国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

抑制植物減數(shù)分裂重組的分子機理

2019-01-30 06:42李帆余蓉培孫丹王繼華李紳崇阮繼偉單芹麗陸平利汪國鮮
遺傳 2019年1期
關(guān)鍵詞:中間體同源突變體

李帆,余蓉培,孫丹,王繼華,李紳崇,阮繼偉,單芹麗,陸平利,汪國鮮

?

抑制植物減數(shù)分裂重組的分子機理

李帆1,余蓉培1,孫丹1,王繼華1,李紳崇1,阮繼偉1,單芹麗1,陸平利2,汪國鮮1

1. 云南省農(nóng)業(yè)科學(xué)院花卉研究所,國家觀賞園藝工程技術(shù)研究中心,云南省花卉育種重點實驗室,昆明 650200 2. 復(fù)旦大學(xué)生命科學(xué)學(xué)院,植物科學(xué)研究所,上海 200433

減數(shù)分裂重組不僅保證了真核生物有性生殖過程中染色體數(shù)量的穩(wěn)定,還通過父母親本間遺傳物質(zhì)的互換在后代中產(chǎn)生遺傳變異。因此,減數(shù)分裂重組是遺傳多樣性形成的重要途徑,也是生物多樣性和物種進(jìn)化的主要動力。在絕大多數(shù)真核生物中,不管染色體數(shù)目的多少或基因組的大小,減數(shù)分裂重組的形成都受到嚴(yán)格的調(diào)控,但抑制減數(shù)分裂重組的分子機理目前仍不清楚。近年來,通過正向遺傳學(xué)篩選鑒定出多個減數(shù)分裂重組抑制基因,揭示了抑制基因的功能和調(diào)控途徑。本文基于擬南芥中減數(shù)分裂重組抑制基因的研究現(xiàn)狀,綜述了植物減數(shù)分裂重組抑制基因研究取得的突破性進(jìn)展,并結(jié)合基因功能與其調(diào)控網(wǎng)絡(luò)闡述了抑制植物減數(shù)分裂重組的分子機理。

減數(shù)分裂;同源重組;抑制基因;調(diào)控網(wǎng)絡(luò)

減數(shù)分裂(meiosis)是生物細(xì)胞中染色體數(shù)目減半的一種特殊的細(xì)胞分裂方式,在該過程中DNA只復(fù)制一次,但細(xì)胞連續(xù)分裂兩次,從而形成染色體數(shù)目減半的配子[1~3]。在減數(shù)第一次分裂過程中,為了確保同源染色體的精確分離和染色體數(shù)目的減半,同源染色體間需要形成至少一個物理連接點,稱為交叉結(jié)(chiasmata)[4,5]。交叉通過修復(fù)作用產(chǎn)生同源染色體間遺傳物質(zhì)的相互交換,即同源染色體間的重組(recombination),進(jìn)而形成具有遺傳多樣性的配子[6,7]。減數(shù)分裂同源重組不僅保證了物種染色體的精確分離,同時又促進(jìn)了父母親本之間遺傳物質(zhì)的相互交換,從而在配子中形成遺傳變異[8,9]。因此,減數(shù)分裂同源重組對生物進(jìn)化和物種形成至關(guān)重要,也是植物新品種培育和開發(fā)的基礎(chǔ)生物學(xué)過程。特別是在全球氣候變化的背景下,人類面臨各種挑戰(zhàn),減數(shù)分裂同源重組為充分利用植物的遺傳多樣性進(jìn)行新品種的培育和創(chuàng)新提供了基礎(chǔ)。

從植物進(jìn)化的角度,重組率是生物在重組成本和重組優(yōu)勢之間維持的一種特定平衡,是物種長期以來對環(huán)境變化不斷進(jìn)化和演變的一種適應(yīng)和自然選擇[10]。在大多數(shù)真核生物中,由于調(diào)控重組基因的高度保守性,減數(shù)分裂重組率被維持在一個相對較低的水平,并且遠(yuǎn)低于其自身的自然潛力,但對其調(diào)控網(wǎng)絡(luò)和抑制形成的分子機理還知之甚少[11,12]。減數(shù)分裂同源重組是真核生物有性生殖過程中的基本生物學(xué)過程,其相關(guān)研究一直是遺傳學(xué)領(lǐng)域的核心科學(xué)問題,受到世界學(xué)者的廣泛關(guān)注[13~16]。近年來,植物減數(shù)分裂同源重組的分子調(diào)控研究取得了重大進(jìn)展,特別是多個減數(shù)分裂重組抑制基因陸續(xù)在擬南芥()中被發(fā)現(xiàn)和鑒定,進(jìn)一步增加了對這一復(fù)雜生物學(xué)過程的認(rèn)識。本文以擬南芥為對象,綜述了植物減數(shù)分裂重組抑制基因研究的重要進(jìn)展。

1 DNA雙鏈斷裂和交叉形成

1.1 DNA雙鏈斷裂的產(chǎn)生

減數(shù)分裂同源重組起始于DNA雙鏈斷裂(doublestrand break, DSB),其由高度保守的拓?fù)洚悩?gòu)酶SPO11 (sporulation 11)蛋白催化形成(圖1)[6,17]。SPO11蛋白結(jié)構(gòu)類似于古細(xì)菌中的TopoⅥ (Topoisomerase Ⅵ) A亞基,而TopoⅥ是由兩個A亞基和兩個B亞基組成的異源四聚體酶(A2B2heterotetramer)[5]。最近,古細(xì)菌TopoⅥ復(fù)合體B亞基的同源蛋白MTOPVIB (meiotic topoisomerase VIB-like)在擬南芥和水稻()中被鑒定,研究顯示其在減數(shù)分裂中對誘導(dǎo)DSB形成和重組啟動至關(guān)重要[18,19]。

擬南芥基因組存在3個同源基因(、和),但只有和作為異源二聚體參與調(diào)控減數(shù)分裂重組的啟動,而只涉及體細(xì)胞的有絲分裂,不具有調(diào)控減數(shù)分裂的功能[20,21]。在植物中,其他一些基因也參與了誘導(dǎo)減數(shù)分裂DSB的形成,如()、、/()、()和()[22~26]。不同于大部分植物中含有多個同源基因,在動物和酵母中只含有1個基因[27,28]。酵母中的DSB形成除了需要SPO11蛋白以外,還有其他9個蛋白參與調(diào)控,即RED50 (radiation sensitive 50)、MER2 (meiotic recombination 2)、MEI4 (meiosis defective4)、MRE11 (meiotic recombination 11)、REC102 (recombination-deficient 102)、REC104 (recombination-deficient 104)、REC114 (recombination-deficient 114)、SKI8 (superkiller 8)和XRS2 (X-ray sensitive 2)[2,29]。然而,這些參與酵母DSB形成的蛋白在物種間存在蛋白序列或者功能上的變異。如擬南芥中DSB的形成并不需要MRE11、RAD50和XRS2蛋白的參與,但這些蛋白直接作用于斷裂雙鏈5′末端的切除;SKI8盡管在幾種真菌中非常保守,但在擬南芥中并不保守,且不參與減數(shù)分裂重組過程[30,31]。

圖1 擬南芥減數(shù)分裂重組途徑模型

在該模型圖中,藍(lán)色和紅色線條分別描繪了兩條父母親本雙鏈DNA。減數(shù)分裂重組起始于雙鏈DNA的雙鏈斷裂(DSB),然后單鏈核酸內(nèi)切酶切割斷裂雙鏈DNA的5′末端以形成3′端單鏈DNA (ssDNA),在重組酶的促進(jìn)作用下,3′單鏈DNA尾部侵入同源雙鏈DNA形成重組中間體D-loop。重組中間體或者形成dHJ(double Holliday Junction)結(jié)構(gòu),并通過ZMM途徑(MSH4、MSH5、MER3、ZIP4、SHOC1、HEI10、RFC1、PTD和POL2A)形成Ⅰ型交叉重組,或者形成sHJ(single Holliday junction)結(jié)構(gòu)由MUS81和FANCD2交叉干涉不敏感途徑形成Ⅱ型交叉重組。但絕大多數(shù)D-loop重組中間體是通過合成型依賴性退火反應(yīng)(SDSA)途徑由重組抑制基因(、/、、/、、和)調(diào)控形成非交叉(NCOs)。

