国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

大氣物理與人工影響天氣

2019-01-16 11:05
關(guān)鍵詞:降水人工觀測

云物理與人工影響天氣研究進(jìn)展

Advances in Research on Cloud Physics and Weather Modification

1 人工影響天氣機理與方法

1 Mechanism and method of weather modification

1.1 Raindrop size distribution characteristics for tropical cyclones and Meiyu-Baiu fronts impacting Tokyo,Japan

Tropical cyclones and meiyu-baiu fronts,as the two main synoptic systems over East Asia,bring heavy rain during summers,but their long-term and vertical raindrop size distribution (RSD) features over the midlatitude Japan Islands are limited.Radar-based quantitative precipitation estimation (QPE) techniques require RSD observations.In this study,five-year observations from Tokyo with a ground-based impact Joss-Waldvogel disdrometer (JWD) and a vertically pointing micro rain radar (MRR) with a vertical range of 0.2–6.0 km were used to study the vertical structures of RSD and QPE parameters.The results showed that the convective rain associated with tropical cyclones had a maritime nature,while the rain associated with the meiyu-baiu front had a continental nature.The rain associated with tropical cyclones had a relatively higher concentration of raindrops and a larger average raindrop diameter than the rain associated with the meiyubaiu front.TheZ–R(radar reflectivity-rain rate) relationships (Z=ARb) based on the JWD data for tropical cyclones,the meiyu-baiu front and total summer rainfall in Tokyo wereZ=189R1.38,Z=214R1.35andZ=21 2R1.33,respectively.When theZ–Rrelationships obtained in this study were used to replace the operational relationship of Z=300R1.4,the standard deviation of the rain rate was reduced from 5.50 mm h?1(2.34 mm h?1) to 2.34 mm h?1(1.32 mm h?1) for typhoon (meiyu-baiu front) rainfall,although the change for total summer rainfall was small.In addition,with increasing height below 4 km,the value ofAandbdecreased.(Chen Yong,Duan Jing,An Junling,Liu Huizhi)

1.2 Aircraft measurement campaign on summer cloud microphysical properties over the Tibetan Plateau

We reported the first aircraft campaign on summer cloud microphysical properties conducted in July of 2014 over the Tibetan Plateau during the Third Tibetan Plateau Atmospheric Scientific Experiment (TIPEXIII),and demonstrated that the summer clouds over the Tibetan Plateau were primarily characterized as mixed-phase cumulus clouds induced by strong solar radiation heating.Moreover,the characteristic number concentration of cloud droplets (2?50 μm in diameter) in developing cumuli was around 10 cm?3,which was about 1?2 orders of magnitudes lower than those in other continent and ocean regions,and that for large drops (>50 μm in diameter) was around 10?3cm?3,which was also lower than those in other regions.The droplet spectrum distributions (DSDs) of cloud drops were much wider than those in other regions,indicating that the cumulus clouds over the plateau could form precipitation easier than those in other regions.Ice microphysics was characterized as very active glaciation and riming processes with high supercooled water content,which caused the formation of high concentration of graupel particles in clouds.The findings of this study suggest that these unique cloud microphysical properties formed by the high topography and clean environment of the Tibetan Plateau could induce higher precipitation efficiency when airflow passed over the plateau,so that the plateau could act as a regional“water tower”.(Chang Yi,Guo Xueliang,Tang Jie,Lu Guangxian)

1.3 A numerical investigation on microphysical properties of clouds and precipitation over the Tibetan Plateau in summer 2014

In order to improve our understanding of microphysical properties of clouds and precipitation over the Tibetan Plateau (TP),six cloud and precipitation processes with different intensities during the Third Tibetan Plateau Atmospheric Scientific Experiment (TIPEX-III) from 3 July to 25 July 2014 in the Naqu region of the TP are investigated by using the high-resolution mesoscale Weather Research and Forecasting (WRF) model.The results show unique properties of summertime clouds and precipitation processes over the TP.The initiation process of clouds is closely associated with strong solar radiative heating in the daytime,and summertime clouds and precipitation show an obvious diurnal variation.Generally,convective clouds would transform into stratiform clouds with an obvious bright band and often produce strong rainfall in midnight.The maximum cloud top can reach more than 15 km above sea level and the velocity of updraft ranges from 10 to 40 m s?1.The simulations show high amount of supercooled water content primarily located between 0 and ?20 layer in all the six cases.Ice crystals mainly form above the level of ?20 and even appear above the level of ?40 within strong convective clouds.Rainwater mostly appears below the melting layer,indicating that its formation mainly depends on the melting process of precipitable ice particles.Snow and graupel particles have the characteristics of high content and deep vertical distribution,showing that the ice phase process is very active in the development of clouds and precipitation.The conversion and formation of hydrometeors and precipitation over the plateau exhibit obvious characteristics.Surface precipitation is mainly formed by the melting of graupel particles.Although the warm cloud microphysical process has less direct contribution to the formation of surface precipitation,it is important for the formation of supercooled raindrops,which are essential for the formation of graupel embryos through heterogeneous freezing process.The growth of graupel particles mainly relies on the riming process with supercooled cloud water and aggregation of snow particles.(Tang Jie,Guo Xueliang,Chang Yi)

1.4 Comparative analyses of vertical structure of deep convective clouds with multi-source satellite and ground-based radar observational data at Naqu over the Tibetan Plateau

In order to improve the understanding of deep convective clouds over the Tibetan Plateau,the characteristics of vertical structures of a deep strong convective cloud over Naqu Station and a deep weak convective cloud about 100 km to the west of Naqu station occurred during 13:00?16:00 BT 9 July 2014 in the Third Tibetan Plateau Atmospheric Science Experiment are analyzed based on multi-source satellite data from TRMM,CloudSat and Aqua and radar data from ground-based vertically pointing radars (C-band frequencymodulated continuous-wave radar and KA-band millimeter wave cloud radar).The results are as follows:(1) The horizontal scales of the deep strong convective cloud and deep weak convective cloud both were small (10?20 km),and the tops were high (15?16 km above the sea level,the same hereafter).Across the level of the 0 isotherm,the reflectivity increased rapidly,suggesting that the melting process of solid precipitation particles through the 0 level in the deep strong convective cloud played an important role.A bright band located at 5.5 km (1 km AGL) appeared during the period of convection weakening.(2) The reflectivities from TRMM precipitation radar below 11 km were found to be overestimated compared to those derived from the C-band frequency-modulated continuous-wave radar.(3) Deep convective clouds were mainly ice clouds,and there were rich small ice particles above 10 km,while few large ice particles were found below 10 km.The microphysical processes of the deep strong convective cloud and the deep weak convective cloud mainly included mixed-phase process and glaciated process,and the mixed-phase process can be divided into two types:one was the rimming process below the level of ?25 (deep strong convective cloud) or ?29 (deep weak convective cloud) and the other one was aggregation and deposition process above the level.The latter process was accompanied with fast increase of ice particles effective radius.These evidences from space-based and ground-based observational data further clarify the characteristics of vertical structure of deep convective clouds over the Tibetan Plateau,and provide a basis for the evaluation of simulation results of deep convective clouds by cloud models.(Wang Hui,Guo Xueliang)

1.5 Measurements of natural ice nucleating particles in Beijing in the spring of 2017

The ice nucleating particles (INPs) in the ambient air in Beijing during the spring of 2017 were observed using an improved 5-L version of the Bigg’s mixing cloud chamber.The characteristics of the diurnal INPs concentrations are analyzed and compared with measurements made in 1963,1995 and 1996.The particle number size distribution was also measured simultaneously.The correlation between the concentration of INPs and the aerosol number concentration in different size ranges is discussed.Moreover,the relationship between the concentration of INPs and different meteorological factors,such as wind speed,air pressure,temperature,humidity and weather conditions,are analyzed.From the results of observation,in general,the concentrations of INPs at ?20 ,?25 and ?30 temperatures trend with each other on a day to day basis,although there are slight differences in some cases at ?20 .As the activation temperatures decrease by 5 ,the concentration of INPs increases by about one order of magnitude.The concentration of INPs increases significantly when air pollution is severe,but the specific relationship between INPs and pollution needed to be verified in the follow-up work,which is related to the sources of pollution and the aerosol components.Compared with historical experimental data,interpreting trends using short sampling periods in individual years over decadal time frames,the average concentrations of INPs in Beijing increased by approximately 15 times from 1963 to 1996,but in the past 20 years,the concentration of INPs has decreased significantly.For aerosols with particle size that exceeds 0.5 μm,the correlation coefficient between aerosol number concentration and INPs increases significantly with increasing aerosol particle size; however,it tends to stabilize at approximately 0.6 for aerosol particles larger than approximately 2 μm.A comparison with meteorological parameters shows that the concentration of INPs is inversely correlated with wind speed,and displays a positive correlation with relative humidity.These results indicate that conditions that favor dispersion lead to reduced concentrations of INPs.(Che Yunfei,Dang Juan,Fang Wen,Shen Xiaojing,Sun Junying,Chen Yue,Qian Yao)

