒸氣的形式蒸發(fā)逸出;遠(yuǎn)離熔池表面的另一部分水分,與(1)類似的情況,由于氣體來(lái)不及逸出,在制件內(nèi)部產(chǎn)生氣孔。Zaeh等[32]研究發(fā)現(xiàn),使用高能量密度的熱源加工時(shí),容易造成受熱不均,當(dāng)某部分熱量過(guò)高時(shí),即使粉末還未引起球化現(xiàn)象,但仍會(huì)形成孔洞,并且空洞在后續(xù)的加工過(guò)程中會(huì)變長(zhǎng)。Sallica等[12]研究發(fā)現(xiàn)當(dāng)激光功率過(guò)低時(shí),導(dǎo)致熔化不完全從而引起孔隙,影響致密性。
裂紋是激光快速成形過(guò)程中影響極大的一種缺陷。在成形過(guò)程中,由于熔體過(guò)冷度大、冷卻速率快,在冷卻過(guò)程中應(yīng)力得不到釋放而保留在制件內(nèi),當(dāng)應(yīng)力集中超過(guò)材料屈服強(qiáng)度就會(huì)產(chǎn)生裂紋[27]。裂紋通??煞譃槲⒂^裂紋和宏觀裂紋兩種,其中成形件組織內(nèi)部的微觀裂紋一般是凝固裂紋,歸類為熱裂紋;宏觀裂紋則大部分表現(xiàn)為層間裂紋,屬于冷裂紋范疇。若制件中存在裂紋,將嚴(yán)重影響制件的組織和力學(xué)性能。微裂紋尺寸相對(duì)較小,會(huì)降低抗疲勞性能,縮短成形件的使用壽命;對(duì)于粗裂紋而言,會(huì)影響零件的使用性能,甚至導(dǎo)致零件直接報(bào)廢。
周旭等[33]研究了近α鈦合金激光選區(qū)熔化成形的開(kāi)裂機(jī)理,得出如下結(jié)論:在殘余應(yīng)力作用下,裂紋形成于側(cè)壁缺口,在沉積層上沿著硬脆化合物擴(kuò)大。張升等[34]采用交替掃描策略制備出TC4合金試樣,得出如下結(jié)論:SLM成形TC4合金過(guò)程中裂紋主要為冷裂紋,具有典型的穿晶斷裂特征,并指出是由于SLM成形過(guò)程中激光熔化金屬粉末受熱不均,致使成形件組織內(nèi)部產(chǎn)生大的殘余應(yīng)力,另外殘余應(yīng)力的作用下馬氏體組織(抗裂強(qiáng)度低)也會(huì)產(chǎn)生裂紋。Lukas等[35]研究了工藝參數(shù)對(duì)SLM技術(shù)的β型TNM-B1鈦鋁合金裂紋的成因,得出如下結(jié)論:功率和掃描速率較低時(shí),制件容易產(chǎn)生垂直于熔池的裂紋,并認(rèn)為在凝固過(guò)程中過(guò)快的冷卻速率所產(chǎn)生的殘余應(yīng)力是導(dǎo)致開(kāi)裂的主要原因。西北工業(yè)大學(xué)的張鳳英等[36]持相同的看法,也認(rèn)為是工藝參數(shù)選擇不當(dāng),造成SLM制件內(nèi)部粉末熔合不良,導(dǎo)致制件發(fā)生開(kāi)裂。劉延輝等[37]研究了激光3D打印TC4鈦合金根部裂紋產(chǎn)生的原因,微觀組織如圖3所示,認(rèn)為TC4鈦合金出現(xiàn)裂紋的根本原因是根部存在組織缺陷、過(guò)大的殘余應(yīng)力、性能分布不均以及預(yù)熱溫度不足等共同導(dǎo)致的。劉彥濤等[38]研究功能梯度材料TA15 + Ti2 AlNb合金激光熔融沉積成形時(shí)發(fā)現(xiàn),激光熔化沉積技術(shù)所制備異種材料的界面為冶金結(jié)合,異種材料結(jié)合界面會(huì)形成過(guò)渡區(qū),過(guò)渡區(qū)通常是梯度復(fù)合結(jié)構(gòu)的薄弱環(huán)節(jié),容易產(chǎn)生裂紋,此裂紋具有沿界面斷裂的特征,他們認(rèn)為裂紋形成的原因是異種材料界面過(guò)渡區(qū)通常會(huì)有對(duì)性能不利的第二相析出,導(dǎo)致材料易沿界面斷裂。