1.2 重組中間體的形成與分解

DNA雙鏈斷裂產(chǎn)生之后,MRN復(fù)合體(MRE11、RAD50和NBS1)對斷裂雙鏈任一側(cè)的5′末端進(jìn)行切割,并產(chǎn)生3′端單鏈DNA(ssDNA)尾巴的突出端[32,33]。隨后在DMC1 (DNA meiotic recombinase 1)和RAD51 (radiation sensitive 51)重組酶的促進(jìn)作用下,這些ssDNAs啟動同源序列搜索并入侵同源染色體或者非同源染色體的姐妹染色單體形成穩(wěn)定的單鏈侵入中間體[34,35]。是首次在酵母中發(fā)現(xiàn)的減數(shù)分裂特異基因,只在減數(shù)分裂過程中發(fā)揮作用,而RAD51參與了有絲分裂和減數(shù)分裂的重組。Kurzbauer等[36]通過細(xì)胞學(xué)研究發(fā)現(xiàn)DMC1和RAD51重組酶傾向于定位于減數(shù)分裂DSB的相反兩端,表明其在DSB修復(fù)過程中承擔(dān)著不同的生物學(xué)功能,這也與DSB兩端不同的修復(fù)結(jié)果兼容。在單鏈入侵形成中間體后,3′末端入侵鏈作為引物縱向延伸到同源雙鏈DNA (dsDNA)中形成D-loop (displacement loop)結(jié)構(gòu)[37]。D-loop的形成是減數(shù)分裂同源重組的重要中間體,其形成表明3′端入侵單鏈成功定位到了同源DNA參考序列[38],該早期中間體在之后可以通過不同的修復(fù)途徑形成同源染色體交叉或者非交叉(non-crossovers, NCOs)[39,40]。

D-loop在酶催化作用下進(jìn)一步被修復(fù)形成Holliday junction (HJ)中間體結(jié)構(gòu),HJ是由兩個同源雙鏈DNA分子互換配對并相互連接形成的一種“十字交叉”中間體(four-way junction)[41]。HJ中間體的形成被認(rèn)為是同源染色體交叉產(chǎn)生的關(guān)鍵結(jié)構(gòu),其兩種類型的中間體(sHJ和dHJ)通過不同的修復(fù)途徑產(chǎn)生兩種類型的交叉[42,43]。在單鏈入侵形成D-loop結(jié)構(gòu)后,如果D-loop的入侵鏈沒有繼續(xù)縱向延伸,則形成一個“十字交叉”中間體sHJ (single Holliday junction),進(jìn)一步被Mus81 (methyl methane sulfonate and ultraviolet sensitive 81)蛋白分解產(chǎn)生Ⅱ型交叉(class Ⅱ CO)或者非交叉[39]。如果D-loop入侵鏈繼續(xù)深入延伸到同源斷裂雙鏈中,并捕獲斷裂雙鏈的第二端進(jìn)行退火、合成與連接,則形成獨特的異源雙鏈DNA結(jié)構(gòu)dHJ (double Holliday junction),并通過ZMM (ZIP-MSH-MER)途徑分解形成Ⅰ型交叉(class Ⅰ CO)[40]。

1.3 交叉的形成被嚴(yán)格限制

在減數(shù)分裂開始初期,DNA雙鏈產(chǎn)生大量雙鏈斷裂,但不管基因組的大小或者染色體數(shù)目的多少,只有極少數(shù)的斷裂雙鏈被修復(fù)形成交叉,其余的大量DSBs通過不同的途徑和機制修復(fù)形成了非交叉。在模式植物擬南芥中,細(xì)胞學(xué)分析認(rèn)為每個減數(shù)分裂的細(xì)胞大約形成200個雙鏈斷裂,但只有約10個斷裂雙鏈被修復(fù)形成交叉,其余的斷裂雙鏈則被修復(fù)產(chǎn)生非交叉,但到目前為止抑制交叉形成的機理尚不清楚[44~48]。

目前,多項研究表明交叉的形成主要受多個機制的共同影響,如交叉保障(obligate CO)、交叉干涉(CO interference)、交叉穩(wěn)態(tài)(CO homeostasis)和抗交叉因子(anti-CO factor)[49~59]。交叉保障是指每個配對同源染色體之間需要至少形成一個交叉以保障同源染色體后期的準(zhǔn)確分離[49]。但是,在大部分生物中,一個交叉的形成會抑制其兩側(cè)相鄰位置中另一個交叉的產(chǎn)生,最終導(dǎo)致交叉在染色體上非隨機分布,這種現(xiàn)象被稱為交叉干涉[50,51]。而交叉穩(wěn)態(tài)則作為系統(tǒng)性緩沖機制,在早期交叉前體DSB數(shù)量急劇變化的情況下保持交叉數(shù)量的穩(wěn)定[52,53]。近年來,減數(shù)分裂重組抑制基因在擬南芥中陸續(xù)被發(fā)現(xiàn),揭示了重組中間體如何通過合成型依賴性退火反應(yīng)(synthesis-dependent strand annealing, SDSA)途徑分解為非交叉的機制[54~59]。

1.4 交叉形成的遺傳途徑

在大多數(shù)真核生物的減數(shù)分裂重組中至少存在兩種不同的交叉形成途徑,根據(jù)對交叉干擾是否敏感將其分為Ⅰ型交叉和Ⅱ型交叉[60~62]。其中,Ⅰ型交叉為干涉敏感型交叉,約占交叉總數(shù)的80%~ 85%,主要受保守的ZMM途徑的調(diào)控,包括MSH4 (mutS homolog 4)[63]、MSH5 (mutS homolog 5)[64]、MER3 (meiotic recombination 3)[65,66]、ZIP4 (zinc transporter 4 precursor)[67]、SHOC1 (shortage of cros-sovers 1)[68]、HEI10 (human enhancer of cell invasion No.10)[69]、RFC1 (replication factor C1)[70]、PTD (parting dancers)[1,71]和POL2A (DNA polymerase 2A)[72]等蛋白。而與Ⅰ型交叉對應(yīng)的是干涉不敏感的Ⅱ型交叉,該交叉的形成依賴于兩條平行的途徑:MUS81途徑和FANCD2途徑[73~75]。

通常情況下,兩種交叉形成途徑廣泛存在于在大多數(shù)真核生物中,例如釀酒酵母(),哺乳動物和植物[9,76]。但也有例外,如在裂殖酵母()中,其減數(shù)分裂期間只形成sHJ中間體,故只存在Ⅱ型交叉形成途徑[39]。而在秀麗隱桿線蟲()中,所有的交叉均表現(xiàn)為干擾敏感,表明其交叉的產(chǎn)生均通過Ⅰ型交叉形成途徑[77]。此外,值得注意的是,在擬南芥三突變體中,雖然同時缺乏形成Ⅰ型和Ⅱ類型交叉的所有關(guān)鍵基因,但仍有交叉形成,這說明阻斷Ⅰ型和Ⅱ型交叉形成途徑后觸發(fā)了其他未知的交叉形成途徑產(chǎn)生交叉[74,75]。這種現(xiàn)象也被證實存在于果蠅和酵母中,這些證據(jù)表明其他交叉形成途徑的存在,且與已知的交叉形成途徑同時共存或是互斥獨存[78,79]。

2 減數(shù)分裂重組抑制基因

在大多數(shù)真核生物的減數(shù)分裂過程中,雙鏈斷裂與交叉形成的比率(DSBs/COs)存在極大差異,如擬南芥中DSBs/COs比率約為200∶10,這表明生物進(jìn)化過程中存在著遺傳機制限制大多數(shù)斷裂雙鏈修復(fù)形成交叉[80]。近年來,許多調(diào)控減數(shù)分裂過程的基因已經(jīng)被克隆,但抑制減數(shù)分裂同源重組的分子機理仍不太清楚[20,25,81,82]。