1.6 Toward understanding the process-level impacts of aerosols on microphysical properties of a shallow cumulus cloud using aircraft observations

Representation of clouds remains as the largest uncertainty in future climate predictions.Numerous studies have found and investigated the impacts of aerosols on cloud microphysical properties.However,few studies have investigated the process-level impact of aerosols on cloud microphysical properties,particularly over heavy polluted the North China Plain region.Using the aircraft observations,this study investigates the variation of cloud droplet size distribution (DSD) with aerosol concentration and vertical velocity (VV) in a shallow cumulus cloud with sufficient liquid water content (LWC).Strong variation in both cloud droplet number concentration (N) and LWC exists,with values from a few cm?3to>1200 cm?3,and from 0 to 3.0 g/m3,respectively.In general,the total cloudN(effective radiusre) for cases with weak VV is slightly less (smaller) than that for cases with high VV for this cumulus cloud with high LWC.Potential mechanisms about the impacts of aerosols (or VV) on the cumulus microphysical properties are proposed for both high and low LWC conditions.Simply said,the change of cloudNmainly depends on the amount of aerosols,and the change of cloud dropletredepends on both the supply of water content and the amount of aerosols:if LWC is high and aerosol amount is not too large,both cloudNandreincrease with increasing aerosols; if LWC is low or if LWC is high but aerosol amount is too large,cloudNincrease butredecrease with increasing aerosols.Note that for two cases with very strong downdraft,the cloud droplets seem less and smaller than strong VV cases.The most likely reason is that very strong downdraft along with the adiabatic cooling makes dry air above the cloud enter into clouds and causes evaporation of droplets,resulting in smaller and less cloud droplets.(Yang Yang,Zhao Chuanfeng,Dong Xiaobo)

1.7 Evaluation of hygroscopic cloud seeding in liquid-water clouds:A feasibility study

An airborne cloud seeding experiment was conducted over the eastern coast of Zhejiang,China,on 4 September 2016 during a major international event held in Hangzhou.In an attempt to reduce the likelihood of rainfall onset,a major airborne experiment for weather modification took place by seeding hygroscopic agents to warm clouds to reduce cloud droplet size.The effectiveness of seeding is examined,mainly for stratiform clouds with patchy small convective cells.A radar-domain-index (RDI) algorithm was proposed to analyze the seeding effect.The threshold strategy and the tracking radar echo by correlation (TREC) technique was applied in the domain selection.Factors analyzed include echo reflectivity parameters such as the mean and maximum echo intensity,the anomaly percentage of the grid number of effective echoes,the fractional contribution to the total reflectivities,and the vertically integrated liquid (VIL) water content during and after the seeding process.About 12 min after seeding ended,the composite reflectivity of seeded clouds decreased to a minimum (<10 dBz) and the VIL of seeded clouds was 0.2 kg m?3.The echo topheight dropped to 3.5 km,and the surface echoes were also weakened.By contrast,there was no significant variation in these echo parameters for the surrounding nonseeded clouds.The seeded cell appeared to have the shortest life cycle,as revealed by applying the cloud-cluster tracking method.The airborne Cloud Droplet Probe (CDP) measured the cloud number concentration,effective diameter,and liquid water content,which gradually increased after the start of cloud seeding.This is probably caused by the hygroscopic growth of agent particles and collision-coalescence of small cloud droplets.However,these parameters sampled at 40 min after seeding decreased significantly,which is probably due to the excessive seeding agents generating a competition for cloud water and thus suppressing cloud development and precipitation.Overall,the physical phenomenon was captured in this study,but a more quantitative in-depth analysis of the underlying principle is needed.(Wang Fei,Li Zhanqing,Jiang Qi,Wang Gaili,Jia Shuo,Duan Jing,Zhou Yuquan)

1.8 Observation study of aerosol spectrum and meteorological conditions under dust weather in Nanjing

In this paper,the characteristics of aerosol spectrum and meteorological conditions of a dust storm were analyzed on May 2011.To compare with different weather background,another 3 days of aerosol properties were discussed.The results showed that the dust storm was originated in the southern Mongolia and central Inner Mongolia,influenced Nanjing through Beijing and Shandong from the direction of southeast.The local pollution was serious before the dust intrusion and the ultrafine particles mainly ≤0.08 μm.The coarse particles≥0.5 μm mainly occurred during and after the dust intrusion.Compared with other pollution and clean days in the same season,the aerosol concentration affected by dust storm and local pollution was five times higher than that in the clean days in Nanjing.By the influence of local pollution,the diurnal variation of aerosol showed double peaks which located at about 10:00 and 20:00,respectively.Dust and precipitation had great influence on aerosol diurnal variation.The dry and wet removal processes affected the time of the aerosol concentration peaks.(Wang Fei,Jiang Qi,Zhu Bin)

1.9 Below-cloud aerosol scavenging by different rain intensities in Beijing

Below-cloud aerosol scavenging process by precipitation is an important mechanism for cleaning the polluted aerosols in atmosphere,and is also a main process for acid rain formation.However,the physical mechanism has not been well clarified yet due to complex precipitation processes.We investigated the belowcloud PM2.5(particulate matter with aerodynamic diameter is 2.5 μm and less) scavenging ratio by different rain intensities in the pollutant condition characterized by high PM2.5concentration based on measurements from March 2014 to July 2016 in Beijing.It was found that relatively more intense rain event was more efficient in removing the polluted aerosols in atmosphere.The mean PM2.5scavenging ratio and its standard deviation (SD) were 5.1±25.7%,38.5±29.0% and 50.6±21.2% for light,moderate and heavy rain events,respectively.We further found that the important impact factors on the below-cloud PM2.5scavenging ratio for light rain events were rain duration and wind speed rather than raindrop size distribution.However,the impacts of rain duration and wind speed on scavenging ratio were not important for moderate and heavy rain intensity events.To our knowledge,it is the first statistical result about the effect of the raindrop size distribution on below-cloud scavenging in China.(Luan Tian,Guo Xueliang,Zhang Tianhang,Guo Lijun)

1.10 Effects of convection over the Tibetan Plateau on rainstorms downstream of the Yangtze River Basin

This study investigated the effect of convection over the Naqu region of the central Tibetan Plateau (TP) on rainstorms in the downstream areas of the Yangtze River Basin (YRB) accompanied by water vapor transport during August 15–19,2014.The hourly maximum C-band frequency-modulated continuous-wave (C-FMCW) radar echo intensity at Naqu obtained from the Third Tibetan Plateau Atmospheric Scientific Experiment (TIPEXIII) was applied to represent local convective motion during this rainstorm process.Results based on hourly raingauge station data,National Centers for Environmental Prediction (NCEP) Final (FNL) Operational Global Analysis data,and Weather Research and Forecasting (WRF) simulations revealed that convection at Naqu was a strong signal over the TP.Convection over the Naqu region could impact rainstorms in the middle and lower reaches of the YRB via a three-dimensional water vapor flux vortex (WVFV) structure with high-level divergence and low-level convergence.The eastward propagation of the WVFV structure would enhance convection and thereby develop rainstorms downstream of the YRB.A FLEXible PARTicle (FLEXPART) dispersion model tracked the trajectory of air masses originating from the TP toward the middlelower reaches of the YRB,which supported the robustness of the diagnostic results.(Zhao Yang,Xu Xiangde,Liu Liping,Zhang Rong,Xu Hongxiong,Wang Yinjun,Li Jiao)

1.11 The large-scale circulation patterns responsible for extreme precipitation over the North China Plain in midsummer

Extreme precipitation events over the North China Plain (NCP) in midsummer during 1979–2016 are classified into two types using objective cluster analysis:a northern pattern with heavy precipitation and a central-southern pattern with relatively moderate precipitation.The large-scale circulation patterns responsible for the midsummer extreme precipitation are then determined.In the northern NCP type,extreme precipitation accompanies a zonal gradient between an anomalous low-pressure system at high latitudes and the westward- and northward-extended western North Pacific subtropical high (WNPSH).Anomalous southwesterlies flow is driven by a trough that extended from the high latitudes to the northern NCP,where it encounters southeasterly wind flow induced by an anomalously northward-extended WNPSH and a southern low-pressure anomaly at low latitudes.Anomalous amounts of moisture are mainly transported from the tropical western Pacific by southeasterlies.In the central-southern NCP type,remarkable anomalous low-pressure systems control all of the northern China with centers over the Sichuan Basin and Northeast China.The westward-extended WNPSH occupies further south than that of the northern NCP type.The southwesterly low-level jet (LLJ) is more prevalent in the central-southern NCP type than in the northern NCP type.This southwesterly LLJ plays an important role in extreme precipitation over the central-southern NCP by transporting moisture primarily from the Bay of Bengal and the South China Sea and generating convergence.In addition,the upper-level anomalous strong divergence that is anchored over the right entrance of the westerly jet makes a greater contribution to extreme precipitation in the northern type than in the central-southern type.(Zhao Yang,Xu Xiangde,Li Jiao,Zhang Rong,Kang Yanzhen,Huang Wubin,Xia Yu,Liu Di,Sun Xiaoyun)

