董戰(zhàn)旗,蔣亞明,潘敏慧,2
?
家蠶熱休克蛋白HSP60相互作用蛋白篩選與鑒定
董戰(zhàn)旗1,蔣亞明1,潘敏慧1,2
(1西南大學(xué)家蠶基因組生物學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,重慶 400716;2西南大學(xué)農(nóng)業(yè)部蠶桑生物學(xué)與遺傳育種重點(diǎn)實(shí)驗(yàn)室,重慶 400716)
【目的】HSP60是熱休克蛋白中重要的一員,在昆蟲(chóng)先天性免疫過(guò)程中起重要作用,同時(shí)也是昆蟲(chóng)生長(zhǎng)發(fā)育的必要因子。前期研究證明家蠶BmHSP60參與家蠶核型多角體病毒(nucleopolyhedrovirus,BmNPV)入侵細(xì)胞過(guò)程,本研究通過(guò)鑒定BmHSP60相互作用蛋白,為其在家蠶先天性免疫中作用機(jī)制研究打下基礎(chǔ)?!痉椒ā坷妹庖吖渤恋砗豌y聯(lián)-質(zhì)譜分析技術(shù)(LC-MS/MS),首先構(gòu)建BmHSP60過(guò)表達(dá)載體并融合Flag標(biāo)簽,轉(zhuǎn)染到家蠶細(xì)胞中48 h后,收集蛋白,進(jìn)行免疫共沉淀,用Flag抗體孵育磁珠調(diào)取相互作用蛋白,銀染處理后,能夠檢測(cè)到明顯的差異條帶,把差異條帶切膠保存在-80℃,然后質(zhì)譜分析差異條帶的多肽;根據(jù)質(zhì)譜結(jié)果和差異條帶的大小與NCBI數(shù)據(jù)庫(kù)進(jìn)行比對(duì),篩選到候選相互作用蛋白。最后,構(gòu)建候選相互作用蛋白的克隆載體并融合HA標(biāo)簽,分別和BmHSP60表達(dá)載體共轉(zhuǎn)到家蠶細(xì)胞,免疫共沉淀和熒光共定位驗(yàn)證BmHSP60和候選蛋白之間的相互作用。并通過(guò)Mito-Tracker-Green分析BmHSP60候選相互作用蛋白與線粒體的共定位。【結(jié)果】免疫共沉淀銀染結(jié)果顯示BmHSP60相互作用蛋白在110、90、75、60和35 kD附近有5條明顯的差異條帶,將這5條條帶混成蛋白池進(jìn)行質(zhì)譜分析,通過(guò)銀聯(lián)-質(zhì)譜分析結(jié)果和家蠶基因組數(shù)據(jù)庫(kù)以及NCBI數(shù)據(jù)庫(kù)進(jìn)行比對(duì)分析共鑒定到32個(gè)差異蛋白,根據(jù)多肽數(shù)量和蛋白分子量的大小共篩選到5個(gè)相互作用候選蛋白與銀染結(jié)果差異條帶一致,分別為ADP/ATP translocase(ANT)、Actin、Alpha-tubulin、Elongation factor 1-alpha(EF1)和HSP90。構(gòu)建BmHSP60候選相互作用蛋白克隆表達(dá)載體并融合HA標(biāo)簽,與BmHSP60共同轉(zhuǎn)染到家蠶細(xì)胞,免疫共沉淀immunoprecipitated(IP)用-Flag抗體孵育,immunoblotting(IB)再用-Flag抗體孵育,均能夠檢測(cè)到BmHSP60表達(dá)。而IB用-HA抗體孵育顯示只有BmANT和BmHSP90能夠檢測(cè)到相應(yīng)的條帶,而Alpha-tubulin和EF1與BmHSP60沒(méi)有檢測(cè)到相應(yīng)的條帶,說(shuō)明只有BmANT和BmHSP90與BmHSP60具有直接的相互作用,而Alpha-tubulin和EF1與BmHSP60沒(méi)有相互作用。通過(guò)熒光共定位進(jìn)一步分析表明BmANT和BmHSP90能夠與BmHSP60共定位在細(xì)胞質(zhì)中。線粒體標(biāo)記物Mito-Tracker-Green共定位結(jié)果顯示BmHSP60、BmANT和BmHSP90均能夠與線粒體共定位到一起?!窘Y(jié)論】鑒定到家蠶熱休克蛋白BmHSP60能夠與BmANT和BmHSP90相互作用,并共定位于線粒體,可用于研究BmHSP60在家蠶抗病毒免疫中的作用機(jī)制。
家蠶;BmHSP60; 相互作用蛋白;免疫共沉淀;BmANT1;BmHSP90