多種模式植物(如擬南芥和水稻)基因組測序的完成和全基因組測序技術(shù)的成熟,加速了植物減數(shù)分裂重組抑制基因的鑒定與功能研究。2012年,為了揭示減數(shù)分裂重組抑制基因,法國科學(xué)家Crismani等[54]利用正向遺傳學(xué)通過EMS誘變擬南芥突變體種子和大規(guī)模突變體篩選,并獲得多個重組恢復(fù)系,最終鑒定出抑制Ⅱ型交叉形成的9個基因(、/、、/、、和,圖2)[54~57]。該研究巧妙利用了突變體短角果的表型(因缺乏Ⅰ型交叉形成的基因而育性降低)進(jìn)行果夾表型恢復(fù)系的篩選,其原理是重組抑制基因的突變會降低或者喪失重組抑制作用,這能促進(jìn)交叉的形成和重組率的提高,進(jìn)而恢復(fù)突變體的育性,使植株的果夾變長甚至恢復(fù)原有長度。這樣的重組恢復(fù)植株能非常容易的通過果夾長度表型篩選出來,最后通過全基因組測序鑒定突變基因。例如,擬南芥基因突變后,恢復(fù)了突變體的育性,使突變體的短果夾增長,進(jìn)而篩選獲得突變體。

圖2 利用擬南芥zmm突變體短角果表型篩選重組抑制基因

擬南芥減數(shù)分裂重組抑制突變體篩選試驗利用減數(shù)分裂ZMM交叉形成途徑被關(guān)閉后,使得交叉只能通過Ⅱ型交叉形成途徑產(chǎn)生,且導(dǎo)致短角果表型的形成。而EMS對種子的隨機誘變導(dǎo)致重組抑制基因的突變和抑制功能的喪失,進(jìn)而增加了減數(shù)分裂重組率,彌補甚至恢復(fù)了背景下的減數(shù)分裂交叉形成,在后代中產(chǎn)生長角果表型,進(jìn)而篩選獲得重組抑制突變體,最后通過全基因組測序鑒定出減數(shù)分裂重組抑制基因。圖中擬南芥角果的標(biāo)尺為1 cm。

2.1 FANCM聯(lián)合MHF1與MHF2抑制減數(shù)分裂重組

FANCM (fanconi anemia complementation group M)解旋酶是在擬南芥中發(fā)現(xiàn)的首個減數(shù)分裂重組抑制蛋白,研究認(rèn)為其通過SDSA途徑分解D-loops中間體產(chǎn)生非交叉,從而抑制Ⅱ型交叉的形成[54,83,84]。擬南芥突變體的交叉數(shù)量在雌雄兩性的減數(shù)分裂過程中都得到極大提高,重組率也比野生型平均增加了3倍,但其植株的生長和生育情況與野生型無異,表明重組率的增加并不會影響植物的生長發(fā)育,證明植物在自然選擇和進(jìn)化過程中形成了遺傳抑制機制限制過多的交叉形成[54]。由于Ⅰ型交叉特異性指示蛋白MLH1不能標(biāo)記突變體中增加的交叉,且花粉熒光標(biāo)記四分體分析顯示突變體中不存在交叉干涉,證明FANCM不是通過Ⅰ型交叉形成途徑抑制重組。而雙突變體表現(xiàn)出嚴(yán)重的生長缺陷且缺乏二價體,表明突變體中增加的交叉形成依賴MUS81蛋白。因此,F(xiàn)ANCM是通過Ⅱ型交叉形成途徑抑制減數(shù)分裂重組。進(jìn)一步研究發(fā)現(xiàn),雙突變體和中的交叉未能恢復(fù),表明突變體中增加的交叉需要SPO11和DMC1蛋白的參與,即FANCM的抑制作用發(fā)生在DNA雙鏈斷裂和單鏈入侵之后[54]。在酵母中,的同源基因和分別在芽殖酵母()和裂殖酵母()中同樣被證實通過分解D-loops中間體促進(jìn)SDSA途徑的非交叉形成[84,85]。

通過對所有FA(fanconi anemia)途徑相關(guān)蛋白的研究,發(fā)現(xiàn)只有FANCM的DNA結(jié)合輔助因子MHF1和MHF2具有抑制減數(shù)分裂重組的功能,其通過形成異源四聚體來增強FANCM解旋酶的活性,促進(jìn)FANCM與DNA結(jié)合,從而抑制Ⅱ型交叉的形成[55,86~89]。在擬南芥多個突變體中,雙突變體和三突變體中二價體的形成沒有差異,證明MHF1和MHF2通過相同的途徑抑制減數(shù)分裂重組[55]。另一方面,突變體僅能提高1.6倍重組率,但和突變體卻能達(dá)3倍的增加,這表明MHF2與FANCM抑制重組的途徑是一致的,但MHF2的抑制作用弱于FANCM[55]。此外,在和雙突變體中表現(xiàn)出嚴(yán)重的減數(shù)分裂缺陷,但單突變體、和中未觀察到明顯的減數(shù)分裂缺陷,表明MHF1和MHF2對減數(shù)分裂重組的抑制作用依賴于MUS81,這與FANCM的抑制途徑相同[55]。因此,MHF1和MHF2作為輔助因子參與FANCM的Ⅱ型交叉形成途徑抑制減數(shù)分裂重組。

2.2 BTR重組抑制途徑

在減數(shù)分裂過程中,為了避免染色體間的糾纏和斷裂,DNA雙鏈斷裂及其修復(fù)過程中產(chǎn)生的重組中間體需要通過不同的途徑分解成為交叉或者非交叉[90]。高度保守的BTR復(fù)合體(bloom syndrome- Topoisomerase 3α-RecQ-mediated genome instability 1)在擬南芥(BLM-TOP3α-RMI1)和酵母(SGS1-TOP3α- RMI1)中通過限制減數(shù)分裂重組中間體形成交叉,進(jìn)而保障了染色體的完整[91~94]。例如,BTR復(fù)合體中的RECQ4A/B、TOP3α和RMI1蛋白通過同一途徑抑制Ⅱ型交叉的形成,但與FANCM抑制途徑不同[58]。RECQ4A和RECQ4B屬于哺乳動物BLM (酵母中為SGS1)中的兩個冗余同源蛋白,且RECQ4B只存在于十字花科植物中[95,96],而TOP3α和RMI1為BTR復(fù)合體中的單拷貝基因[96],其相互作用在減數(shù)分裂重組中發(fā)揮多種功能。

首先,RECQ4A/B、TOP3α和RMI1蛋白均能通過D-loop重組中間體分解途徑阻止Ⅱ型交叉的形成,促進(jìn)非交叉的產(chǎn)生,但花粉熒光標(biāo)記四分體對不同突變體重組率的檢查顯示不同基因及組合對重組提高的強度不同[58]。例如,單突變體和中的重組率沒有顯著增加,而雙突變體中的重組率平均提高了5倍,突變體的重組率甚至提高了9倍。這樣的重組疊加效應(yīng)也發(fā)生在和和突變體中,其重組率分別平均提高了3倍和5倍、4倍和5倍,這表明BTR重組抑制途徑與FANCM途徑相互獨立但并非功能冗余,這可能與BTR復(fù)合體在減數(shù)分裂重組過程中發(fā)揮多種功能有關(guān)[56,58]。由于RECQ4A/B、TOP3α和RMI1兩兩組合的突變體中(、和)均表現(xiàn)出嚴(yán)重的減數(shù)分裂缺陷,導(dǎo)致不能直接測量這些基因型組合的重組率,但推測其可能通過同一途徑協(xié)同抑制交叉形成,因為:(1) RECQ4A/B、TOP3α和RMI1同屬于BTR蛋白復(fù)合體,且均從擬南芥和其他物種的體細(xì)胞中共同純化形成;(2)和突變體具有相似的重組增加情況;(3) 其與形成的雙突變體均表現(xiàn)重組疊加效應(yīng)。

其次,TOP3α和RMI1在擬南芥、釀酒酵母和秀麗隱桿線蟲()的減數(shù)分裂重組過程中具有雙重作用:除了限制多余交叉形成以外,還具有分解重組中間體或者預(yù)防形成不可分解的重組中間體的作用,但RECQ4A/B不參與該過程。同時研究證實TOP3α和RMI1的C-末端結(jié)構(gòu)域中分別包含的鋅指結(jié)構(gòu)域(zinc finger domain)和OB樣折疊結(jié)構(gòu)域(oligo-binding fold domain)是抑制Ⅱ型交叉形成的關(guān)鍵。最近多項研究表明,BTR復(fù)合體可促進(jìn)一部分I型交叉的形成[56,58,93,97,98]。在擬南芥中,和的突變基因雖然能增加Ⅱ型交叉,并恢復(fù)突變體中的大部分交叉,但和突變體在第一次減數(shù)分裂中期仍然出現(xiàn)一些單價體,這表明在大量Ⅱ型交叉形成的背景下,交叉保障并未完全嚴(yán)格執(zhí)行,這導(dǎo)致了在單突變體中出現(xiàn)這一微小的重組缺陷[58]。這也與Jagut等[97,98]對秀麗隱桿線蟲中RMI-1和HIM-6 (BLM)能促進(jìn)Ⅰ型交叉形成的研究結(jié)果一致。