1.12 Analysis of chemical composition,sources and process characteristics of submicron aerosol in the summer of Beijing,China

In this study,aerosol chemical speciation monitor (ACSM) and various collocated instruments are used to observe and analyze the chemical compositions,source and extinction characteristics of submicron aerosol (PM1,aerodynamic diameter less than 1 μm) in Beijing from July to September,2012.The results show that the average mass concentration of PM1during the whole observation period is 53.8 μg m?3,accounting for 70%?85% of PM2.5on average.From July to September,the average mass concentration of non-refractory submicron aerosol (NR-PM1) declines monthly with the increasing fraction of OA in NR-PM1.The organics aerosol (OA) contributes the major mass fraction of PM1during the cleaning days,and the fraction of inorganics shows a significant increasing trend with the accumulation of pollutants.The effects of meteorology on PM pollution and aerosol processing are also explored.In particular,SOR increase significantly at elevated relative humidity (RH) periods which suggested that the conversion of SO2to SO42?in pollution episodes is more effective through the aqueous-phase oxidation of SO2instead of the gas-phase oxidation.In addition,the effect of wind speed on the primary species (PPM) is significantly weaker than that on the secondary species (SPM).In addition,the mass concentration of SPM (or organics) is more sensitive to wind speed changes,compared with PPM (or inorganics).The proportion of oxygenated OA (OOA) in OA is significantly higher than that of hydrocarbon-like OA (HOA),and as the proportion of OA in PM1 increases,the mass fraction of OOA in OA decreases gradually.Moreover,the particulate matter (PM) in Beijing shows essentially neutral during the observation period.The total extinction coefficient of PM tracks well with the PM1(r2=0.72),and the extinction efficiency of the secondary particulate matter (SPM) (r2=0.92) is significantly higher than that of the primary particulate matter (PPM) (r2=0.58).Meanwhile,the correlation between OA and extinction coefficient (r2=0.56) is weaker than that between inorganics and extinction coefficient (r2=0.86).(Jiang Qi,Wang Fei,Sun Yele)

1.13 1961—2015年中國地區(qū)冰雹持續(xù)時間的時空分布特征及影響因子研究

利用1961—2015年中國地區(qū)577個地面觀測站的冰雹資料,應(yīng)用統(tǒng)計學(xué)方法,分析了冰雹持續(xù)時間的空間分布、年際變化以及日變化特征,包括站點降雹累積持續(xù)時間、平均單次降雹持續(xù)時間、區(qū)域平均單次降雹持續(xù)時間、小時降雹累積持續(xù)時間和總降雹累積持續(xù)時間。結(jié)果表明:(1)1961—2015年中國地區(qū)站點降雹累積持續(xù)時間與海拔高度呈現(xiàn)較高的正相關(guān)關(guān)系,相關(guān)系數(shù)高達(dá)0.99。站點降雹累積持續(xù)時間的最大值出現(xiàn)在青藏高原地區(qū),累積持續(xù)時間高達(dá)250 min,其次為內(nèi)蒙古中部以及東北部的山區(qū)地帶,累積持續(xù)時間約為150 min。(2)1961—2015年平均單次降雹持續(xù)時間呈現(xiàn)上升趨勢,55年冰雹累積持續(xù)時間大約增長1 min,且通過了95%信度水平的顯著性檢驗。(3)西北地區(qū)、北部平原地區(qū)和東南地區(qū)在1961—1980年期間,區(qū)域平均單次降雹持續(xù)時間都有顯著的下降趨勢,而在1970—2015年期間西北地區(qū)和青藏高原地區(qū)呈現(xiàn)顯著的上升趨勢。1961—1980年期間區(qū)域平均單次降雹持續(xù)時間在西北地區(qū)的長期趨勢變化主要受到日最低氣溫以及溫度日較差長期年際變化的影響,在北部平原地區(qū)僅與溫度日較差相關(guān),而在東南地區(qū)與3個對流參數(shù)都有較好的相關(guān)性;1970—2015年和1961—2015年期間西北地區(qū)和青藏高原地區(qū)的區(qū)域平均單次降雹持續(xù)時間的上升趨勢分別與這兩個區(qū)域的區(qū)域平均日最高氣溫、日最低氣溫呈正相關(guān)。(4)單次降雹持續(xù)時間的日變化明顯,午后至夜間出現(xiàn)的冰雹持續(xù)時間長于凌晨和上午的冰雹過程,持續(xù)時間峰值出現(xiàn)在當(dāng)?shù)貢r間17:00和18:00。本文還利用探空資料分析了對流有效勢能和Totals-totals指數(shù)與冰雹持續(xù)時間的關(guān)系,結(jié)果表明中國地區(qū)20:00(北京時)的對流有效勢能和Totals-totals指數(shù)可能是冰雹持續(xù)時間日變化的影響因子之一。(趙文慧,姚展予,賈爍,王偉健,張沛,高亮?xí)?/p>

1.14 六盤山區(qū)夏秋季大氣水汽和液態(tài)水特征初步分析

六盤山區(qū)是中國典型的農(nóng)牧交錯帶和生態(tài)脆弱帶,也是黃土高原重要的水源涵養(yǎng)地、生態(tài)保護(hù)區(qū)及國家級扶貧開發(fā)區(qū)。利用2017年6—11月隆德氣象站地基多通道微波輻射計資料,結(jié)合同期平?jīng)鎏娇照炯奥〉碌孛娼邓扔^測資料,分析了六盤山區(qū)夏秋季大氣水汽、液態(tài)水變化特征。結(jié)果表明:六盤山區(qū)夏秋季在降水天氣背景下,大氣水汽含量和液態(tài)水含量均較高,分別為無降水天氣背景下的14倍和70倍;降水天氣背景下水汽在5000m以下有明顯的增加,且在此高度范圍內(nèi)的水汽密度隨高度的遞減率比無降水天氣背景下明顯偏小;各高度層的液態(tài)水相比無降水天氣背景下均有明顯增大,除6月外,主峰值均出現(xiàn)在0 ℃層高度層以下。六盤山區(qū)夏秋季各月中,6—9月大氣水汽含量高值區(qū)均出現(xiàn)在正午到傍晚時段,低值區(qū)均出現(xiàn)在日出前后;液態(tài)水含量在日出前、午后及傍晚分別出現(xiàn)峰值,最明顯的峰值出現(xiàn)在午后。對一次對流性降水天氣過程分析后發(fā)現(xiàn),降水發(fā)生前40 min大氣水汽含量和液態(tài)水含量出現(xiàn)兩次明顯的躍增,水汽向上輸送不斷加強,2500~7500 m高度的相對濕度明顯增大。(田磊,桑建人,姚展予,常倬林,單新蘭,曹寧,孫艷橋)

1.15 基于航測的珠三角氣溶膠垂直分布及活化特性

2017年9月14—27日,在珠三角地區(qū)開展了6個架次飛機觀測試驗。利用飛行獲取的氣溶膠、云凝結(jié)核、云滴及常規(guī)氣象探頭資料,結(jié)合天氣形勢、氣象條件及氣團(tuán)后向軌跡分析,研究了珠江三角洲深圳地區(qū)氣溶膠數(shù)濃度及其譜的垂直分布特征,配合不同過飽和度條件下云凝結(jié)核濃度觀測,分析了氣溶膠活化特性。結(jié)果表明:在不同天氣條件下,深圳低層氣溶膠數(shù)濃度變化范圍為500~9000 cm-3;邊界層內(nèi)氣溶膠分布相對均勻,譜型隨高度變化與氣象條件相關(guān)。將6架次氣溶膠根據(jù)數(shù)濃度及譜型分為3種類型:類型Ⅰ為海洋型氣溶膠,數(shù)濃度小,粒子尺度大,譜型呈雙峰分布;類型Ⅲ為大陸型氣溶膠,數(shù)濃度高,粒子尺度小,譜寬較寬且呈三峰分布;類型Ⅱ為海洋大陸影響型氣溶膠,即受海洋和大陸共同影響,數(shù)濃度低于類型Ⅲ高于類型Ⅰ,譜型為雙峰分布。擬合了包含海洋型及大陸型氣溶膠的3架次近地面云凝結(jié)核活化譜,計算了氣溶膠在不同過飽和度條件下的活化效率。(段婧,樓小鳳,陳勇,高揚,李霞,周榮斌,毛輝,盧廣獻(xiàn),汪會,林俊君)