【研究意義】熱休克蛋白(heat shock protein,HSP)最早在果蠅()中被發(fā)現(xiàn)[1]。生物體不僅在熱激條件下能夠產(chǎn)生熱休克反應(yīng),在受到其他物理、化學(xué)或生物刺激下,也能夠發(fā)生相關(guān)應(yīng)答,提高熱休克蛋白的表達(dá)[2]。熱休克蛋白可幫助蛋白質(zhì)正確折疊、在各種應(yīng)激條件下調(diào)節(jié)蛋白質(zhì)穩(wěn)態(tài),因此在保護(hù)細(xì)胞免受氧化壓力、極端溫度和凋亡損傷中發(fā)揮重要作用,在組織中也可消除由疾病引起的損傷[1]。熱休克蛋白廣泛存在于各種生物中,根據(jù)分子大小,可分為Hsp110(HspH)、Hsp90(HspC)、Hsp70(HspA)、Hsp40(DNAJ)和小分子熱休克蛋白(HspB)以及伴侶家族HspD/E(Hsp60/Hsp10)[3]。Hsp60是熱休克家族重要成員,廣泛參與先天性免疫和細(xì)胞凋亡過(guò)程,前期研究證明BmHSP60作為線粒體蛋白在家蠶核型多角體病毒(nucleopolyhedrovirus,BmNPV)侵染過(guò)程中為病毒提供能量促進(jìn)病毒增殖復(fù)制,但BmHSP60在家蠶個(gè)體發(fā)育及BmNPV入侵過(guò)程中具體的作用機(jī)制仍然未知[4]。因此,鑒定BmHSP60相互作用蛋白對(duì)解析其在先天性免疫中的功能以及病毒和宿主相互作用機(jī)制解析具有重要意義?!厩叭搜芯窟M(jìn)展】HSP60功能強(qiáng)大,參與宿主很多途徑,并參與病原入侵的過(guò)程。人乙肝病毒(,HBV)聚合酶已被證明能夠與HSP60發(fā)生相互作用,利用了HSP60分子伴侶的功能,確保聚合酶折疊成活化形態(tài),ATP也輔助參與了這個(gè)過(guò)程,抑制HSP60表達(dá)能夠有效抑制HBV的復(fù)制。在此前的研究中,HBV轉(zhuǎn)錄反式激活蛋白也被證明能夠與線粒體HSP60形成一個(gè)復(fù)合物,促進(jìn)病毒的感染[5]。同時(shí),在對(duì)人乳頭瘤病毒(,HPV)引起的宮頸癌的治療中,DNA疫苗編碼的HSP60能夠與HPV16的E6和E7抗原結(jié)合,并將其呈遞到特異型的CD8+ T細(xì)胞,免疫效果比單純的抗原呈遞明顯,促進(jìn)了體液免疫[6]。除了直接與病毒蛋白質(zhì)發(fā)生相互作用,HSP60也能夠直接與病毒的基因組發(fā)生相互作用,在小鼠肝炎病毒(,MHV)侵染過(guò)程中,HSP60連同HSP70、HSP40共同作用,與MHV的RNA 3′末端42個(gè)核苷酸結(jié)合,形成RNA-蛋白質(zhì)復(fù)合結(jié)構(gòu),該結(jié)構(gòu)被認(rèn)為與RNA病毒的復(fù)制相關(guān)[7]。此外,病毒也能夠利用HSP60所在的通路,如人丙肝病毒(,HCV)核心蛋白能夠與HSP60相互作用,提高了細(xì)胞活性氧含量,使之對(duì)腫瘤壞死因子-(tumor necrosis factor-,TNF-)變得更加敏感,反之,過(guò)表達(dá)HSP60能夠在一定程度恢復(fù)細(xì)胞對(duì)TNF-的耐受力[8]。熱休克蛋白HSP60廣泛存在于各種昆蟲(chóng)中,在昆蟲(chóng)各個(gè)時(shí)期、各種組織中均有表達(dá)[1]。HSP60與昆蟲(chóng)個(gè)體發(fā)育息息相關(guān),伴隨著組織的分解與再生,對(duì)保持蛋白質(zhì)的正確折疊和維持細(xì)胞蛋白質(zhì)穩(wěn)態(tài)非常重要[2]。西方蜜蜂()在社會(huì)化發(fā)展過(guò)程中,蜂王幼蟲(chóng)中HSP60表達(dá)高于工蜂幼蟲(chóng),從而造成蜂王和工蜂的卵巢發(fā)育程度不同[9];在果蠅中,HSP60參與了Caspase介導(dǎo)的細(xì)胞凋亡,作為果蠅細(xì)胞線粒體抗氧化、抗衰老以及重建蛋白質(zhì)平衡的標(biāo)志,為昆蟲(chóng)適應(yīng)極端環(huán)境提供了一定的分子基礎(chǔ)[10]。【本研究切入點(diǎn)】筆者課題組前期研究已經(jīng)證明桿狀病毒晚期表達(dá)因子11(late expression factor 11,LEF-11)蛋白能夠劫持宿主ATPase家族BmATAD3A和伴侶蛋白BmHSP60促進(jìn)病毒增殖復(fù)制,干涉BmHSP60后能夠顯著抑制病毒增殖復(fù)制[4]。但是BmHSP60促進(jìn)病毒增殖復(fù)制的調(diào)控機(jī)制仍然未知?!緮M解決的關(guān)鍵問(wèn)題】通過(guò)篩選和鑒定BmHSP60具有直接相互作用的蛋白,找到與BmHSP60在病毒感染過(guò)程中相互作用蛋白,為其在家蠶先天性免疫中作用機(jī)制研究打下基礎(chǔ),為家蠶抗病育種研究提供靶標(biāo)基因。
試驗(yàn)于2015—2017在西南大學(xué)家蠶基因組生物學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室完成。
家蠶胚胎細(xì)胞系BmN-SWU1細(xì)胞和BmNPV病毒為西南大學(xué)家蠶基因組生物學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室保存,BmN-SWU1細(xì)胞用含10%(V/V)胎牛血清TC-100培養(yǎng)基,在27℃條件下恒溫培養(yǎng)[11-12]。