2.3 FIGL1-FLIP復(fù)合體通過調(diào)節(jié)單鏈入侵抑制Ⅱ型交叉形成

FIGL1 (fidgetin-like-1)和FLIP (fidgetin-like-1 interacting protein)通過形成具有廣泛保守性的復(fù)合體,與負(fù)責(zé)催化同源重組中DNA鏈交換的DMC1和RAD51重組酶相互作用,共同調(diào)節(jié)重組過程中單鏈入侵的關(guān)鍵步驟,從而抑制Ⅱ型交叉的形成[59]。在真核生物中,和的同源基因在所有脊椎動物和陸地植物中均具有保守性,但在擬南芥和人類中并非完全保守[59]。例如,F(xiàn)IGL1直接與RAD51和DMC1重組酶相互作用,且在植物和哺乳動物中保守,但在FLIP中只有人類的同源蛋白與DMC1進(jìn)行了互動,且在擬南芥和人類中均未檢測到FLIP和RAD51之間的相互作用。從更廣的范圍來看,雖然FIGL1和FLIP均在其他遙遠(yuǎn)進(jìn)化枝的物種中被檢測到,表明該復(fù)合體在真核生物進(jìn)化過程的早期就已經(jīng)形成,但是其他進(jìn)化枝的一些物種中已經(jīng)失去了FIGL1和FLIP。同樣,具有FLIP的物種中包含F(xiàn)IGL1,但在多個包含F(xiàn)IGL1的物種中并沒有檢測到FLIP的存在,這可能與FIGL1是FIGL1-FLIP復(fù)合體的核心活性因子,而FLIP是FIGL1活性功能中可有可無的因素有關(guān)。最新研究也表明,真核生物中FLIP在序列水平上顯示出低保守性,如在人類和擬南芥中只有12%的序列相同。但是,這些同源蛋白都包含了一個未知功能的DUF4487結(jié)構(gòu)域,如在水稻中鑒定的FLIP的同源蛋白MEICA1 (meiotic chromosome association 1)也包含該結(jié)構(gòu)域,其在DMC1催化單鏈入侵之后,與BTR復(fù)合體中 的TOP3α相互作用,抑制水稻減數(shù)分裂Ⅰ型交叉形成,這也與擬南芥中FLIP抑制Ⅱ型交叉形成的途徑不同[59,99]。

FIGL1與FLIP作為復(fù)合體共同抑制減數(shù)分裂同源重組,但FIGL1抑制程度要高于FLIP,如突變體中的重組率提高了1.7倍,而突變體中僅提高了1.3倍。進(jìn)一步研究發(fā)現(xiàn),雙突變體與單突變體相比并沒有顯著提高重組率,表明FIGL1與FLIP通過同一途徑抑制減數(shù)分裂交叉形成,其中FIGL1是FIGL1-FLIP復(fù)合體的核心,而FLIP是不可缺少的因素[57,59]。酵母雙雜交檢測顯示,F(xiàn)IGL1-FLIP復(fù)合體通過FRBD結(jié)構(gòu)域與RAD51和DMC1相互作用,其可能通過限制單鏈入侵調(diào)節(jié)RAD51和DMC1重組酶的活性:即FIGL1和FLIP蛋白的缺失導(dǎo)致RAD51和DMC1重組酶活性的增強或酶功能作用時間的延長,產(chǎn)生異常重組中間體,如多單鏈侵入結(jié)合分子[59]。因此,F(xiàn)LIP-FIGL1復(fù)合體通過阻止異常重組中間體的形成來調(diào)控單鏈入侵的質(zhì)量。與BTR復(fù)合體相關(guān)突變體相似,在和突變體中觀察到少量單價體的出現(xiàn),表明交叉保障的正常實施在缺失FIGL1與FLIP蛋白的情況下受到了輕微影響,其可能是由于RAD51和DMC1重組酶活性受影響而產(chǎn)生了異常重組中間體,而這些本應(yīng)形成交叉的異常重組中間體未能成功轉(zhuǎn)化形成交叉,導(dǎo)致交叉保障沒有嚴(yán)格執(zhí)行[59]。

與野生型相比,和單突變體的重組率分別增加了1.7倍和3倍,而雙突變體的重組率則顯著提高了6倍,這表明和對增加減數(shù)分裂重組具有疊加效應(yīng)[57]。進(jìn)一步研究表明,突變體僅能在純合背景下提高重組率,而雜合背景下的重組率增加受到抑制,如Col/LF1代雜合背景下突變體重組率僅提高了22%,而在Col純合背景下能增加300%的重組率[57,100]。相反,突變體不存在這種情況,在純合和雜合背景下均能同樣的提高重組率[57]。突變基因在雜合背景下低效的重組提高能力可能與堿基對錯配導(dǎo)致的父母親本染色體間的序列差異有關(guān)[100]。值得注意的是,雖然和突變基因的疊加能極大的提高重組率,但這些突變體中交叉增加的區(qū)域均集中在染色體兩側(cè)的端粒,而著絲粒附近的異染色質(zhì)仍是減數(shù)分裂重組的“冷區(qū)”[57,100,101]。

2.4 抑制Ⅰ型交叉形成的基因

由于以上重組抑制突變體的篩選是建立在等突變體背景之下,雖然能快速高效的篩選來獲得大量重組恢復(fù)系,但這些恢復(fù)系中增加的交叉均來自Ⅱ型交叉形成途徑,因此該研究不能揭示Ⅰ型交叉抑制基因。然而,Ⅰ型交叉形成途徑調(diào)控著80%~85%的交叉形成,是最主要的減數(shù)分裂重組調(diào)控途徑。在秀麗隱桿線蟲中,其減數(shù)分裂過程中產(chǎn)生的交叉均來自于Ⅰ型交叉形成途徑,研究發(fā)現(xiàn)聯(lián)會復(fù)合體(synaptonemal complex, SC)的一些元件蛋白對交叉形成具有雙重作用(促進(jìn)和抑制)。如在秀麗隱桿線蟲中,SYPs (synaptonemal complex central region proteins, SYPs)對減數(shù)分裂交叉形成是至關(guān)重要的。但最近的研究發(fā)現(xiàn)利用RNA干擾部分降低SYPs (SYP-1、SYP-2和SYP-3)蛋白的表達(dá)水平(削弱60%~70%)能減弱交叉干擾,增加交叉數(shù)量,并減少交叉干擾有效作用距離,這表明SYPs限制了秀麗隱桿線蟲中Ⅰ型交叉的形成[102]。相同的現(xiàn)象也在水稻聯(lián)會復(fù)合體中央元件蛋白ZEP1 (synaptonemal complex central element protein)的功能研究中被證實。在水稻ZEP1部分功能喪失的突變體中,交叉干擾強度減弱,交叉數(shù)量也提高了1.8倍,進(jìn)一步的細(xì)胞學(xué)和雙突變體的遺傳分析證明,這些額外增加的交叉主要來自于I型交叉形成途徑,這表明水稻是Ⅰ型交叉抑制基因[103]。

最近,利用擬南芥Col/L染色體替換系(chromosome substitution lines, CSLs)和花粉熒光標(biāo)記系(fluorescent tagged lines, FTLs)研究發(fā)現(xiàn),HEI10蛋白的多態(tài)性(R264G, Col/L)導(dǎo)致Col/L雜合體中的重組率顯著低于Col/Col純合體,表明基因的自然變異調(diào)控植物減數(shù)分裂重組[104]。研究還發(fā)現(xiàn)雜合體的重組率顯著低于純合體,說明等位基因?qū)χ亟M的調(diào)控具有劑量敏感性。進(jìn)一步研究表明,增加基因的拷貝數(shù)能提高兩倍的重組率,但交叉干擾程度降低,更為重要的是雙拷貝突變體與突變體結(jié)合互作,通過Ⅰ型和Ⅱ型交叉形成途徑顯著提高重組率4倍[104,105]。