1.16 安慶地區(qū)一次飛機積冰的氣象條件分析

利用衛(wèi)星、雷達(dá)、探空、飛機等觀測資料和NCEP 再分析資料,以及數(shù)值模擬結(jié)果,對2016年3月8—9日我國安慶地區(qū)的云系特征和飛機積冰氣象條件進(jìn)行了分析,并對比了幾種積冰指數(shù)算法的計算結(jié)果。結(jié)果表明,此次飛機積冰發(fā)生在寒潮天氣背景下,強冷空氣造成鋒面逆溫。實測飛機積冰現(xiàn)象出現(xiàn)在對流降雨結(jié)束后的層積云層頂部,積冰高度對應(yīng)高空鋒區(qū)逆溫層底部,云頂高度約3.4 km,云頂溫度-10 ℃,無降水和雷達(dá)回波,云中主要為過冷水,豐沛時段飛機觀測過冷水平均值為0.36 g/m3,基本無冰相粒子。當(dāng)云頂高度再度抬升,冰相粒子增多時,過冷水含量減少,不利于積冰現(xiàn)象發(fā)生。多種積冰指數(shù)對比分析表明,CIP初始積冰潛勢算法較好體現(xiàn)了此次層積云飛機積冰特征。CPEFS模式模擬出了與實測比較一致的云宏微觀結(jié)構(gòu)。(孫晶,蔡淼,王飛,史月琴)

1.17 華南一次強對流天氣過程中環(huán)境條件對MCS形態(tài)特征的影響

2014年5月22日華南地區(qū)出現(xiàn)了一次大范圍強對流天氣過程,該過程中出現(xiàn)了2個中尺度對流系統(tǒng)(MCS)MCS-A和MCS-B,2個MCS表現(xiàn)出迥異的形態(tài)特征,產(chǎn)生了不同的強對流天氣。本研究利用多源觀測資料以及高分辨率數(shù)值模式分析了環(huán)境條件對于MCS形態(tài)特征的影響。結(jié)果表明:(1)廣西夜間到凌晨邊界層頂附近強盛的低空急流,使得MCS-A在北部山區(qū)出現(xiàn)后向建立(BB)的形態(tài)特征,有利于大量級的短時強降水的出現(xiàn)。(2)MCS-A進(jìn)入廣西平原地區(qū)以后,強盛的邊界層以上的低空急流使得能量垂直廓線的極大值在邊界層高度以上,且風(fēng)垂直切變特征不利于冷池前方的垂直運動發(fā)展,冷池前方無法連續(xù)觸發(fā)對流,MCS-A逐漸演化成線狀對流/層云伴隨(TL/AS)的形態(tài)特征,而后消亡。(3)在廣東,能量極大值出現(xiàn)在大氣底層,環(huán)境風(fēng)廓線有利于冷池前方垂直運動發(fā)展,進(jìn)而觸發(fā)新的對流,新生成的MCS-B呈現(xiàn)典型的層云拖曳型(TS)形態(tài),最終形成颮線,造成雷暴大風(fēng)天氣。(胡寧,汪會)

1.18 利用微雨雷達(dá)研究一次冷鋒云系降水的垂直結(jié)構(gòu)分布及演變特征

利用河北邢臺測站 Ka波段微雨雷達(dá)(MRR)觀測到的一次冷鋒云系降水過程分析降水的垂直分布及演變特征。將 MRR觀測結(jié)果與天氣雷達(dá)、地面雨滴譜儀、雨量計觀測結(jié)果進(jìn)行對比以檢驗 MRR數(shù)據(jù)的可靠性。同時將 MRR與雨滴譜儀和激光云高儀結(jié)合,研究了不同相對濕度階段特征量、雨滴譜的平均垂直分布特征和降水特征量隨時間、高度的演變特征。結(jié)果表明:MRR與雨量計及雨滴譜儀累計雨量結(jié)果較為接近,趨勢一致。MRR 200 m雨強值與地面雨滴譜儀雨強值偏差最小,平均偏差為 0.05 mm/h,相關(guān)系數(shù)為 0.93。相比雨滴譜儀,MRR觀測到的小滴數(shù)濃度出現(xiàn)高估,大滴數(shù)濃度出現(xiàn)低估,中滴數(shù)濃度較為一致。降水在云內(nèi)和云外受不同微物理過程影響,垂直變化特征不同。降水初期平均反射率和雨強在云底以下明顯減小,小滴和中滴平均數(shù)濃度明顯減小,蒸發(fā)作用影響較強。而在其余時間段在云內(nèi)隨高度降低平均反射率和雨強略有增加,小滴平均數(shù)濃度變化較小,中滴大滴平均數(shù)濃度增加,表明云內(nèi)有云滴與雨滴間的碰并發(fā)生。而在云外低層,隨高度降低平均有效直徑明顯增加,平均雨滴總數(shù)濃度明顯減小,小滴平均數(shù)濃度顯著減小,大滴平均數(shù)濃度顯著增加,表明在云外低層雨滴間的碰并作用較強。(崔云揚,周毓荃,蔡淼)

1.19 雨滴譜垂直演變特征的微雨雷達(dá)觀測研究

雨滴譜的垂直變化特征對于認(rèn)識降水過程、改進(jìn)模式和雷達(dá)定量估計降水等具有重要意義。利用2016年6月1日至9月30日雨量筒、微雨雷達(dá)(MRR)和PARSIVEL 雨滴譜儀連續(xù)4 個月的觀測數(shù)據(jù),在對比3 種儀器觀測結(jié)果的基礎(chǔ)上,研究了層狀云降水不同降水強度下微物理特征量和雨滴譜垂直演變特征。結(jié)果表明:MRR 與PARSIVEL 雨滴譜儀觀測降水強度相關(guān)性較好,且兩種儀器觀測的雨滴譜在中等粒子段(0.5~2.5 mm)表現(xiàn)出較好的一致性,而對于小粒子段(雨滴直徑小于0.5 mm)PARSIVE雨滴譜儀觀測的數(shù)濃度明顯低于MRR。對于弱降水(降水強度R<0.2 mm/h),液水含量和降水強度隨高度降低減小,雨滴在下落過程中蒸發(fā)明顯。對于較強降水(R>2 mm/h),隨高度降低,雷達(dá)反射率因子増大,小滴數(shù)濃度減小的同時大滴數(shù)濃度増加明顯,雨滴下落過程碰并作用明顯。所有高度直徑不超過0.5 mm 的小滴對數(shù)濃度貢獻(xiàn)均為最大。高層雨滴直徑不小于1 mm的小粒子對降水強度的貢獻(xiàn)可達(dá)50%,小粒子對降水強度貢獻(xiàn)隨高度降低而減小。(宋燦,周毓荃,吳志會)

1.20 一次冰雹天氣過程的云系發(fā)展演變及云物理特征研究

利用中尺度數(shù)值模式WRF的數(shù)值模擬,結(jié)合 NCEP/FNL再分析資料、地面、探空、多普勒雷達(dá)基數(shù)據(jù)和衛(wèi)星產(chǎn)品等觀測資料,綜合分析了2014年3月30日發(fā)生在貴州省西南部的一次冰雹天氣過程。研究了有利于冰雹發(fā)生的環(huán)流特征和環(huán)境條件,分析了冰雹云系的發(fā)展演變特征、云微物理結(jié)構(gòu)特征,初步分析了冰雹形成的云物理機制。結(jié)果表明:此次冰雹天氣是典型的低壓輻合線型降雹類型,地面降雹位置位于700 hPa切變線和近地面輻合線附近及南側(cè);發(fā)生此次冰雹過程的對流云系經(jīng)歷了對流云系的初生階段、合并加強階段、成熟降雹階段和東移階段。貴州地區(qū)上空對流云系的微物理結(jié)構(gòu)具有混合相云特征,高層為冰晶、雪,中層為云水、霰,低層為雨水、冰雹。霰和云水是形成雨水和冰雹的主要來源,霰撞凍過冷云水和霰的自動轉(zhuǎn)化是冰雹形成的主要微物理機制。(張小娟,陶玥,劉國強,彭宇翔)

1.21 云輻射效應(yīng)在華北持續(xù)性大霧維持和發(fā)展中的作用

觀測研究發(fā)現(xiàn)華北地區(qū)的持續(xù)性大霧天氣通常伴隨高層云的存在,具有云-霧共存結(jié)構(gòu)特征,為揭示云在持續(xù)性大霧維持和發(fā)展中的作用,本文利用中尺度數(shù)值模式WRF,結(jié)合華北霧霾觀測試驗期間的衛(wèi)星、探空、地面觀測、系留汽艇、微波輻射計等觀測資料,研究了2011年12月3—6日和2013年1月28—31日兩次華北持續(xù)性大霧天氣形成和發(fā)展演變過程。在模擬與觀測對比檢驗研究的基礎(chǔ)上,重點開展了云輻射效應(yīng)在大霧維持和發(fā)展中的作用。研究結(jié)果表明:兩次大霧過程持續(xù)時間長達(dá)48 h以上,近地面具有偏南暖濕平流,在持續(xù)性大霧發(fā)展過程中,均出現(xiàn)了由單層霧發(fā)展為云—霧共存結(jié)構(gòu),一般是霧形成24 h以后有中高云移到霧層之上,云底高度在3 km以上,云厚超過3.5 km,云中以冰晶和雪晶為主。白天云—霧共存結(jié)構(gòu)出現(xiàn)后,云—霧的反照率效應(yīng)使地表接收的短波輻射減少了71%~84%,地面增溫效應(yīng)顯著減小,從而阻礙了大霧的消散過程,使大霧天氣得以維持,同時由于云—霧產(chǎn)生的溫室效應(yīng),湍流過程加強,使地面霧向上擴展,霧在穩(wěn)定層內(nèi)維持;夜晚云—霧共存時,由于云—霧溫室效應(yīng)使地表凈長波輻射增加了70 W/m2以上,導(dǎo)致地面長波輻射冷卻過程減弱,并不利于霧的加強,但云對霧的增溫效應(yīng)有利于混合層內(nèi)的湍流擴散過程,促使霧在更高的空間內(nèi)得以維持。可見,在云—霧共存結(jié)構(gòu)中,云輻射效應(yīng)有利于低層大霧的長時間維持,對持續(xù)性大霧的形成和發(fā)展產(chǎn)生了重要作用。(郭麗君,郭學(xué)良,欒天,呂愷)