翹曲變形是基于粉末床3D打印成形技術(shù)的又一個(gè)難題,經(jīng)常出現(xiàn)在懸伸無(wú)支撐部分,其形成的最根本原因是移動(dòng)的激光點(diǎn)或電子束熱源對(duì)粉末床的不均勻加熱,形成大的溫度梯度,導(dǎo)致材料體系收縮的不一致,主要是熔固收縮和溫致收縮[39,49]。其中溫致收縮是指成形件在打印完成后,冷卻至常溫的過(guò)程中所產(chǎn)生的收縮,與材料本身的收縮率有關(guān),對(duì)產(chǎn)生翹曲變形作用較小;熔固收縮是由于粉末經(jīng)激光/電子束熔融后,經(jīng)常產(chǎn)生的一種行為。主要是因?yàn)槌尚芜^(guò)程中,粉末經(jīng)加熱后從熔融狀態(tài)轉(zhuǎn)變?yōu)楣虘B(tài),溫差變化較大,故熔固收縮相當(dāng)嚴(yán)重[39,43]。翹曲變形對(duì)成形件的尺寸大小、成形精度、形位誤差等的影響很大,甚至?xí)?yán)重影響后續(xù)加工。
國(guó)內(nèi)外針對(duì)鈦合金翹曲變形的研究較少。吳偉輝等[40]對(duì)成形過(guò)程中造成翹曲變形的成因進(jìn)行了研究,翹曲變形示意圖如圖4所示,可以看出激光作用的當(dāng)前層(i)層,受到高溫的作用處于塑性狀態(tài),在凝固過(guò)程中過(guò)快的冷卻速率,導(dǎo)致收縮變形;第(i-1)層溫度略低于第i層的溫度,此時(shí)塑性較差或處于彈性狀態(tài),在冷卻過(guò)程中,其收縮變形小于第(i)層的變形量,但是在第(i)層嚴(yán)重翹曲變形的作用下,第(i-1)層也會(huì)發(fā)生大幅度的向上翹曲變形。同理第(i-2)、(i-3)層也有相同的影響,只是距離(i)層越遠(yuǎn),對(duì)應(yīng)層的收縮量越小,當(dāng)距離(i)層到達(dá)一定距離時(shí),對(duì)應(yīng)的層已不發(fā)生收縮變形,翹曲變形終止。齊海波等[41]采用電子束選區(qū)熔化成形TC4鈦合金成形件,認(rèn)為掃描路徑對(duì)成形件溫度分布的影響,導(dǎo)致熱應(yīng)力分布不均勻是翹曲變形產(chǎn)生的主要原因。楊立寧等[42]通過(guò)建立數(shù)值分析模型,研究了在不同掃描路徑和堆積速率下,所對(duì)應(yīng)的熱應(yīng)力場(chǎng)分布和變化行為,以及它們對(duì)制件翹曲變形的影響。李守衛(wèi)等[43]分析了SLS技術(shù)成形過(guò)程中的溫度場(chǎng)與熱應(yīng)力場(chǎng)對(duì)翹曲變形的影響機(jī)理。
針對(duì)上述各種常見(jiàn)的合金缺陷,國(guó)內(nèi)外學(xué)者運(yùn)用不同的原理,采用不同的工藝優(yōu)化方法對(duì)合金缺陷的抑制進(jìn)行了探究。其中研究較多的方法主要有:對(duì)粉末進(jìn)行預(yù)熱、優(yōu)化工藝參數(shù)或者對(duì)制件進(jìn)行后續(xù)熱處理等,都可以相應(yīng)地改善合金的缺陷,提高合金的組織性能。