3 展望

植物減數(shù)分裂重組抑制基因是植物在自然選擇過程中適應(yīng)環(huán)境變化進(jìn)化形成的,是在特定生境條件下為維持重組成本和重組優(yōu)勢間平衡的一種保護(hù)機制。這種保護(hù)機制體現(xiàn)在植物在感知環(huán)境變化過程中對減數(shù)分裂重組調(diào)控的變化,為后代適應(yīng)新的環(huán)境提前做好準(zhǔn)備。例如,植物減數(shù)分裂重組對環(huán)境溫度的變化就極為敏感,在植物和動物中的研究表明減數(shù)分裂重組率隨著溫度的升高而增加[106~109]。而對植物群體而言,過高的重組率并不利于種群的穩(wěn)定遺傳,這可能與高水平的重組率在減數(shù)分裂過程中會產(chǎn)生同源染色體分離異常,進(jìn)而導(dǎo)致生育缺陷[110]。同時,在穩(wěn)定的生境條件下,高重組率將破壞植物中存在的有利等位基因組合,對植物的穩(wěn)定遺傳產(chǎn)生不利影響。因此,絕大多數(shù)真核生物選擇限制減數(shù)分裂過程中過多的交叉形成。

然而,對于植物育種學(xué)家來說,由于植物減數(shù)分裂重組過程被嚴(yán)格的限制,這極大的制約了植物育種的效率和質(zhì)量。而減數(shù)分裂重組抑制基因的應(yīng)用能打破減數(shù)分裂重組的自然限制,極大的提高雜交后代的重組率,豐富遺傳多樣性和創(chuàng)造新的等位基因組合,這樣大大提高了獲得理想植物表型的概率,從而提高植物育種的效率和質(zhì)量。例如在花卉新品種培育中,獲得花色奇特、花型優(yōu)美的品種是花卉育種工作的重要目標(biāo),但由于傳統(tǒng)雜交育種中存在重組率低和遺傳連鎖的現(xiàn)象,難以獲得理想的表型和新穎奇特的品種。而重組率的提高能打破基因的連鎖,產(chǎn)生更為豐富的基因組合類型,從而選(培)育出“新奇特”的花卉新品種。因此,植物減數(shù)分裂同源重組抑制機制的深入研究對植物育種具有十分重要的意義,也能從分子水平上揭示物種適應(yīng)環(huán)境變化不斷進(jìn)化和演變的機制。

Blary等[111]將FANCM抑制基因在蕪菁()和甘藍(lán)型油菜()中進(jìn)行功能缺失突變,發(fā)現(xiàn)重組率在蕪菁和甘藍(lán)型油菜突變體中分別提高了3倍和1.3倍。該研究為減數(shù)分裂重組抑制基因在植物育種中的應(yīng)用提供了基礎(chǔ)和方法。首先,敲除目標(biāo)植物中重組抑制基因,獲得重組抑制突變體。然而,由于很難預(yù)測錯義突變對蛋白質(zhì)功能的影響,即使這些突變位點位于重組抑制基因高度保守的結(jié)構(gòu)域中,這可能導(dǎo)致突變體中重組抑制基因功能并未完全喪失。因此,改良獲得重組抑制基因無義突變的方法尤為重要。近年來,快速發(fā)展的CRISPR/Cas9技術(shù)能在基因的多個同源拷貝中產(chǎn)生穩(wěn)定和可遺傳的突變,為植物靶向誘變提供了新的方法,也為重組抑制基因的轉(zhuǎn)化研究開辟了新的途徑。其次,在育種中如何利用超重組植物進(jìn)行新品種選育也是一個巨大的挑戰(zhàn)。目前育種家主要通過雜交育種來選育優(yōu)秀和理想性狀表型的新品種,但目前所有的重組抑制基因均表現(xiàn)為隱性性狀,這制約了重組抑制基因在育種中的應(yīng)用。因此,育種策略和顯性育種系統(tǒng)的開發(fā)也是重組抑制基因育種應(yīng)用中值得重點研究的方向。

近年來,對植物減數(shù)分裂重組抑制基因的研究取得了突破性進(jìn)展,但是對抑制同源重組的調(diào)控網(wǎng)絡(luò)和關(guān)鍵環(huán)節(jié)仍然不太清楚,如是否存在與3條交叉形成途徑之外的其他類型的途徑?是否存在顯性重組抑制基因調(diào)控交叉形成?新技術(shù)和新方法的問世和應(yīng)用能加快減數(shù)分裂重組抑制基因的篩選與鑒定研究。例如,利用流式細(xì)胞儀和花粉熒光標(biāo)記系高效快速的測定染色體特定區(qū)間的重組率,進(jìn)而篩選獲得重組率提高或降低的突變體,為植物減數(shù)分裂重組調(diào)控機制的研究提供科研材料[112~114]。因此,應(yīng)該加大對重組抑制基因及其調(diào)控途徑的研究,為充分利用植物的遺傳潛力進(jìn)行創(chuàng)新育種奠定理論基礎(chǔ)。

[1] Lu P, Wijeratne AJ, Wang Z, Copenhaver GP, Ma H.PTD is required for type I crossover formation and affects recombination frequency in two different chromosomal regions., 2014, 41(3): 165–175.

[2] Li YF, Cheng ZK. Molecular mechanism of meiotic recombination in plants., 2015, 45(6): 537–543.

[3] Nambiar M, Smith GR. Repression of harmful meiotic recombination in centromeric regions., 2016, 54(2): 188–197.

[4] Kohl KP, Sekelsky J. Meiotic and mitotic recombination in meiosis., 2013, 194(2): 327–334.

[5] Mercier R, Mézard C, Jenczewski E, Macaisne N, Grelon M. The molecular biology of meiosis in plants., 2015, 66(1): 297–327.

[6] Keeney S. Mechanism and control of meiotic recombination initiation., 2001, 52(4): 1–53.

[7] Zamariola L, Tiang CL, De Storme N, Pawlowski W, Geelen D. Chromosome segregation in plant meiosis., 2014, 5: 279.

[8] Li F, De Storme N, Geelen D. Dynamics of male meiotic recombination frequency during plant development using Fluorescent Tagged Lines in., 2017, 7: 42535.

[9] Hunter N. Meiotic recombination: The essence of heredity., 2015, 7(12): 381–442.

[10] Hadany L, Comeron JM. Why are sex and recombination so common?, 2008, 1133(1): 26–43.

[11] Barton NH, Charlesworth B. Why sex and recombination?, 1998, 281(5385): 1986–1990.

[12] Youds JL, Boulton SJ. The choice in meiosis–defining the factors that influence crossover or non-crossover formation., 2011, 124(4): 501–513.

[13] Cnudde F, Gerats T. Meiosis: inducing variation by reduction., 2005, 7(4): 321–341.

[14] Baudat F, Imai Y, De Massy B. Meiotic recombination in mammals: localization and regulation., 2013, 14(11): 794–806.

[15] Yelina N, Diaz P, Lambing C, Henderson IR. Epigenetic control of meiotic recombination in plants., 2015, 58(3): 223–231.

[16] Modliszewski JL, Copenhaver GP. Meiotic recombination gets stressed out: CO frequency is plastic under pressure., 2017, 36: 95–102.

[17] Robert T, Nore A, Brun C, Maffre C, Crimi B, Guichard V, Bourbon HM, de Massy B. The TopoVIB-Like protein family is required for meiotic DNA double- strand break formation., 2016, 351(6276): 943–949.

[18] Vrielynck N, Chambon A, Vezon D, Pereira L, Chelysheva L, De Muyt A, Mézard C, Mayer C, Grelon M. A DNA topoisomerase VI–like complex initiates meiotic recombination., 2016, 351(6276): 939–943.

[19] Fu M, Wang C, Xue F, Higgins J, Chen M, Zhang D, Liang W. The DNA topoisomerase VI-B subunit OsMTOPVIB is essential for meiotic recombination initiation in rice., 2016, 9(11): 1539–1541.

[20] Stacey NJ, Kuromori T, Azumi Y, Roberts G, Breuer C, Wada T, Maxwell A, Roberts K, Sugimoto-Shirasu K.SPO11-2 functions with SPO11-1 in meiotic recombination., 2006, 48(2): 206–216.