1.22 廬山云霧及降水的日、季節(jié)變化及宏微觀物理特征觀測研究

廬山云霧觀測站2015年重新開始觀測試驗。利用2015年11月至2018年2月廬山云霧試驗站觀測的云物理資料和九江站的雷達(dá)資料,統(tǒng)計研究了廬山云霧及降水的日、季節(jié)變化和宏微觀物理特征。研究結(jié)果表明,廬山強降水多發(fā)生在夏季,降水強度超過100 mm/h,而云霧天多發(fā)生在秋冬春季,最高云和霧天數(shù)高達(dá)25天/月,最低能見度可達(dá)到20 m,東北風(fēng)有利于水汽的冷卻凝結(jié)。云霧輻射影響下的日最低溫度發(fā)生在09:00左右,即云霧消散前。利用雷達(dá)資料對降水分類,廬山秋冬季層狀云、積層混合云和對流云降水分別占29%、44%和27%,春夏季對流云和積層混合云降水分別占83%和17%。和城市降水和霧相比,廬山降水的中小雨滴偏多,云霧滴譜的數(shù)濃度較低,雙峰結(jié)構(gòu)顯著,且譜較寬。隨著云內(nèi)降水量級的增加,雨滴的數(shù)濃度和尺度不斷增加,更易于啟動碰并機制,使小于11 μm和大于30 μm云霧滴減少,導(dǎo)致11 μm的峰值更為顯著。降雪期間的小云霧滴較為豐富,固態(tài)降水更容易通過淞附過程消耗大的過冷云滴。(郭麗君,郭學(xué)良,樓小鳳,盧廣獻(xiàn),呂愷,孫赫敏,李軍,張小鵬)

1.23 華北一次濃霧過程爆發(fā)性增強的微物理特征

基于華北霧—霾綜合觀測試驗資料,分析了2011年12月4日河北涿州一次濃霧過程爆發(fā)性增強的微物理特征及形成機理。結(jié)果表明:本次濃霧過程除具有均壓場、地面輻射降溫、逆溫層、靜穩(wěn)天氣等特征外,還具有霧微物理過程出現(xiàn)爆發(fā)性增強的特征,10 min內(nèi),小霧滴濃度顯著增加,含水量增大了3個量級,霧滴譜由15 μm拓寬到35 μm,能見度由500 m驟降至70 m。夜間地面長波輻射冷卻效應(yīng)導(dǎo)致近地層霧的形成,而近地層霧的形成反過來快速地增強了地面長波輻射冷卻效應(yīng),促使大量小霧滴的形成和碰并過程的產(chǎn)生,這是一種正反饋效應(yīng);大量霧滴形成釋放的潛熱,促使霧體抬升和向下長波輻射增強,又使地面長波輻射冷卻效應(yīng)減弱,這是一種負(fù)反饋效應(yīng)。相對于南京輻射霧過程,本次華北濃霧的小霧滴粒子數(shù)濃度高,液水含量明顯偏小,這與華北高濃度氣溶膠和弱水汽輸送有關(guān)。(方春剛,郭學(xué)良)

1.24 京津冀一次罕見的雙雨帶暴雨過程成因分析

2013年7月1日京津冀區(qū)域在副熱帶高壓北抬、 偏南低空急流加強、 高空槽東移的環(huán)流背景下,出現(xiàn)了一次罕見的降水強度大、 持續(xù)時間長的雙雨帶暴雨過程。利用常規(guī)觀測、NCEP (National Centers for Environmental Prediction)再分析資料和多種加密觀測以及雷達(dá)變分同化分析資料等對此次暴雨過程的成因和中尺度特征進(jìn)行了分析。結(jié)果表明:南北兩支暴雨帶的形成機制和中尺度過程有顯著差異,但是雙雨帶在形成與維持過程中也有相互促進(jìn)作用。南支暴雨帶發(fā)生于西南暖濕氣流加強的環(huán)境下,對流不穩(wěn)定層結(jié)顯著、整層濕度大;強降水是在暖式中尺度輻合線的觸發(fā)和組織下由中尺度對流復(fù)合體產(chǎn)生的,雷達(dá)回波具有明顯的“列車效應(yīng)”和后向傳播特征,屬于深厚的暖區(qū)濕對流暴雨,雨強和累積雨量極大、中尺度特征明顯;地面輻合線及中尺度渦旋的位置決定了雨帶和特大暴雨中心的位置,強降水產(chǎn)生的冷池出流和偏南暖濕氣流形成的溫度梯度最大區(qū)域指示了強回波的傳播方向。北支暴雨帶是在冷式切變線和低空低渦的影響下,由切變線云系形成的多單體回波帶造成的;不穩(wěn)定能量條件比南支暴雨帶差,但是高低空系統(tǒng)耦合作用產(chǎn)生的上升運動強,中層的干冷侵入形成了明顯的θse鋒區(qū),屬于鋒面對流系統(tǒng),同時地形對降水有顯著的增幅作用,多種因素綜合作用造成雨強相對較弱,但是降水持續(xù)時間長,暴雨區(qū)面積大;過程中低空低渦的移動路徑與強降水的落區(qū)和雨帶的位置有較好的對應(yīng)。南支暴雨帶暖區(qū)降水后邊界層形成的偏東風(fēng)不僅為北支暴雨帶提供水汽輸送,而且在太行山前的地形抬升作用促使了強對流單體的發(fā)生發(fā)展,增強了北支暴雨帶的降水強度,而太行山前強對流降水造成的冷池促進(jìn)了地面中尺度渦旋的形成,造成南支暴雨帶后期強對流回波的合并和降水的再度加強。(王華,李宏宇,仲躋芹,吳進(jìn),李梓銘,吳劍坤)

1.25 2016年冬季京津冀豫大氣污染的時空分布及影響因子研究

利用2016年12月至2017年2月北京、天津、石家莊和鄭州的PM2.5質(zhì)量濃度、反應(yīng)性氣體質(zhì)量濃度及其相對應(yīng)的氣象要素資料分析了大氣污染的理化特征、傳輸和生消規(guī)律。結(jié)果表明:北京、石家莊、天津及鄭州的PM2.5質(zhì)量濃度分布頻率均有兩個較為明顯的峰值,4個地區(qū)PM2.5質(zhì)量濃度分布頻率最高時均值分別為10.1、19.2、40.0和47.1 μmg/m3,大氣的氧化程度為北京最低,其次為石家莊、天津,鄭州最高。4個研究地區(qū)的交通源對環(huán)境大氣污染均有重要貢獻(xiàn)。PM2.5和CO的相關(guān)性在低相對濕度時高于高相對濕度時;而PM2.5和NO2的相關(guān)性在相對濕度較大時高于相對濕度較小時。4個研究地區(qū)的PM2.5質(zhì)量濃度均隨風(fēng)速的增大呈快速降低后趨于平緩的趨勢,其中北京、石家莊和鄭州的風(fēng)速閾值均為3 m/s,天津地區(qū)為4 m/s。受上游污染地區(qū)的影響,偏南風(fēng)的輸送作用滯后20~30 h達(dá)到最大,而偏北風(fēng)的影響作用在滯后8~12 h 達(dá)到最大。(江琪,王飛,張恒德,呂夢瑤,何佳寶)

1.26 不同降水強度對PM2.5的清除作用及影響因素分析

云和降水過程是大氣污染物的重要清除途徑,但由于降水過程和大氣污染顆粒物本身的復(fù)雜性,目前降水過程對大氣污染物的清除機制及影響因素有待深入研究。本文利用2014年3月至2016年7月在北京地區(qū)連續(xù)觀測的PM2.5和降水?dāng)?shù)據(jù),研究了不同降水強度對PM2.5的清除率,以及雨滴譜、風(fēng)速和降水持續(xù)時間對PM2.5清除率的影響。研究表明,降水強度越大,對PM2.5的清除效率越高。小雨、中雨和大雨對PM2.5清除率的平均值分別為5.1%、38.5%和50.6%。小雨不但對PM2.5的清除率最低,而且對PM2.5的清除效果也存在很大差異,約50%的小雨個例中PM2.5質(zhì)量濃度出現(xiàn)減小情況,而另外50%的小雨個例中,PM2.5質(zhì)量濃度有增加現(xiàn)象。在持續(xù)時間長或地面風(fēng)速增大的情況下,小雨也表現(xiàn)出較高的清除率。在中雨和大雨情況下,PM2.5質(zhì)量濃度均出現(xiàn)明顯減小情況。但降水持續(xù)時間和風(fēng)速對中雨和大雨的清除率影響較小,這是由于中雨和大雨一般在較短時間內(nèi)就可以清除大部分PM2.5,因此對降水的持續(xù)時間和風(fēng)速大小影響不敏感。(欒天,郭學(xué)良,張?zhí)旌?,郭麗君?/p>