以pIZ/V5-His為空載,通過(guò)PCR獲得家蠶、和開(kāi)放閱讀框(open reading frame,ORF),分別通過(guò)酶切、連接構(gòu)建不同的帶有Flag和HA標(biāo)簽的質(zhì)粒。所有構(gòu)建質(zhì)粒都經(jīng)測(cè)序分析,所用引物見(jiàn)表1。
當(dāng)細(xì)胞鋪滿80%左右時(shí),按照4 μg質(zhì)粒,12 μL轉(zhuǎn)染試劑,在離心管中輕柔逐滴混勻50次左右,靜止30 min,然后滴加到細(xì)胞瓶中。轉(zhuǎn)染48 h,添加BmNPV 48 h后,用PBS輕輕潤(rùn)洗兩次,在細(xì)胞瓶中加入1 mL含有PMSF的Western及IP細(xì)胞裂解液,冰上裂解30 min。取兩只滅菌的1.5 mL離心管,分別加入50 μL DynabeadsTMProtein A磁珠,安置在磁力架上,棄去液體,加入少許PBS混勻清洗,重復(fù)一次,然后加入200 μL PBS,一只加入3 μL Flag標(biāo)簽抗體,另外一只加入等量的小鼠IgG,做好標(biāo)記,并安裝在翻轉(zhuǎn)儀上,在4℃環(huán)境中,與磁珠孵育1 h。將抗體孵育完成的磁珠安裝在磁力架上,棄去液體,同時(shí)將細(xì)胞裂解產(chǎn)物取100 μL作為Input樣品,放在冰上,剩下產(chǎn)物各取450 μL,分裝到兩管,與磁珠輕柔混勻后,放置在翻轉(zhuǎn)儀上,4℃環(huán)境中孵育1 h。將與磁珠孵育完成的樣品從翻轉(zhuǎn)儀上取下,安裝在磁力架上,棄去液體后,加入300 μL左右PBS,輕輕混勻,清洗磁珠,并在磁力架上分離液體與磁珠,棄去液體,如此重復(fù)兩次,最后棄去洗液。然后每只離心管加入60 μL含有PMSF的Western及IP細(xì)胞裂解液,再加入15 μL的5×SDS-PAGE蛋白上樣緩沖液,最后將樣品沸水浴10 min。將沸水浴后的樣品安裝在磁力架上,分離液體和磁珠,將液體轉(zhuǎn)移至新的離心管中,做好標(biāo)記,和Input樣品一同保存在-20℃。
表1 本試驗(yàn)所用引物
粗體代表酶切位點(diǎn),下劃線代表融合標(biāo)簽The restriction enzyme sites are marked in bold, the underline represents the fusion tag
制備12%的SDS-PAGE膠,將蛋白樣品輕輕加入到點(diǎn)樣孔中,同時(shí)點(diǎn)好相應(yīng)的蛋白Marker,開(kāi)始時(shí)濃縮蛋白用7 mA/塊膠,待到蛋白完全通過(guò)濃縮膠后,將電流提高到15 mA/塊,保持電流穩(wěn)定電泳3 h左右,待藍(lán)色染料剛好跑出即可停止電泳[13-14]。電泳完成后,把濃縮膠及以上部分切掉,并將分離膠從玻璃板上剝下,放置在事先加入dH2O的玻璃皿中輕搖,清洗一次。倒掉洗液,向玻璃皿中加入適量銀染固定液,使其能夠浸沒(méi)膠塊,在搖床上慢速輕搖1 h。倒掉固定液,向玻璃皿中加入適量銀染清洗液,脫色搖床上輕搖1 h。倒掉清洗液,避光條件下,向玻璃皿中加入適量銀染致敏液,增感2 min,然后倒掉致敏液,再向里面加入適量dH2O,潤(rùn)洗20 s后倒掉,重復(fù)dH2O清洗3次。避光條件下,向玻璃皿中加入適量銀染染色液,在水平搖床上輕搖30 min,然后倒掉染色液,如上方法,用dH2O潤(rùn)洗20 s,重復(fù)3次。清洗完成后,向玻璃皿中倒入適量銀染顯色液,時(shí)刻觀察膠塊上條帶染色情況,若染色完成,立即將膠塊轉(zhuǎn)移至裝有適量銀染終止液的玻璃皿中,終止顯色反應(yīng)。將顯色完成后的膠塊平放在掃描儀上,輕輕趕走產(chǎn)生的氣泡,根據(jù)軟件提示,掃面膠塊并保存結(jié)果。根據(jù)差異條帶位置,用甲醛消毒過(guò)的刀切掉差異條帶,-80℃保存。
通過(guò)硝酸銀染色獲取的凝膠樣品管中加入200—400 μL脫色液(30% ACN/100 mmol·L-1NH4HCO3),清洗脫色至透明,吸棄上清,凍干;加入100 mmol·L-1DTT,56℃孵育30 min;吸棄上清,加入200 mmol·L-1IAA,暗處孵育20 min。吸棄上清,加入100 mmol·L-1NH4HCO3,室溫孵育15 min。吸棄上清,加入100% ACN,5 min后吸棄凍干,加入2.5—10 ng·μL-1Trypsin溶液,在37℃條件下反應(yīng)20 h左右。轉(zhuǎn)移酶解原液至新的EP管中,之后凝膠中加入100 μL抽提液(60% ACN/0.1% TFA),超聲15 min后將提取液與酶解原液合并,凍干后取出。加入0.1% FA水溶液60 μL進(jìn)行復(fù)溶,再用0.22 μm過(guò)濾管過(guò)濾后待用。色譜柱以95%的0.1%甲酸的水溶液平衡后,樣品由自動(dòng)進(jìn)樣器上樣至Trap柱。色譜梯度:0—50 min,0.1%甲酸的乙腈水溶液(乙腈為84%)線性梯度從4%—50%;50—54 min,0.1%甲酸的乙腈水溶液線性梯度從50%—100%;54—60 min,0.1%甲酸的乙腈水溶液維持在100%。多肽和多肽碎片的質(zhì)量電荷比按照下列方法采集:每次全掃描(full scan)后采集10個(gè)碎片圖譜(MS2 scan)。質(zhì)譜測(cè)試原始文件(raw file)用Mascot2.2軟件檢索相應(yīng)的數(shù)據(jù)庫(kù),最后得到鑒定的蛋白質(zhì)結(jié)果。