[21] Hartung F, Wurz-Wildersinn R, Fuchs J, Schubert I, Suer S, Puchta H. The catalytically active tyrosine residues of both SPO11-1 and SPO11-2 are required for meiotic double-strand break induction in., 2007, 19(10): 3090–3099.

[22] Miao C, Tang D, Zhang H, Wang M, Li Y, Tang S, Yu H, Gu M, Cheng Z. Central region component1, a novel synaptonemal complex component, is essential for meiotic recombination initiation in rice., 2013, 25(8): 2998–3009.

[23] De Muyt A, Vezon D, Gendrot G, Gallois J L, Stevens R, Grelon M. AtPRD1 is required for meiotic double strand break formation in., 2007, 26(18): 4126–4137.

[24] De Muyt A, Pereira L, Vezon D, Chelysheva L, Gendrot G, Chambon A, Lainé-Choinard S, Pelletier G, Mercier R, Nogué F. A high throughput genetic screen identifies new early meiotic recombination functions in., 2009, 5(9): e1000654.

[25] Zhang C, Song Y, Cheng ZH, Wang YX, Zhu J, Ma H, Xu L, Yang ZN. TheDSB formation (AtDFO) gene is required for meiotic double-strand break formation., 2012, 72(2): 271–281.

[26] Kumar R, Bourbon HM, De Massy B. Functional conservation of Mei4 for meiotic DNA double-strand break formation from yeasts to mice., 2010, 24(12): 1266–1280.

[27] Keeney S. Spo11 and the formation of DNA double- strand breaks in meiosis. In: Recombination and meiosis. Springer, 2007, 81–123.

[28] Lam I, Keeney S. Mechanism and regulation of meiotic recombination initiation., 2015, 7(1): a016634.

[29] Edlinger B, Schl?gelhofer P. Have a break: determinants of meiotic DNA double strand break (DSB) formation and processing in plants., 2011, 62(5): 1545–1563.

[30] ?amani? I, Simuni? J, Riha K, Puizina J. Evidence for distinct functions of MRE11 inmeiosis., 2013, 8(10): e78760.

[31] Jolivet S, Vezon D, Froger N, Mercier R. Non conservation of the meiotic function of the Ski8/Rec103 homolog in., 2006, 11(6): 615–622.

[32] Lee JH, Paull TT. ATM activation by DNA double- strand breaks through the Mre11-Rad50-Nbs1 complex., 2005, 308(5721): 551–554.

[33] Paull TT, Deshpande RA. The Mre11/Rad50/Nbs1 complex: recent insights into catalytic activities and ATP-driven conformational changes., 2014, 329(1): 139–147.

[34] Da Ines O, Degroote F, Goubely C, Amiard S, Gallego ME, White CI. Meiotic recombination inis catalysed by DMC1, with RAD51 playing a supporting role., 2013, 9(9): e1003787.

[35] Macqueen AJ. Catching a (double-strand) break: the Rad51 and Dmc1 strand exchange proteins can co-occupy both ends of a meiotic DNA double-strand break., 2015, 11(12): e1005741.

[36] Kurzbauer MT, Uanschou C, Chen D, Schl?gelhofer P. The recombinases DMC1 and RAD51 are functionally and spatially separated during meiosis in., 2012, 24(5): 2058–2070.

[37] Wright WD, Heyer WD. Rad54 functions as a heteroduplex DNA pump modulated by its DNA substrates and Rad51 during D loop formation., 2014, 53(3): 420–432.

[38] Heyer WD, Ehmsen KT, Liu J. Regulation of homologous recombination in eukaryotes., 2010, 44: 113–139.

[39] Cromie GA, Hyppa RW, Taylor AF, Zakharyevich K, Hunter N, Smith GR. Single Holliday junctions are intermediates of meiotic recombination., 2006, 127(6): 1167–1178.

[40] Lambing C, Franklin FC, Wang CR. Understanding and manipulating meiotic recombination in plants., 2017, 173(3): 1530–1542.

[41] Hastings PJ. Holliday junction., 2001: 954–955.

[42] Chen XB, Melchionna R, Denis CM, Gaillard PHL, Blasina A, Van De Weyer I, Boddy MN, Russell P, Vialard J, Mcgowan CH. Human Mus81-associated endonuclease cleaves Holliday junctions., 2001, 8(5): 1117–1127.

[43] Ip SC, Rass U, Blanco MG, Flynn HR, Skehel JM, West SC. Identification of Holliday junction resolvases from humans and yeast., 2008, 456(7220): 357–361.

[44] Giraut L, Falque M, Drouaud J, Pereira L, Martin OC, Mézard C. Genome-wide crossover distribution inmeiosis reveals sex-specific patterns along chromosomes., 2011, 7(11): e1002354.

[45] Ferdous M, Higgins JD, Osman K, Lambing C, Roitinger E, Mechtler K, Armstrong SJ, Perry R, Pradillo M, Cu?ado N. Inter-homolog crossing-over and synapsis inmeiosis are dependent on the chromosome axis protein AtASY3., 2012, 8(2): e1002507.

[46] Lu P, Han X, Qi J, Yang J, Wijeratne AJ, Li T, Ma H. Analysis ofgenome-wide variations before and after meiosis and meiotic recombination by resequencing Landsberg erecta and all four products of a single meiosis., 2012, 22(3): 508–518.

[47] Sun Y, Ambrose JH, Haughey BS, Webster TD, Pierrie SN, Munoz DF, Wellman EC, Cherian S, Lewis SM, Berchowitz LE, Copenhaver GP. Deep genome-wide measurement of meiotic gene conversion using tetrad analysis in., 2012, 8(10): e1002968.

[48] Qi J, Chen Y, Copenhaver GP, Ma H. Detection of genomic variations and DNA polymorphisms and impact on analysis of meiotic recombination and genetic mapping., 2014, 111(27): 10007–10012.

[49] Jones GH, Franklin FC. Meiotic crossing-over: obligation and interference., 2006, 126(2): 246–248.

[50] Copenhaver GP, Housworth EA, Stahl FW. Crossover interference in., 2002, 160(4): 1631–1639.

[51] Berchowitz LE, Copenhaver GP. Genetic interference: don't stand so close to me., 2010, 11(2): 91–102.

[52] Sidhu GK, Fang C, Olson MA, Falque M, Martin OC, Pawlowski WP. Recombination patterns in maize reveal limits to crossover homeostasis., 2015, 112(52): 15982–15987.

[53] Wang S, Zickler D, Kleckner N, Zhang L. Meiotic crossover patterns: obligatory crossover, interference and homeostasis in a single process., 2015, 14(3): 305–314.

[54] Crismani W, Girard C, Froger N, Pradillo M, Santos J L, Chelysheva L, Copenhaver G P, Horlow C, Mercier R. FANCM limits meiotic crossovers., 2012, 336(6088): 1588–1590.

[55] Girard C, Crismani W, Froger N, Mazel J, Lemhemdi A, Horlow C, Mercier R. FANCM-associated proteins MHF1 and MHF2, but not the other Fanconi anemia factors, limit meiotic crossovers., 2014, 42(14): 9087–9095.

[56] Séguéla-Arnaud M, Crismani W, Larchevêque C, Mazel J, Froger N, Choinard S, Lemhemdi A, Macaisne N, Van Leene J, Gevaert K, de Jaeger G, Chelysheva L, Mercier R. Multiple mechanisms limit meiotic crossovers: TOP3α and two BLM homologs antagonize crossovers in parallel to FANCM., 2015, 112(15): 4713–4718.

[57] Girard C, Chelysheva L, Choinard S, Froger N, Macaisne N, Lemhemdi A, Mazel J, Crismani W, Mercier R. AAA-ATPase FIDGETIN-LIKE 1 and helicase FANCM antagonize meiotic crossovers by distinct mechanisms., 2015, 11(7): e1005369.

[58] Séguéla-Arnaud M, Choinard S, Larchevêque C, Girard C, Froger N, Crismani W, Mercier R. RMI1 and TOP3α limit meiotic CO formation through their C-terminal domains., 2017, 45(4): 1860–1871.

[59] Fernandes JB, Duhamel M, Seguéla-Arnaud M, Froger N, Girard C, Choinard S, Solier V, De Winne N, De Jaeger G, Gevaert K, Andrey P, Grelon M, Guerois R, Kumar R, Mercier R. FIGL1 and its novel partner FLIP form a conserved complex that regulates homologous recombination., 2017, 14(4): e1007317.