1.27 一次浙江對流云人工催化數(shù)值模擬試驗

為了研究吸濕性催化劑、碘化銀催化劑及兩者的聯(lián)合催化效果,本文利用雙參數(shù)三維對流云催化模式,對南方一次對流云降水過程分別進(jìn)行鹽粉暖云催化、碘化銀冷云催化和冷暖混合催化試驗,對比研究不同催化方案對對流云降水的可能影響。結(jié)果表明鹽粉催化導(dǎo)致先增雨后減雨,主要通過鹽溶滴與云滴碰并增長,及雨滴碰并和霰粒子碰凍過程消耗。在上升氣流區(qū)和降水前期進(jìn)行催化的增雨效果更好;30 μm粒徑的鹽粉催化劑量為12.5/L時,可增加降水量17.8%。在降雨過程的不同發(fā)展階段進(jìn)行AgI催化,表現(xiàn)出先減雨后增雨的催化效果。鹽粉和碘化銀的聯(lián)合催化,兩者催化效果的不同步,使得不同吸濕性催化劑和碘化銀催化劑量配置會導(dǎo)致不同的催化效果。當(dāng)30 μm的鹽粉催化劑量為12.5/L、聯(lián)合碘化銀100/L的冷區(qū)催化時,可以取得19%的增雨效果。(樓小鳳,傅瑜,孫晶)

1.28 吸濕性播撒對暖性對流云減雨影響的數(shù)值模擬

利用以色列特拉維夫大學(xué)二維面對稱分檔云模式,對2016年9月4日16:00(北京時)前后我國華東地區(qū)的一次暖性淺對流云降水過程進(jìn)行模擬,模式模擬的強回波中心高度和最大回波強度范圍與觀測基本一致。并在此基礎(chǔ)上進(jìn)行了小于1 μm 的吸濕性核的播撒減雨試驗,分別考慮了不同播撒時間、不同播撒高度以及不同播撒劑量的敏感性測試。結(jié)果表明:在云的發(fā)展階段早期播撒能起到更好的減雨效果,播撒時間越早對大粒子生長過程的抑制作用越強,隨著播撒時間向后推移,受抑制作用最顯著的粒徑段向小粒徑端偏移;在云中心過飽和度大的區(qū)域下方進(jìn)行播撒,減雨效果更加明顯,當(dāng)播撒劑量為350 cm?3時,地面累積降水量減少率可達(dá)23.3%;另外,隨著播撒劑量的增加,減雨效果更加顯著,甚至能達(dá)到消雨的效果。因此,在暖性淺對流云中合理地播撒小于1 μm 的吸濕性核能達(dá)到較好的減雨或消雨效果。(劉佩,銀燕,陳倩,樓小鳳)

1.29 云霧物理膨脹云室研制及參數(shù)測試

膨脹云室可以形成水汽水面和冰面過飽和環(huán)境,是研究氣溶膠粒子、人工影響天氣冷暖催化劑核化過程和機理的重要設(shè)備,但長期以來我國缺乏配套先進(jìn)云霧粒子譜和圖像測量系統(tǒng)的膨脹云室。本文介紹了我國自主研制的膨脹云室系統(tǒng),由云室主體、環(huán)境和云霧測量系統(tǒng)、通信系統(tǒng)和控制系統(tǒng)4個子系統(tǒng)組成。該系統(tǒng)首次采用了國產(chǎn)云粒子譜儀和成像儀測量系統(tǒng)。測試試驗表明,該云室具有良好的溫度和壓力控制能力,平均降溫速率達(dá)到0.25 ℃/min,溫度分布均勻、?40 ℃時溫差小于0.29 ℃;膨脹造霧過程4 min,霧可維持4 min,霧滴較??;可以實現(xiàn)從常溫到?52 ℃低溫環(huán)境的控制、壓力膨脹成云霧模擬和微物理參數(shù)監(jiān)測能力,解決了我國長期缺乏氣溶膠粒子和暖云催化劑室內(nèi)實驗裝備的狀況,對于驗證暖云催化劑核化性能和提高暖云人工增雨科技水平具有重要價值。(蘇正軍,郭學(xué)良,諸葛杰,王平)

2 關(guān)鍵技術(shù)研發(fā)與業(yè)務(wù)應(yīng)用轉(zhuǎn)化

2 Key technology development and application

2.1 An improvement of the retrieval of temperature and relative humidity profiles from a combination of active and passive remote sensing

This paper focuses on an improvement of the retrieval of atmospheric temperature and relative humidity profiles through combining active and passive remote sensing.The ground-based microwave radiometer and millimeter-wavelength cloud radar were used to acquire the observations.Cloud base height and cloud thickness determinations from cloud radar were added into the atmospheric profile retrieval process,and a back-propagation neural network method was used as the retrieval tool.Because a substantial amount of data is required to train a neural network,and as microwave radiometer data are insufficient for this purpose,eight years of radiosonde data from Beijing were used as the database.The monochromatic radiative transfer model was used to calculate the brightness temperatures in the same channels as the microwave radiometer.Parts of the cloud base heights and cloud thicknesses in the training dataset were also estimated using the radiosonde data.The accuracy of the results was analyzed through a comparison with L-band sounding radar data and quantified using the mean bias,root-mean-square error and correlation coefficient.The statistical results showed that an inversion with cloud information was the optimal method.Compared with the inversion profiles without cloud information,the RMSE values after adding cloud information were reduced to varying degrees for the vast majority of height layers.These reductions were particularly clear in layers with clouds.The maximum reduction in the RMSE for the temperature profile was 2.2 K,while that for the humidity profile was 16%.(Che Yunfei,Ma Shuqing,Xing Fenghua,Li Siteng,Dai Yaru)

2.2 The extra-area effect in 71 cloud seeding operations during winters of 2008?2014 over Jiangxi Province,East China

Effects of weather modification operations on precipitation in target areas have been widely reported,but little is specifically known about the downwind (extra-area) effects in China.We estimated the extraarea effect of an operational winter (November–next February) aircraft cloud-seeding project in the northern Jiangxi Province in East China by using a revised historical target/control regression analysis method based on the precipitation data in winter.The results showed that the overall seasonal average rainfall at the downwind stations increased by 21.67% (p=0.0013).This enhancement effect was detected as far as 120 km away from the target area.Physical testing was used to compare the cloud characteristics before and after seeding on 29 November 2014.A posteriori analysis with respect to the characteristics of cloud units derived from operational weather radar data in Jiangxi was performed by tracking cloud units.Radar features in the target unit were enhanced relative to the control unit for more than two hours after the operational cloud seeding,which is indicative of the extra-area seeding effect.The findings could be used to help relieve water shortages in China.(Wang Weijian,Yao Zhanyu,Guo Jianping,Tan Chao,Jia Shuo,Zhao Wenhui,Zhang Pei,Gao Liangshu)

2.3 衛(wèi)星云參數(shù)與飛機云物理探測對比研究和飛行方案設(shè)計

開展衛(wèi)星反演云特性參數(shù)與飛機觀測的對比研究,對于更好地發(fā)揮衛(wèi)星遙感觀測在天氣、云物理和人工影響天氣方面的探測優(yōu)勢具有重要意義。選取 2012年9月 21日一次層狀云降水過程,對比分析 FY-2 與 MODIS反演云參數(shù)及飛機觀測結(jié)果,探索了飛機檢驗衛(wèi)星云參數(shù)的飛行方案。結(jié)果表明: FY-2 反演云參數(shù)演變趨勢與飛機觀測結(jié)果有較好的一致性; FY-2 反演有效粒子半徑(Re)和光學(xué)厚度(τ)與MODIS反演的Re和τ間相關(guān)性較好,但此個例 FY-2 反演值普遍小于 MODIS 反演值; 探測區(qū)域 FY-2 反演Re頻率分布與飛機觀測Re分布有一定差異,F(xiàn)Y-2 反演Re偏小,MODIS反演Re頻率分布與飛機觀測結(jié)果更為接近; 飛機觀測計算得到的τ和液水路徑值(LWP)與衛(wèi)星反演τ和 LWP 差異較大,F(xiàn)Y-2 反演值明顯偏小。對于Re的檢驗,飛機最好在Re分布不大均勻的云頂作較長距離平飛觀測; 對于 LWP 和τ等垂直積分參量的檢驗,飛機最好選擇在光學(xué)厚度較均勻的小區(qū)域內(nèi)螺旋爬升至云頂之上,再自云頂向下至最低高度進(jìn)行垂直觀測。(宋燦,周毓荃,趙洪升)