按照1.3所述方法轉(zhuǎn)染48 h后,用1×PBST輕洗細(xì)胞3次,每次5 min。加入4%的多聚甲醛溶液,室溫固定15 min,1×PBST同上輕洗。然后加入300 μL 1% Triton X-100,室溫打孔15 min。PBS清洗兩次后,加入500 μL封閉液,于37℃培養(yǎng)箱中封閉1 h。吸去封閉液,每孔加入配好的1﹕200的Flag/HA一抗,37℃孵育1 h。回收一抗,每孔加入適量PBS,在水平搖床上輕搖清洗,5 min更換一次PBS,重復(fù)6次。根據(jù)一抗來(lái)源,向孔里加入500 μL 1﹕500稀釋的熒光標(biāo)記二抗,37℃孵育1 h。向孔中加入100 μL DAPI染色液或者1﹕500稀釋的 Mito-Tracker Green,37℃孵育15 min。吸取染色液,重復(fù)清洗步驟。用帶鉤的針頭挑出扒片,將細(xì)胞一面平鋪到滴有甘油的載玻片上,用指甲油封片。用熒光共聚焦顯微鏡進(jìn)行觀察。
將新提取的pIZ-BmHSP60Flag質(zhì)粒轉(zhuǎn)染到生長(zhǎng)狀態(tài)良好的細(xì)胞中,轉(zhuǎn)染后加入BmNPV 48 h后收取蛋白。根據(jù)免疫共沉淀收方法用Flag抗體孵育蛋白細(xì)胞提取液,然后進(jìn)行蛋白質(zhì)電泳和銀染。生物學(xué)重復(fù)兩次,選取兩次試驗(yàn)同時(shí)具有差異的條帶,分別在110、90、75、60和35 kD位置處選取5個(gè)差異條帶進(jìn)行切膠,命名為差異條帶A、B、C、D和E(圖1)。把各差異條帶混在一起-80℃保存,以備質(zhì)譜分析。
為了篩選不同分子量的BmHSP60相互作用蛋白,將兩次重復(fù)同時(shí)具有差異條帶的5條特異條帶混為蛋白池,進(jìn)行LC-MS/MS質(zhì)譜分析,將質(zhì)譜分析多肽與家蠶數(shù)據(jù)庫(kù)以及NCBI數(shù)據(jù)庫(kù)進(jìn)行比對(duì)。根據(jù)候選相互作用蛋白相對(duì)分子質(zhì)量大小和多肽的數(shù)量進(jìn)行排序,共找到5個(gè)潛在的相互作用蛋白,分別為ADP/ATP translocase (ANT)、Actin、Alpha-tubulin、Elongation factor 1-alpha(EF1)和HSP90,命名為BmANT1、BmActin、BmTubulin、BmEF-1和BmHSP90(表2)。
克隆BmHSP60相互作用候選蛋白基因,構(gòu)建到含有HA標(biāo)簽的pIZ/V5-His載體上,與pIZ-BmHSP60Flag共同轉(zhuǎn)染到家蠶細(xì)胞,48 h后收取蛋白。因?yàn)锳ctin可能為細(xì)胞骨架蛋白,在多次免疫共沉淀中均有發(fā)現(xiàn),因此暫不考慮。免疫共沉淀結(jié)果顯示immunoprecipitated(IP)用-Flag抗體孵育,immunoblotting(IB)再用-Flag抗體孵育,均能夠檢測(cè)到BmHSP60表達(dá),說(shuō)明免疫共沉淀試驗(yàn)操作成功。如果IB用HA抗體進(jìn)行孵育,均不能測(cè)到BmTubulin、BmEF-1,但是能夠檢測(cè)到BmHSP90、BmANT1(圖2)。上述結(jié)果說(shuō)明BmHSP60不與BmTubulin、BmEF-1結(jié)合,但可與BmHSP90、BmANT1結(jié)合。
為了進(jìn)一步探究BmHsp60及其相互作用蛋白BmHsp90、BmANT1在細(xì)胞中共定位情況,共轉(zhuǎn)后通過(guò)免疫熒光步驟進(jìn)行處理,熒光共定位結(jié)果顯示,過(guò)表達(dá)BmANT1、BmHSP90 與BmHSP60在細(xì)胞中能夠完全重疊,綠色代表HA標(biāo)簽,紅色代表Flag標(biāo)簽,藍(lán)色DAPI代表細(xì)胞核,共定位顯示紅色幾乎和綠色完全重合,并且全部分布在細(xì)胞質(zhì)中(圖3),進(jìn)一步說(shuō)明它們之間可能存在相互作用。