使用不同的成形技術(shù),加工不同的材料,其最優(yōu)的工藝參數(shù)各不相同,合理的設(shè)置工藝參數(shù)(激光功率、掃描速率、掃描間距、掃描策略、層厚、預(yù)熱溫度以及成形氣氛等)能夠明顯減小球化、孔隙、裂紋以及翹曲變形等缺陷。
Fischer等[44]基于SLS技術(shù)使用高能量密度的激光(Nd:YAG激光),對(duì)工業(yè)純Ti進(jìn)行了激光成形。結(jié)果發(fā)現(xiàn):制件的球化現(xiàn)象明顯得到改善,且成形件的孔隙率也得到提高。Cormier等[45]認(rèn)為采用預(yù)熱增加粉末黏度,將待熔化粉末加熱到一定的溫度,可有效減少球化現(xiàn)象。張永志等[46]研究發(fā)現(xiàn),通過(guò)對(duì)基板進(jìn)行預(yù)熱可降低熔池的凝固速率與成形過(guò)程中的溫度梯度,減小SLM成形合金中的裂紋數(shù)量,但無(wú)法完全消除裂紋。梁曉康等[47]采用SLM成形技術(shù)制備TC4鈦合金試樣,研究了工藝參數(shù)對(duì)殘余應(yīng)力的影響。結(jié)果發(fā)現(xiàn):掃描策略對(duì)表面殘余應(yīng)力分布有一定的影響,當(dāng)線能量密度一定時(shí),隨著填充間距的增加,成形層表面殘余應(yīng)力有減小的趨勢(shì)。周旭等[33]研究了近α鈦合金激光選區(qū)熔化成形開(kāi)裂機(jī)理及抑制研究,發(fā)現(xiàn)對(duì)工藝進(jìn)行優(yōu)化,可減小組織內(nèi)部的殘余應(yīng)力,從而可有效抑制裂紋的產(chǎn)生;另外還研究了預(yù)熱溫度對(duì)裂紋抑制的影響,發(fā)現(xiàn)裂紋的數(shù)量隨著預(yù)熱溫度的提高逐漸減少,在預(yù)熱溫度提高到350 ℃時(shí),裂紋幾乎完全消失。陳靜等[48]研究了TC4鈦合金的激光快速成形,結(jié)果發(fā)現(xiàn),氧含量嚴(yán)重影響成形件的工藝、表面質(zhì)量和開(kāi)裂行為,當(dāng)保證氧含量低于0.02%(質(zhì)量分?jǐn)?shù))時(shí),得到的TC4薄板試樣表面質(zhì)量良好且沒(méi)有孔隙、裂紋等缺陷。傅蔡安等[49]研究了掃描路徑對(duì)選擇性激光燒結(jié)工藝成形件的翹曲變形的影響,得出如下結(jié)論:優(yōu)化了掃描路徑不僅大大降低翹曲變形量,而且大大縮短加工時(shí)間提高加工效率。
鈦合金3D打印制件的后處理工序主要有退火、熱等靜壓、固溶時(shí)效、拋光、滲碳等,其中退火的主要目的是減小零件內(nèi)部的殘余應(yīng)力,熱等靜壓則可以減少組織內(nèi)部的孔隙。湯慧萍等[50]在粉末床預(yù)熱的基礎(chǔ)上,結(jié)合隨行熱處理工藝[51],也就是在每完成一層粉末熔化掃描后,再經(jīng)快速掃描實(shí)現(xiàn)緩冷保溫,從而通過(guò)塑性及蠕變使應(yīng)力松弛,防止應(yīng)力應(yīng)變累計(jì),達(dá)到減小變形、抑制零件開(kāi)裂、降低殘余應(yīng)力水平的目的。