[60] Zickler D, Kleckner N. A few of our favorite things: Pairing, the bouquet, crossover interference and evolution of meiosis., 2016, 54: 135–148.

[61] Bomblies K, Jones G, Franklin C, Zickler D, Kleckner N. The challenge of evolving stable polyploidy: could an increase in “crossover interference distance” play a central role?, 2016, 125: 287–300.

[62] Hatkevich T, Kohl KP, Mcmahan S, Hartmann MA, Williams AM, Sekelsky J. Bloom syndrome helicase promotes meiotic crossover patterning and homolog disjunction., 2017, 27(1): 96–102.

[63] Higgins JD, Armstrong SJ, Franklin FCH, Jones GH. TheMutS homolog AtMSH4 functions at an early step in recombination: evidence for two classes of recombination in., 2004, 18(20): 2557–2570.

[64] Higgins JD, Vignard J, Mercier R, Pugh AG, Franklin FCH, Jones GH. AtMSH5 partners AtMSH4 in the class I meiotic crossover pathway in, but is not required for synapsis., 2008, 55(1): 28–39.

[65] Chen C, Zhang W, Timofejeva L, Gerardin Y, Ma H. The Arabidopsis ROCK-N-ROLLERS gene encodes a homolog of the yeast ATP-dependent DNA helicase MER3 and is required for normal meiotic crossover formation., 2005, 43(3): 321–334.

[66] Mercier R, Jolivet S, Vezon D, Huppe E, Chelysheva L, Giovanni M, Nogue F, Doutriaux M P, Horlow C, Grelon M, Mézard C. Two meiotic crossover classes cohabit in: one is dependent on MER3, whereas the other one is not., 2005, 15(8): 692–701.

[67] Chelysheva L, Gendrot G, Vezon D, Doutriaux M-P, Mercier R, Grelon M. Zip4/Spo22 is required for class I CO formation but not for synapsis completion in., 2007, 3(5): e83.

[68] Macaisne N, Novatchkova M, Peirera L, Vezon D, Jolivet S, Froger N, Chelysheva L, Grelon M, Mercier R. SHOC1, an XPF endonuclease-related protein, is essential for the formation of class I meiotic crossovers., 2008, 18(18): 1432–1437.

[69] Chelysheva L, Vezon D, Chambon A, Gendrot G, Pereira L, Lemhemdi A, Vrielynck N, Le Guin S, Novatchkova M, Grelon M. TheHEI10 is a new ZMM protein related to Zip3., 2012, 8(7): e1002799.

[70] Wang Y, Cheng Z, Huang J, Shi Q, Hong Y, Copenhaver GP, Gong Z, Ma H. The DNA replication factor RFC1 is required for interference-sensitive meiotic crossovers in., 2012, 8(11): e1003039.

[71] Macaisne N, Vignard J, Mercier R. SHOC1 and PTD form an XPF–ERCC1-like complex that is required for formation of class I crossovers., 2011, 124(16): 2687–2691.

[72] Huang J, Cheng Z, Wang C, Hong Y, Su H, Wang J, Copenhaver G P, Ma H, Wang Y. Formation of interference-sensitive meiotic cross-overs requires sufficient DNA leading-strand elongation., 2015, 112(40): 12534–12539.

[73] Berchowitz LE, Francis KE, Bey AL, Copenhaver GP. The role of AtMUS81 in interference-insensitive crossovers in., 2007, 3(8): e132.

[74] Higgins JD, Buckling EF, Franklin FC, Jones GH. Expression and functional analysis of AtMUS81 inmeiosis reveals a role in the second pathway of crossing-over., 2008, 54(1): 152–162.

[75] Kurzbauer MT, Pradillo M, Kerzendorfer C, Sims J, Ladurner R, Oliver C, Janisiw MP, Mosiolek M, SchweizerD, Copenhaver GP, Schl?gelhofer P.FANCD2 promotes meiotic crossover formation., 2018, 30(2):415–428..

[76] Pradillo M, Varas J, Oliver C, Santos JL. On the role of AtDMC1, AtRAD51 and its paralogs duringmeiosis., 2014, 5: 23.

[77] Hillers KJ, Villeneuve AM. Chromosome-wide control of meiotic crossing over in., 2003, 13(18): 1641–1647.

[78] Yildiz ?, Majumder S, Kramer B, Sekelsky JJ. Drosophila MUS312 interacts with the nucleotide excision repair endonuclease MEI-9 to generate meiotic crossovers., 2002, 10(6): 1503–1509.

[79] Argueso JL, Wanat J, Gemici Z, Alani E. Competing crossover pathways act during meiosis in., 2004, 168(4): 1805–1816.

[80] Crismani W, Mercier R. What limits meiotic crossovers?, 2012, 11(19): 3527–3528.

[81] Mets DG, Meyer BJ. Condensins regulate meiotic DNA break distribution, thus crossover frequency, by controlling chromosome structure., 2009, 139(1): 73–86.

[82] Henderson IR. Control of meiotic recombination frequency in plant genomes., 2012, 15(5): 556–561.

[83] Gari K, Décaillet C, Stasiak AZ, Stasiak A, Constantinou A. The Fanconi anemia protein FANCM can promote branch migration of Holliday junctions and replication forks., 2008, 29(1): 141–148.

[84] Lorenz A, Osman F, Sun W, Nandi S, Steinacher R, Whitby MC. The fission yeast FANCM ortholog directs non-crossover recombination during meiosis., 2012, 336(6088): 1585–1588.

[85] Prakash R, Satory DE, Papusha A, Scheller J, Kramer W, Krejci L, Klein H, Haber J, Sung P, Ira G. Yeast Mph1 helicase dissociates Rad51-made D-loops: implications for crossover control in mitotic recombination., 2009, 23(1): 67–79.

[86] Yan Z, Delannoy M, Ling C, Daee D, Osman F, Muniandy PA, Shen X, Oostra AB, Du H, Steltenpool J , Lin T, Schuster B, Décaillet C, Stasiak A, Stasiak AZ, Stone S, Hoatlin ME, Schindler D, Woodcock CL, Joenje H, Sen R, de Winter JP, Li L, Seidman MM, Whitby MC, Myung K, Constantinou A, Wang W. A histone-fold complex and FANCM form a conserved DNA-remodeling complex to maintain genome stability., 2010, 37(6): 865–878.

[87] Singh T R, Saro D, Ali A M, Zheng XF, Du CH, Killen MW, Sachpatzidis A, Wahengbam K, Pierce AJ, Xiong Y, Sung P, Meetei AR. MHF1-MHF2, a histone-fold- containing protein complex, participates in the Fanconi anemia pathway via FANCM., 2010, 37(6): 879–886.

[88] Yang H, Zhang T, Tao Y, Wu L, Li HT, Zhou JQ, Zhong C, Ding J. Saccharomyces cerevisiae MHF complex structurally resembles the histones (H3-H4)? heterotetramer and functions as a heterotetramer., 2012, 20(2): 364–370.

[89] Tao Y, Jin C, Xu L, Qi S, Chu L, Niu L, Yao X, Teng M. The structure of the FANCM–MHF complex reveals physical features for functional assembly., 2013, 3: 782.

[90] Zakharyevich K, Tang S, Ma Y, Hunter N. Delineation of joint molecule resolution pathways in meiosis identifies a crossover-specific resolvase., 2012, 149(2): 334–347.

[91] Muyt AD, Jessop L, Kolar E, Sourirajan A, Chen J, Dayani Y, Lichten M. BLM helicase ortholog Sgs1 is a central regulator of meiotic recombination intermediate metabolism., 2012, 46(1): 43–53.

[92] Kaur H, De Muyt A, Lichten M. Top3-Rmi1 DNA single-strand decatenase is integral to the formation and resolution of meiotic recombination intermediates., 2015, 57(4): 583–594.

[93] Tang S, Wu MK, Zhang R, Hunter N. Pervasive and essential roles of the Top3-Rmi1 decatenase orchestrate recombination and facilitate chromosome segregation in meiosis., 2015, 57(4): 607–621.