A:通過(guò)Western blot分析BmHSP60相互作用蛋白表達(dá)The expression of candidate interaction proteins of BmHsp60 by Western blot;B—E:通過(guò)Western blot分析BmHSP60相互作用蛋白。BmN-SWU1細(xì)胞共同轉(zhuǎn)染BmHSP60和BmTubulin、BmEF-1α、BmHSP90、BmANT1。轉(zhuǎn)染96 h后,收集細(xì)胞用Flag抗體共沉淀蛋白,靶蛋白用HA抗體檢測(cè)。每個(gè)相互作用頂部表示免疫沉淀所用抗體,右側(cè)標(biāo)記顯示W(wǎng)estern blot分析所用抗體Co-immunoprecipitation of BmHSP60 examined by Western blot. BmN-SWU1 cells are co-transfected with BmHSP60 and candidate BmTubulin, BmEF-1α, BmHSP90, BmANT1 protein. At 96 hours after transfection, cells are lysed and immunoprecipitation performed with α-FLAG, and use α-HA to detect the bound of target protein. The label on the top of each panel shows the antibodies used for immunoprecipitation. The label on the right of each panel shows the antibodies used for analysis of Western blot
為了探究BmHSP60及其相互作用蛋白BmANT1和BmHSP90亞細(xì)胞定位情況,分別轉(zhuǎn)染后,通過(guò)免疫熒光步驟進(jìn)行處理,同時(shí)對(duì)線粒體用Mito-Tracker- Green染成綠色,目的蛋白染成紅色,熒光結(jié)果顯示,過(guò)表達(dá)BmHSP60、BmANT1細(xì)胞中,紅色幾乎和綠色共定位在一起;過(guò)表達(dá)BmHSP90中,紅色與綠色大部分共定位在一起,說(shuō)明而B(niǎo)mHSP60、BmANT1參與線粒體代謝過(guò)程,BmHSP90也與線粒體代謝相關(guān)(圖4)。
本研究采用免疫共沉淀和熒光共定位技術(shù),篩選了BmHSP60在BmNPV感染過(guò)程中的相互作用候選蛋白,并驗(yàn)證了BmHSP60與BmHSP90和BmANT1具有相互作用,這為后期研究BmHSP60在家蠶個(gè)體發(fā)育中的功能及其在BmNPV增殖復(fù)制中作用機(jī)制提供了基礎(chǔ)數(shù)據(jù)。
以BmHSP60為誘餌蛋白釣取的相互作用蛋白中,BmHSP90和BmANT1均為機(jī)體的管家蛋白,HSP90作為另一類熱休克蛋白,同其他熱激蛋白家族一樣,與病毒有著復(fù)雜的關(guān)系[15-16]。HSP90既能通過(guò)信號(hào)轉(zhuǎn)導(dǎo)途徑影響病毒的復(fù)制增殖,也能直接作用于病毒的蛋白[17-18]。研究表明,HSP90通過(guò)抑制牛痘病毒核心蛋白4a的活性抑制其復(fù)制,HSP90通過(guò)結(jié)合流感病毒PB2蛋白調(diào)節(jié)病毒聚合酶的活性促進(jìn)其復(fù)制[19-20]。HSP90也能夠幫助流感病毒DNA聚合酶的組裝,并且能協(xié)助其入核[19,21]。目前報(bào)道與HSP90相關(guān)的病毒涉及雙鏈DNA病毒、單鏈DNA病毒、RNA病毒等,對(duì)于不同的病毒HSP90所起作用也不盡相同,有促進(jìn)病毒增殖的作用,也有起免疫作用的[17]。先前已被報(bào)道與HSP60能夠一起作為分子伴侶形成一個(gè)大的復(fù)合物,抑制細(xì)胞線粒體凋亡[22],因此它們可能在病毒入侵時(shí)通過(guò)抑制宿主細(xì)胞凋亡,進(jìn)而共同調(diào)控BmNPV入侵。筆者課題組前期研究也同樣證明LEF-11能夠劫持宿主ATPase家族BmATAD3A和BmHSP60促進(jìn)自身增殖復(fù)制,這些結(jié)果都暗示BmHSP60在家蠶抗病毒免疫的熱休克反應(yīng)和線粒體代謝過(guò)程具有一定的作用[23]。
在BmN-SWU1細(xì)胞中轉(zhuǎn)染BmHSP60和BmHSP90、BmANT1 48 h后,用Alexa 555標(biāo)記抗Flag,F(xiàn)ITC標(biāo)記抗HA和Hoechst33258染色。紅色熒光表示Flag,綠色熒光表示HA,藍(lán)色熒光表示細(xì)胞核。比例尺Scale bar:5 μm
在BmN-SWU1細(xì)胞中轉(zhuǎn)染BmHSP60、BmANT1和BmHSP90 48 h后,用Alexa 555標(biāo)記,線粒體示蹤和Hoechst33258染色。紅色熒光表示BmHSP60、BmANT1和BmHSP90,綠色熒光表示Mito-Tracker,藍(lán)色熒光表示細(xì)胞核。比例尺Scale bar:5 μm