2.4 華北云特征參數(shù)與降水相關(guān)性的研究

利用河北省、河南省和山西省2013—2014年的每日10:00—15:00逐時 FY-2E 衛(wèi)星反演得到的云結(jié)構(gòu)特征參數(shù)和地面小時降水,統(tǒng)計分析了云頂高度、云頂溫度、云光學(xué)厚度和云粒子有效半徑等 4 類云結(jié)構(gòu)特征參數(shù)與地面降水的關(guān)系。主要結(jié)論:隨著云光學(xué)厚度的增加,降水概率呈增加趨勢。云光學(xué)厚度比其他云參數(shù)對降水更具有指示意義,當(dāng)云光學(xué)厚度大于 20 時,降水概率顯著增大。雙參數(shù)、多參數(shù)組合下,對地面是否出現(xiàn)降水的判斷和識別要優(yōu)于單個云參數(shù)的判別結(jié)果。4 類云參數(shù)中,云光學(xué)厚度與降水強度呈正相關(guān)關(guān)系,對降水強度的影響最為顯著; 云頂溫度和云頂高度對降水強度的影響次之; 云粒子有效半徑與降水強度的關(guān)系不明顯。地面降水時,當(dāng)云光學(xué)厚度小于 20 或云光學(xué)厚度介于21~30、云頂溫度大于 ?15 ℃ 時,出現(xiàn)小雨的概率最大; 當(dāng)云光學(xué)厚度介于21~30、云頂溫度小于?15 ℃ 或云光學(xué)厚度大于 30、云頂溫度大于?30 ℃ 時,出現(xiàn)中雨的概率最大; 當(dāng)云光學(xué)厚度大于30、云頂溫度小于?30 ℃ 時,出現(xiàn)大雨或暴雨的可能性最大。云光學(xué)厚度、云頂溫度、云頂高度和云粒子有效半徑等云結(jié)構(gòu)特征參數(shù)組合使用,對判斷降水概率和降水強度具有較好的指示作用。(王磊,周毓荃,蔡淼,申雙和)

2.5 一次冷鋒降水云系結(jié)構(gòu)和人工增雨條件模擬分析

利用中尺度模式 ARPS 對 2013年10月13—14日華北南部到河南一次冷鋒降水過程的數(shù)值模擬結(jié)果和衛(wèi)星、雷達(dá)、飛機等觀測資料,分析了冷鋒云系不同部位宏微觀結(jié)構(gòu)和多種增雨潛力要素分布特征,初步探討了冷鋒云系增雨潛力區(qū)判別方法及分布特征。結(jié)果表明:此次降水過程冷鋒云系結(jié)構(gòu)具有不均勻性,云中含水量及其變化梯度自云系前部到后部逐步減小。冷鋒云系不同位置垂直結(jié)構(gòu)特征不同,云系前部自云底到云頂為整層上升氣流區(qū),云中存在典型的“催化—供給”結(jié)構(gòu),動力輻合和水汽條件較好,對應(yīng)區(qū)域地面出現(xiàn)較大降水。云系后部上升氣流區(qū)集中在中高層,4.0 km 以下為下沉氣流,云中冰相粒子豐富,但中低層液態(tài)水含量少,“催化—供給”結(jié)構(gòu)不明顯,動力輻合和低空水汽條件差,對應(yīng)區(qū)域地面降水微弱或不產(chǎn)生降水。利用模式模擬結(jié)果逐步判別云系增雨潛力條件,結(jié)果顯示:增雨潛力區(qū)主要位于冷鋒云系前部、地面冷鋒與 700 hPa 切變線之間約 150 km 寬的狹長帶狀區(qū)域,云體是具有“催化—供給”結(jié)構(gòu)的冷暖混合云,可催化層高度為 3.5~7.0 km。(劉艷華,周毓荃,黃毅梅,吳志會,秦彥碩)

2.6 飛機作業(yè)監(jiān)測移動應(yīng)用的設(shè)計與實現(xiàn)

人工影響天氣飛機作業(yè)需要實時跟蹤與展示飛行過程動態(tài),并實現(xiàn)空中、地面指揮中心、地面不同機場三者之間信息交互與共享。通過設(shè)計并實現(xiàn)人工影響天氣飛機作業(yè)實時監(jiān)測移動應(yīng)用系統(tǒng)(TEAM),可實時監(jiān)測飛機作業(yè)并同步可視化共享于不同業(yè)務(wù)用戶,解決飛機作業(yè)監(jiān)測中作業(yè)信息采集渠道多樣、標(biāo)準(zhǔn)不統(tǒng)一、共享范圍小、飛機內(nèi)外場交流渠道不暢等業(yè)務(wù)問題。TEAM針對指揮業(yè)務(wù)和信息集約化需求,提出具有普適性的國家級人工影響天氣飛機作業(yè)實時監(jiān)測的移動應(yīng)用平臺框架,包括海事、北斗雙鏈路保障傳輸、安全加固體系和分層策略,用于解決數(shù)據(jù)和移動終端兩方面面臨的技術(shù)問題,可以作為人工影響天氣飛機作業(yè)實時監(jiān)測移動應(yīng)用的標(biāo)準(zhǔn)化解決方案。TEAM開發(fā)使用HTML5 混合開發(fā)模式與Ionic / Angular JS技術(shù),提高開發(fā)效率和終端運行性能。TEAM實時可視化顯示人工影響天氣飛機準(zhǔn)備情況、飛行軌跡、播撒動態(tài)以及落地后總結(jié)簡報、通知,從而解決了飛機整個作業(yè)過程中的各相關(guān)部門溝通效率和信息共享問題。目前TEAM覆蓋全國80%以上的人工影響天氣飛機的實時監(jiān)測和作業(yè)信息共享,并應(yīng)用于東北、華北、西北、西南、中部等多個區(qū)域人工影響天氣飛機日常作業(yè)監(jiān)測和重大應(yīng)急服務(wù)一線指揮。移動應(yīng)用程序響應(yīng)迅速,運行穩(wěn)定,作業(yè)監(jiān)測和可視化效果良好,為人工影響天氣飛機的實時監(jiān)測提供了新的解決方案。(李德泉,李抗抗,李宏宇,戴艷萍,李集明)

3 科學(xué)觀測試驗

3 Scientific observation experiment

3.1 飛機外場觀測

青藏高原探測試驗。根據(jù)青藏高原云—降水飛機觀測和微物理特征分析項目要求,在青海省果洛藏族自治區(qū)達(dá)日縣開展針對云系垂直分布特征的空地一體聯(lián)合探測。以達(dá)日試驗點(99°39′N,33°45′E)為中心,半徑35 km范圍內(nèi),在4500~9000 m的垂直范圍內(nèi),針對氣溶膠、云、降水研究的飛行探測方案,并在2019年8月21日和22日,共開展了2個架次的探測飛行,共計6 h 42 min,得到了一次在達(dá)日地區(qū)對流云過程中的云降水的微物理特征。

西北區(qū)域人工影響天氣科學(xué)試驗項目。開展了針對祁連山試驗區(qū)和六盤山試驗區(qū)的空地聯(lián)合觀測試驗。在祁連山試驗區(qū),以永昌和張掖為中心開展垂直探測,在六盤山試驗區(qū),以六盤山氣象站、隆德氣象站和涇源氣象站為中心開展垂直探測。共計飛行8 h 6 min,在祁連山地區(qū)得到一次對流云降水消散期的云降水微物理垂直分布特征,在六盤山地區(qū)得到一次地形云降水過程的上層云和降水微物理特征的垂直分布。

華南地區(qū)飛機云物理探測試驗。廣東省珠海市以西沿海地區(qū),針對華南強降水典型云系(特別是華南強降水臺風(fēng)外圍云系)的宏微觀特征開展協(xié)同觀測。探測以陽江或汕尾為中心,半徑30 km范圍內(nèi),針對“氣溶膠—云—降水研究”的方案。7月16日至19日,共開展了2個架次的探測飛行,共計飛行5 h 45 min,這兩次飛行主要針對陽江和汕尾的氣溶膠與云凝結(jié)核的垂直分布特征開展了探測。

南方大范圍云系中的云微物理特征探測飛行。結(jié)合南方增雨雪抗旱服務(wù)、行業(yè)專項研究項目(南方大范圍云系人工增雨作業(yè)潛力與作業(yè)技術(shù)研究)需求 ,開展針對江西贛州當(dāng)?shù)卦平邓^程的空地一體的觀測研究,從而指導(dǎo)當(dāng)?shù)乜茖W(xué)有效地開展人工影響天氣業(yè)務(wù)工作。2019年底開展了7個架次的飛行探測/增雨工作,初步認(rèn)識了當(dāng)?shù)囟鞠到邓到y(tǒng)云中微物理特征。

3.2 廬山等地局地云霧降水觀測

高山云霧和降水觀測(廬山)。以廬山云霧試驗站為觀測基地平臺,2019年開展了全年的云霧降水的微物理觀測試驗、霧滴譜儀對比觀測試驗和廬山氣溶膠—云霧—降水綜合觀測試驗。在全年的常規(guī)云霧和降水觀測中,共收集云霧個例28次,降水個例86次,其中冰雹6次,降雪1次,獲取了山底至山頂?shù)臍馊苣z纜車觀測數(shù)據(jù)、云霧和降水期間的不同粒徑段和種類氣溶膠觀測數(shù)據(jù)、云凝結(jié)核數(shù)據(jù)、霧水和雨水樣本等。