張霜銀等[52]利用小孔釋放法對(duì)TC4鈦合金(LENS技術(shù)成形)沉積態(tài)和熱處理后的殘余應(yīng)力進(jìn)行研究,結(jié)果表明,經(jīng)熱處理后,成形件的殘余應(yīng)力降低顯著,且分布均勻。Terner等[53]認(rèn)為金屬粉末在制備過(guò)程中所存在的氬氣泡,在隨后的成形過(guò)程中會(huì)導(dǎo)致孔隙的產(chǎn)生,它一般呈細(xì)小球狀,再經(jīng)熱等靜壓處理后,孔隙會(huì)再次減小,但不影響材料的力學(xué)性能。
鈦合金3D打印技術(shù)作為一項(xiàng)前沿的制造技術(shù),集設(shè)計(jì)、制造于一體,近年來(lái)引起各界廣泛關(guān)注,并在航空航天、國(guó)防軍事、生物醫(yī)學(xué)、汽車高鐵等高精尖領(lǐng)域展示了廣闊的應(yīng)用前景,但是,相較于傳統(tǒng)制造技術(shù)起步較晚,發(fā)展歷史僅30年左右,與世界先進(jìn)國(guó)家比較還存在很大的差距,比如:鈦合金零件的成形效率低、精度還未能達(dá)到高精水平、設(shè)備和材料的制備成本高,以及仍未實(shí)現(xiàn)大規(guī)模的工業(yè)、商業(yè)應(yīng)用等問(wèn)題,特別是成形件缺陷的抑制問(wèn)題。目前我國(guó)對(duì)零件的成形過(guò)程中存在的缺陷問(wèn)題,球化、裂紋、孔隙、翹曲變形等的研究還處于初步階段,仍有大量的研究工作急需進(jìn)行。將來(lái)鈦合金3D打印技術(shù)的發(fā)展趨勢(shì)如下:
(1)在材料方面,研制開(kāi)發(fā)新型的球形鈦合金粉末的生產(chǎn)設(shè)備和制備工藝,提高鈦合金粉末的質(zhì)量(粒度、球形度、流動(dòng)性、夾雜氣體等),進(jìn)而改善制件的組織和力學(xué)性能。此外,通過(guò)提高粉末的收得率和粉末的回收再利用來(lái)降低成本。
(2)在設(shè)備方面,一方面應(yīng)提高設(shè)備的成形效率、成形精度,以及降低成本等;另外,還要研發(fā)大型的工業(yè)級(jí)打印設(shè)備,逐步實(shí)現(xiàn)大規(guī)模生產(chǎn)和應(yīng)用。
(3)在檢測(cè)方面,伴隨3D打印件向大型化、復(fù)雜化和精密化方向發(fā)展,很多傳統(tǒng)的無(wú)損檢測(cè)方法存在盲區(qū),需要開(kāi)發(fā)新型的無(wú)損檢測(cè)技術(shù);通過(guò)對(duì)組織、缺陷實(shí)時(shí)監(jiān)控的在線檢測(cè)技術(shù)是未來(lái)重點(diǎn)的研究方向之一;另外,建立和完善無(wú)損檢測(cè)標(biāo)準(zhǔn),是3D打印技術(shù)廣泛應(yīng)用的依據(jù)。
(4)在工藝方面,進(jìn)一步優(yōu)化3D打印技術(shù)的工藝,抑制成形過(guò)程中的缺陷,提高成形件的力學(xué)性能。成形過(guò)程中零件內(nèi)應(yīng)力演變規(guī)律、變形開(kāi)裂行為以及缺陷產(chǎn)生機(jī)理等關(guān)鍵問(wèn)題,仍然是未來(lái)需要重點(diǎn)研究的問(wèn)題。