包括家蠶在內(nèi)的很多昆蟲(chóng)都具有兩個(gè)ANT同源基因,分別命名為ANT1和ANT2,ANT1在各組織中均有高量表達(dá),而ANT2只特異地在精巢中表達(dá),與生殖細(xì)胞的形成有關(guān)[24]。已有報(bào)道宿主的ANT1能夠和病原的相關(guān)蛋白發(fā)生相互作用。豬繁殖與綜合呼吸征病毒包膜蛋白E、對(duì)蝦白斑綜合癥病毒VP12以及人類免疫缺陷病毒Vpr均能和宿主ANT1相互作用,控制線粒體膜通透性[25-26]。此外,研究表明病毒的RNA也能干涉宿主ANT基因,人類巨細(xì)胞病毒miR-UL36-5P與ANT-3的mRNA作用,下調(diào)ANT-3的表達(dá)從而抑制凋亡[27]。BmNPV IE-2相互作用蛋白鑒定中,同樣發(fā)現(xiàn)IE-2相互作用候選蛋白包括ANT1,為ANT1參與BmNPV復(fù)制進(jìn)一步提供了依據(jù)[28],因此,筆者推測(cè)BmANT1也很有可能與病毒蛋白直接相互作用調(diào)控病毒增殖復(fù)制。不同昆蟲(chóng)的ANT1存在相似的結(jié)構(gòu),即含有3個(gè)線粒體跨膜結(jié)構(gòu)域,錨定在線粒體內(nèi)膜中,與電壓依賴性陰離子通道(voltage- dependent anion channel,VDAC)一同構(gòu)成了線粒體膜孔復(fù)合物,參與調(diào)節(jié)線粒體內(nèi)膜通透性,電化學(xué)平衡和氧化磷酸化鏈,甚至參與細(xì)胞凋亡途徑[28],因此根據(jù)它們定位于線粒體,可以推測(cè)家蠶BmHSP60和BmANT1在BmNPV誘導(dǎo)線粒體凋亡信號(hào)通路中具有非常關(guān)鍵的作用,從而促進(jìn)病毒增殖復(fù)制。
BmHSP90和BmANT1蛋白均能夠定位在線粒體上,這與BmHSP60在線粒體中的功能相吻合[29]。下一步將集中于研究BmHSP90和BmANT1蛋白如何影響病毒增復(fù)制以及與病毒直接的調(diào)控關(guān)系,為BmNPV劫持宿主能量代謝提供更深入的研究,完善病毒和宿主相互博弈網(wǎng)絡(luò)。
通過(guò)免疫共沉淀和細(xì)胞共定位鑒定出BmHSP60相互作用蛋白為BmHSP90和BmANT1,這兩個(gè)蛋白與BmHSP60共定位在細(xì)胞線粒體,為研究BmHSP60在家蠶抗病毒免疫中的作用機(jī)制打下了基礎(chǔ)。
[1] Milkman R. Temperature effects on day oldpupae, 1962, 45(4): 777-799.
[2] Lindquist S. Regulation of protein synthesis during heat shock, 1981, 293(5830): 311-314.
[3] Li Z W, Li X, Yu Q Y, Xiang Z H, Kishino H, Zhang Z. The small heat shock protein (sHSP) genes in the silkworm,, and comparative analysis with other insect sHSP genes, 2009, 9: 215.
[4] Dong Z Q, Hu N, Dong F F, Chen T T, Jiang Y M, Chen P, Lu C, Pan M H.LEF-11 hijack host ATPase ATAD3A to promote virus multiplication incells, 2017, 7: 46187.
[5] Zhang S M, Sun D C, Lou S, Bo X C, Lu Z, Qian X H, Wang S Q. HBx protein of hepatitis B virus(HBV) can form complex with mitochondrial HSP60 and HSP70, 2005, 150(8): 1579-1590.
[6] Huang C Y, Chen C A, Lee C N, Chang M C, Su Y N, Lin Y C, Hsieh C Y, Cheng W F. DNA vaccine encoding heat shock protein 60 co-linked to HPV16 E6 and E7 tumor antigens generates more potent immunotherapeutic effects than respective E6 or E7 tumor antigens, 2007, 107(3): 404-412.
[7] Nanda S K, Johnson R F, Liu Q, Leibowitz J L. Mitochondrial HSP70, HSP40, and HSP60 bind to the 3′ untranslated region of thegenome, 2004, 149(1): 93-111.