[94] Fasching CL, Cejka P, Kowalczykowski SC, Heyer WD. Top3-Rmi1 dissolve Rad51-mediated D loops by a topoisomerase-based mechanism., 2015, 57(4): 595–606.

[95] Hartung F, Puchta H. The RecQ gene family in plants., 2006, 163(3): 287–296.

[96] Hartung F, Suer S, Puchta H. Two closely related RecQ helicases have antagonistic roles in homologous recombination and DNA repair in., 2007, 104(47): 18836–18841.

[97] Schvarzstein M, Pattabiraman D, Libuda DE, Ramadugu A, Tam A, Martinezperez E, Roelens B, Zawadzki KA, Yokoo R, Rosu S, Severson AF, Meyer BJ, Nabeshima K, Villeneuve AM. DNA helicase HIM-6/BLM both promotes MutSγ-dependent crossovers and antagonizes MutSγ-independent interhomolog associations duringmeiosis., 2014, 198(1): 193–207.

[98] Jagut M, Hamminger P, Woglar A, Millonigg S, Paulin L, Mikl M, Stritto MRD, Tang L, Habacher C, Tam A, Gallach M, von Haeseler A, Villeneuve AM, Jantsch V. Separable roles for aRMI1 homolog in promoting and antagonizing meiotic crossovers ensure faithful chromosome inheritance., 2016, 14(3): e1002412.

[99] Hu Q, Li Y, Wang H, Shen Y, Zhang C, Du G, Tang D, Cheng Z. Meiotic chromosome association 1 interacts with TOP3α and regulates meiotic recombination in rice., 2017, 29(7): 1697–1708.

[100] Ziolkowski PA, Berchowitz LE, Lambing C, Yelina NE, Zhao X, Kelly KA, Choi K, Ziolkowska L, June V, Sanchez-Moran E, Franklin C, Copenhaver GP, Henderson IR. Juxtaposition of heterozygous and homozygous regions causes reciprocal crossover remodelling via interference duringmeiosis., 2015, 4: e03708.

[101] Yelina NE, Lambing C, Hardcastle TJ, Zhao X, Santos B, Henderson IR. DNA methylation epigenetically silences crossover hot spots and controls chromosomal domains of meiotic recombination in., 2015, 29(20): 2183–2202.

[102] Libuda DE, Uzawa S, Meyer BJ, Villeneuve AM. Meiotic chromosome structures constrain and respond to designation of crossover sites., 2013, 502(7473): 703–706.

[103] Wang K, Wang C, Liu Q, Liu W, Fu Y. Increasing the genetic recombination frequency by partial loss of function of the synaptonemal complex in rice., 2015, 8(8): 1295–1298.

[104] Ziolkowski PA, Underwood CJ, Lambing C, Martinez- Garcia M, Lawrence EJ, Ziolkowska L, Griffin C, Choi K, Franklin FCH, Martienssen RA, Henderson IR. Natural variation and dosage of the HEI10 meiotic E3 ligase controlcrossover recombination., 2017, 31(3): 306–317.

[105] Serra H, Lambing C, Griffin CH, Topp SD, Nageswaran DC, Underwood CJ, Ziolkowski PA, Séguéla-Arnaud M, Fernandes JB, Mercier R, Henderson IR. Massive crossover elevation via combination of HEI10 and recq4a recq4b duringmeiosis., 2018, 115(10): 2437–2442.

[106] Francis KE, Lam SY, Harrison BD, Bey AL, Berchowitz LE, Copenhaver GP. Pollen tetrad-based visual assay for meiotic recombination in., 2007, 104(10): 3913–3918.

[107] Higgins JD, Perry RM, Barakate A, Ramsay L, Waugh R, Halpin C, Armstrong SJ, Franklin FC. Spatiotemporal asymmetry of the meiotic program underlies the predominantly distal distribution of meiotic crossovers in barley., 2012, 24(10): 4096–4109.

[108] Phillips D, Jenkins G, Macaulay M, Nibau C, Wnetrzak J, Fallding D, Colas I, Oakey H, Waugh R, Ramsay L. The effect of temperature on the male and female recombination landscape of barley., 2015, 208(2): 421–429.

[109] Si W, Yuan Y, Huang J, Zhang X, Zhang Y, Zhang Y, Tian D, Wang C, Yang Y, Yang S. Widely distributed hot and cold spots in meiotic recombination as shown by the sequencing of rice F2plants., 2015, 206(4): 1491–1502.

[110] Fernandes JB, Séguéla-Arnaud M, Larchevêque C, Lloyd AH, Mercier R. Unleashing meiotic crossovers in hybrid plants., 2018, 115(10): 2431–2436.

[111] Blary A, Gonzalo A, Eber F, Bérard A, Bergès H, Bessoltane N, Charif D, Charpentier C, Cromer L, Fourment J, Genevriez C, Le Paslier MC, Lodé M, Lucas MO, Nesi N, Lloyd A, Chèvre AM, Jenczewski E. FANCM limits meiotic crossovers incrops., 2018, 9: 368.

[112] Berchowitz LE, Copenhaver GP. Fluorescenttetrads: a visual assay for quickly developing large crossover and crossover interference data sets., 2008, 3(1): 41–50.

[113] Yelina NE, Ziolkowski PA, Miller N, Zhao X, Kelly KA, Mu?oz DF, Mann DJ, Copenhaver GP, Henderson IR. High-throughput analysis of meiotic crossover frequency and interference via flow cytometry of fluorescent pollen in., 2013, 8(11): 2119–2134.

[114] Li F. Meiotic recombination suppressors of[Dissertation]. UGent University, 2018.

Molecular mechanisms of meiotic recombination suppression in plants

Fan Li1, Rongpei Yu1, Dan Sun1, Jihua Wang1, Shenchong Li1, Jiwei Ruan1, Qinli Shan1, Pingli Lu2, Guoxian Wang1

Meiotic recombination not only ensures the stability of chromosome numbers during the sexual reproduction in eukaryotes, but also shuffles the maternal and paternal genetic materials to generate genetic diversity in the gametes. Therefore, meiotic recombination is an important pathway for genetic diversity, which has been considered as a major driving force for species evolution and biodiversity in nature. In most eukaryotes, meiotic recombination is strictly limited, despite the large variation of physical genome size and chromosome numbers among species, but the mechanisms suppressing meiotic recombination remain elusive. Recently, several suppressors have been identified through the forward genetics screen, and revealed the functions and regulation pathways of these suppressors. In this review, we summarize the breakthrough discovery of meiotic recombination suppressors in plants based on research in, with particular focus on the gene function and its regulation network to elucidate the molecular mechanisms of meiotic recombination suppression in plants.

meiosis; homologous recombination; suppressors; regulation networks

2018-06-22;

2018-08-31

云南省農(nóng)業(yè)聯(lián)合青年項目,云南省科技計劃重點研發(fā)(農(nóng)業(yè)領(lǐng)域)項目(編號:2018BB010)和云南省科技計劃項目(編號:2016IA001)資助[Supported by Yunnan Agricultural Joint Youth Project, the Key Research and Development (Agricultural field) Project of Yunnan Science and Technology Program (No. 2018BB010) and the Science and Technology Program of Yunnan Province (No. 2016IA001)]

李帆,博士,助理研究員,研究方向:植物遺傳與分子育種。E-mail: lifanla@foxmail.com

汪國鮮,本科,副研究員,研究方向:園藝作物栽培與繁育技術(shù)。E-mail: wgxhhs@foxmail.com

10.16288/j.yczz.18-165

2018/11/21 14:00:50

URI: http://kns.cnki.net/kcms/detail/11.1913.R.20181121.1400.002.html

(責(zé)任編委: 張憲省)

猜你喜歡
中間體同源突變體
建立A注射液中間體中肉桂酸含量測定方法
以同源詞看《詩經(jīng)》的訓(xùn)釋三則
航天搭載小麥株高突變體研究初探
激發(fā)態(tài)和瞬態(tài)中間體的光譜探測與調(diào)控
“鋌”有“直”義的詞源學(xué)解釋——兼說/直/義的同源詞族
同源賓語的三大類型與七項注意
熱毒寧注射液梔子中間體生產(chǎn)過程中4種成分的測定
一個粳稻早熟突變體的遺傳分析及育種應(yīng)用潛力的初步評價
虔誠書畫乃同源
SHP2不同突變體對乳腺癌細(xì)胞遷移和侵襲能力的影響