[8] Kang S M, Kim S J, Kim J H, Lee W, Kim G W, Lee K H, Choi K Y, Oh J W. Interaction of hepatitis C virus core protein with Hsp60 triggers the production of reactive oxygen species and enhances TNF--mediated apoptosis, 2009, 279(2): 230-237.
[9] Lago D C, Humann F C, Barchuk A R, Abraham K J, Hartfelder K. Differential gene expression underlying ovarian phenotype determination in honey bee,L., caste development., 2016, 79: 1-12.
[10] Arya R, Lakhotia S C. Hsp60D is essential for caspase-mediated induced apoptosis in., 2008, 13(4): 509-526.
[11] Dong Z Q, Hu N, Zhang J, Chen T T, Cao M Y, Li H Q, Lei X J, Chen P, Lu C, Pan M H. Oligomerization ofbaculovirus LEF-11 is involved in viral DNA replication, 2015, 10(12): e0144930.
[12] Zhang J, He Q, Zhang C D, Chen X Y, Chen X M, Dong Z Q, Li N, Kuang X X, Cao M Y, Lu C, Pan M H. Inhibition of BmNPV replication in silkworm cells using inducible and regulated artificial microRNA precursors targeting the essential viral gene, 2014, 104: 143-152.
[13] 蔣亞明, 董戰(zhàn)旗, 陳婷婷, 胡楠, 董非凡, 黃亮, 唐良彤, 潘敏慧. 桿狀病毒LEF-11蛋白自身相互作用關(guān)鍵區(qū)域的鑒定中國(guó)農(nóng)業(yè)科學(xué), 2017, 50(20): 4028-4035.
JIANG Y M, DONG Z Q, CHEN T T, HU N, DONG F F, HUANG L, TANG L T, PAN M H. Identification the key areas ofnucleopolyhedrovirus LEF-11 self-interaction., 2017, 50(20): 4028-4035. (in Chinese)
[14] 張倩, 劉太行, 董小龍, 吳云飛, 楊基貴, 周亮, 潘彩霞, 潘敏慧. 家蠶CDK11與RNPS1和9G8相互作用的鑒定中國(guó)農(nóng)業(yè)科學(xué), 2017, 50(22): 4398-4407.
ZHANG Q, Liu T H, Dong X L, WU Y F, YANG G J, ZHOU L, PAN C X, PAN M H. Identification of the interactions of CDK11 with RNPS1 and 9G8 in the silkworm ()., 2017, 50(22): 4398-4407. (in Chinese)
[15] Huang Y W, Hu C C, Liou M R, Chang B Y, Tsai C H, Meng M, Lin N S, Hsu Y H. Hsp90 interacts specifically with viral RNA and differentially regulates replication initiation ofand associated satellite RNA, 2012, 8(5): e1002726.
[16] Qian L, Zhao J, Du Y, Zhao X, Han M, Liu Y. Hsp90 interacts with Tm-22and is essential forTm-2-mediated resistance to, 2018, 9: Article 411.
[17] Cabrera-Hernandez A, Thepparit C, Suksanpaisan L, Smith D R. Dengue virus entry into liver (HepG2) cells is independent of hsp90 and hsp70., 2007, 79(4): 386-392.
[18] Ross C, Upfold N, Luke G A, Bishop O T, Knox C. Subcellular localisation of Theiler’s murine encephalomyelitis virus (TMEV) capsid subunit VP1 vis-a-vis host protein Hsp90, 2016, 222: 53-63.
[19] Momose F, Naito T, Yano K, Sugimoto S, Morikawa Y, Nagata K. Identification of Hsp90 as a stimulatory host factor involved in influenza virus RNA synthesis, 2002, 277(47): 45306-45314.
[20] Hung J J, Chung C S, Chang W. Molecular chaperone Hsp90 is important for vaccinia virus growth in cells, 2002, 76(3): 1379-1390.
[21] Jirakanwisal K, Srisutthisamphan K, Thepparit C, Suptawiwat O, Auewarakul P, Paemanee A, Roytrakul S, Smith D R. Identification of Hsp90 as a species independent H5N1 avian influenza A virus PB2 interacting protein, 2015, 43: 28-35.
[22] Xie Y J, Song L, Weng Z H, Liu S K, Liu Z J. Hsp90, Hsp60 and sHsp families of heat shock protein genes in channel catfish and their expression after bacterial infections., 2015, 44(2): 642-651.
[23] 陳婷婷, 董戰(zhàn)旗, 胡楠, 胡志剛, 魯成, 潘敏慧. 家蠶核型多角體病毒基因RNA干擾策略的優(yōu)化微生物學(xué)報(bào), 2016, 56(10): 1561-1570.
CHEN T T, DONG Z Q, HU N, HU Z G, LU C, PAN M H. Optimization of RNA interference strategy forgene ofnucleopolyhedrovirus.a, 2016, 56(10): 1561-1570. (in Chinese)
[24] Sugahara R, Jouraku A, Nakakura T, Kusakabe T, Yamamoto T, Shinohara Y, Miyoshi H, Shiotsuki T. Two adenine nucleotide translocase paralogues involved in cell proliferation and spermatogenesis in the silkworm, 2015, 10(3): e0119429.
[25] Pujhari S, Zakhartchouk A N. Porcine reproductive and respiratory syndrome virus envelope (E) protein interacts with mitochondrial proteins and induces apoptosis, 2016, 161(7): 1821-1830.
[26] Andersen J L, DeHart J L, Zimmerman E S, Ardon O, Kim B, Jacquot G, Benichou S, Planelles V. HIV-1 Vpr-induced apoptosis is cell cycle dependent and requires Bax but not ANT, 2006, 2(12): e127.
[27] Roumier T, Vieira H L, Castedo M, Ferri K F, Boya P, Andreau K, Druillennec S, Joza N, Penninger J M, Roques B, Kroemer G. The C-terminal moiety of HIV-1 Vpr induces cell death via a caspase-independent mitochondrial pathway, 2002, 9(11): 1212-1219.
[28] Wu Y, Wu Y, Wu Y, Tang H, Wu H, Zhang G, Wang W. Screening of candidate proteins interacting with IE-2 ofnucleopolyhedrovirus, 2013, 40(10): 5797-5804.
[29] Song E, Tang S, Xu J, Yin B, Bao E, Hartung J. Lenti-siRNA Hsp60 promote bax in mitochondria and induces apoptosis during heat stress, 2016, 481(1/2): 125-131.
Screening and identification of candidate proteins interacting with BmHSP60 in the silkworm ()
DONG ZhanQi1, JIANG YaMing1, PAN MinHui1,2
(1State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716;2Key Laboratory for Sericulture Functional Genomics and Biotechnology of Ministry of Agriculture, Southwest University, Chongqing 400716)
【Objective】HSP60 is an important member of heat shock proteins, which plays an important role in the innate immunity of insects, and is also an essential factor for insect growth and development. Previous studies have proved that BmHSP60 is involved in the invasion process ofnucleopolyhedrovirus (BmNPV). The objective of this study is to identify the interaction proteins of BmHSP60, and to provide a basis for further exploring the mechanism in the innate immunity of.【Method】 BmHSP60 overexpression vector was constructed and fused with the Flag tag for co-immunoprecipitation and silver-linked-mass spectrometry (LC-MS/MS). After transfected into thecells for 48 h, the cell lysates was collected for co-immunoprecipitation. The antibody was incubated with the magnetic beads to capture the interaction proteins. After silver staining, the distinct bands could be detected. The differential strips were stored at -80℃, and then the differentially expressed peptides were analyzed by mass spectrometry. The size of the bands was aligned with the NCBI database to screen for candidate interaction proteins according to the mass spectrometry results. Finally, the cloning vector of candidate interaction proteins was constructed and fused with HA tag, and transferred intocells with BmHSP60, respectively. Co-immunoprecipitation and fluorescence co-localization confirmed the interaction between BmHSP60 and candidate proteins. The co-localization of BmHSP60 candidate interaction proteins with mitochondria was analyzed by Mito-Tracker-Green.【Result】Mass spectrometry showed that there were 5 distinct bands in the vicinity of 110, 90, 75, 60 and 35 kD. a total of 32 differentially expressed proteins were identified by comparing the results of silver-linked mass spectrometry with those of silkworm genome database and NCBI database. The 5 bands were mixed into a protein pool for mass spectrometry, and 5 interaction proteins were screened consistent with the differential bands in silver staining according to the number of peptides and molecular weight of proteins. Candidate proteins were ADP/ATP translocase (ANT), Actin, Alpha-tubulin, Elongation factor 1-alpha (EF-1) and HSP90, respectively. The BmHSP60 candidate interaction protein clone expression vector was constructed and fused with HA tag, and co-transfected with BmHSP60 intocells.Immunocoprecipitation (IP) was incubated with-Flag antibody, immunoblotting (IB) was incubated with-Flag antibody, and BmHSP60 expression was detected by IP. IB incubated with-HA antibody showed that only BmANT and BmHSP90 could detect the corresponding bands, while Alpha-tubulin and EF1did not detect the corresponding bands with BmHSP60, indicating that only BmANT and BmHSP90 had direct interaction with BmHSP60, and Alpha-tubulin and EF1had no direct interaction with BmHSP60. Further analysis of fluorescence co-localization showed that BmANT and BmHSP90 could co-locate with BmHSP60 in cytoplasm. Mitochondrial marker Mito-Tracker-Green co-localization results showed that BmHSP60, BmANT and BmHSP90 were co-localized with mitochondria.【Conclusion】Heat shock protein BmHSP60 ofwas identified to interact with BmANT and BmHSP90, and co-localized in mitochondria. It can be used to study the mechanism of BmHSP60 in antiviral immunity of.
; BmHSP60; interaction protein; co-immunoprecipitation; BmANT1; BmHSP90
10.3864/j.issn.0578-1752.2019.02.016
2018-08-08;
2018-09-06
國(guó)家自然科學(xué)基金(31872427)、國(guó)家蠶桑產(chǎn)業(yè)技術(shù)體系(CARS-18)、中國(guó)博士后科學(xué)基金面上項(xiàng)目(2018M633309)、重慶市博士后特別資助項(xiàng)目(XmT2018020)
董戰(zhàn)旗,E-mail:zqdong@swu.edu.cn。通信作者潘敏慧,E-mail:pmh047@126.com
(責(zé)任編輯 岳梅)