3.3 北京霧和降水觀測

作為城市氣溶膠、霧霾和降水微物理特征的重要觀測平臺,長期開展觀測試驗以及平臺的運維工作,試驗人員每天進(jìn)行日志記錄。自2009年以來該平臺積累了大量霧霾、降水和氣溶膠觀測數(shù)據(jù),通過數(shù)據(jù)分析和研究,揭示了城市霧霾天氣的物理機制,為人工影響霧霾天氣提供了新的發(fā)展方向。

4 人工影響天氣重大工程

4 Major weather modification projects

4.1 國家人工影響天氣能力建設(shè)工程

積極推進(jìn)國家人工影響天氣項目初步設(shè)計編制和項目執(zhí)行工作。完成國家人工影響天氣項目初步設(shè)計編寫,并上報中國氣象局;完成冰雹防控基地、廬山云霧基地和重大活動保障基地3個外場試驗基地設(shè)備的采購及合同簽署工作。目前,正積極配合國家發(fā)展改革委評審中心核概。

4.2 東北區(qū)域人工影響天氣工程

2019年4—8月,完成對省級東北人工影響天氣項目子項目驗收及集合驗收。完成國王350增雨飛機系統(tǒng)驗收及新舟60增雨飛機機載探測數(shù)據(jù)處理系統(tǒng)和機載液氮致冷劑催化播撒裝置及改裝工作。完成人工影響天氣效果檢驗軟件系統(tǒng)驗收工作。5月完成人工影響天氣效果檢驗軟件系統(tǒng)測試。7月完成人工影響天氣效果檢驗軟件系統(tǒng)驗收工作。編制高性能增雨飛機業(yè)務(wù)驗收材料。完成了國家高性能增雨飛機建設(shè)情況、業(yè)務(wù)試運行情況、建設(shè)技術(shù)總結(jié)、系統(tǒng)測試、建設(shè)用戶情況5個報告的編制工作,8月向中國氣象局相關(guān)職能司上報了高性能飛機業(yè)務(wù)驗收材料。

完成東北項目業(yè)務(wù)驗收。2019年12月25日,由中國氣象局應(yīng)急減災(zāi)與公共服務(wù)司在北京組織召開了“新增千億斤糧食工程東北區(qū)域人工影響天氣能力建設(shè)項目”業(yè)務(wù)驗收會,邀請了中國氣象局、北京大學(xué)、中國科學(xué)院大氣物理研究所、北京市人工影響天氣辦公室等單位9名專家組成專家組,余勇副局長出席業(yè)務(wù)驗收會。東北人工影響天氣項目辦公室匯報了項目建設(shè)、業(yè)務(wù)試運行、作業(yè)服務(wù)和效益等情況,專家組認(rèn)真審查了項目業(yè)務(wù)驗收報告材料。經(jīng)過質(zhì)詢討論,專家組一致同意項目通過業(yè)務(wù)驗收。

4.3 西北區(qū)域人工影響天氣能力建設(shè)工程進(jìn)展

完成4架國家飛機的采購,均進(jìn)入飛機加改裝階段;完成全部人工影響天氣探測裝備的采購,大部分裝備已投入使用;完成研究試驗項目的招標(biāo)和項目下達(dá),7月份在已完成的6個外場試驗示范基地(或試驗點)全面開展試驗研究;協(xié)同中國氣象局氣象干部培訓(xùn)學(xué)院完成了西北區(qū)域人工影響天氣作業(yè)指揮人員培訓(xùn)班、西北區(qū)域雙偏振多普勒天氣雷達(dá)、云雷達(dá)及其資料應(yīng)用培訓(xùn)班等。組織國內(nèi)外科學(xué)家與西北各省人工影響天氣科研人員共同探討和開展了人工影響天氣研究試驗,激發(fā)了人工影響天氣科技工作者的科研熱情,推進(jìn)了氣象部門人工影響天氣人才隊伍的成長。

4.4 其他區(qū)域人工影響天氣能力建設(shè)工程進(jìn)展

組織咨詢專家組和初設(shè)編制組赴中部區(qū)域相關(guān)省進(jìn)行實地勘察,對項目初設(shè)的可行性、科學(xué)性和合理性進(jìn)行了全面論證,完成初設(shè)技術(shù)審查。

5 人工影響天氣業(yè)務(wù)與服務(wù)

5 Weather modification operations and services

5.1 國慶70周年、軍運會、世博會、世園會服務(wù)保障

主動對接需求,精心做好國慶70周年保障各項技術(shù)準(zhǔn)備工作,參與重大服務(wù)保障技術(shù)方案編制,完成北京人工影響天氣辦公室分兩批6名技術(shù)骨干的技術(shù)培訓(xùn);完成相關(guān)省局多個業(yè)務(wù)平臺的升級和部署,實現(xiàn)數(shù)據(jù)采集與共享的通道暢通;精細(xì)化作業(yè)條件預(yù)報服務(wù)產(chǎn)品,加密人工影響天氣作業(yè)條件監(jiān)測服務(wù);完成3架國家飛機設(shè)備巡檢,確保適航狀態(tài)。全力以赴,統(tǒng)籌調(diào)配人員、組建精干的保障團(tuán)隊;提前做好風(fēng)險評估和應(yīng)對預(yù)案;緊盯任務(wù)需求,圓滿完成6次實戰(zhàn)演練,共參加會商發(fā)言7次,制作發(fā)布各類服務(wù)專報18期,利用空地指揮系統(tǒng)對3架國家飛機進(jìn)行全程跟蹤監(jiān)控,3架飛機累計飛行21架次,飛行時長61 h 36 min。

按照統(tǒng)一部署,選派專家和技術(shù)骨干赴武漢、上海,針對第七屆世界軍人運動會、世博會進(jìn)行專項保障。就作業(yè)條件預(yù)報、作業(yè)方案設(shè)計及空域保障等提供現(xiàn)場技術(shù)指導(dǎo),同時后方制作發(fā)布《人工影響天氣作業(yè)條件預(yù)報和作業(yè)預(yù)案建議》專報,利用空地指揮系統(tǒng)對國家高性能增雨飛機進(jìn)行全程跟蹤監(jiān)控。

5.2 重大抗旱減災(zāi)作業(yè)和應(yīng)急服務(wù)保障

2019年春季四川省涼山州、山西、陜西發(fā)生森林火災(zāi)及北京、山西、河北、內(nèi)蒙古、天津等北方地區(qū)持續(xù)干旱;秋冬季長江中下游和華南地區(qū)發(fā)生嚴(yán)重氣象干旱,局地出現(xiàn)氣象特旱,江西、安徽等省出現(xiàn)了幾十年一遇的大旱。人工影響天氣中心有針對性地對各地人工影響天氣作業(yè)給出指導(dǎo)建議,有效地指導(dǎo)了各地人工增雨作業(yè)。增雨作業(yè)對森林滅火起到了重要作用、降低了華北等地的高森林草原火險等級、緩和了氣象干旱、凈化空氣,并改善了土壤墑情,利于春播春耕工作的開展。在自然降水和人工增雨的共同作用下,各地旱情得到明顯緩解。

5.3 實施人工增雨改善空氣質(zhì)量試驗

按照生態(tài)環(huán)境部需求和中國氣象局的部署,9月24日,中國氣象局人工影響天氣中心快速響應(yīng),編寫《華北及周邊地區(qū)人工增雨改善空氣質(zhì)量保障方案》。9月26日,劉雅鳴局長和余勇副局長親臨人工影響天氣中心指揮改善空氣質(zhì)量增雨作業(yè)。截至29日,人工影響天氣中心組織華北及周邊9?。▍^(qū)、市)開展專題會商8次,制作發(fā)布各類服務(wù)專報55期。9省區(qū)開展了飛機增雨作業(yè)5架次,地面增雨作業(yè)94次。在實施科學(xué)作業(yè)中,中心在作業(yè)條件預(yù)判、作業(yè)方案制定、作業(yè)跟蹤指揮、作業(yè)實施和效果分析等方面做了大量卓有成效的工作。通過試驗,建立了國家級指揮、上下聯(lián)動、多部門協(xié)同的工作流程,現(xiàn)代化裝備和技術(shù)成果得到了充分檢驗,技術(shù)人才隊伍得到了錘煉。

5.4 人工影響天氣業(yè)務(wù)模式發(fā)展

完善CPEFS_V1.0、MM5-CAMS、GRAPES-CAMS3類云模式初設(shè)場,實現(xiàn)穩(wěn)定支撐全國人工影響天氣作業(yè)條件潛力預(yù)報業(yè)務(wù)。發(fā)展了CPEFS-SEED 催化模式,初步實現(xiàn)業(yè)務(wù)運行,進(jìn)一步改進(jìn)了 LAPSCPEFS 同化模式系統(tǒng),2019年在多次重大業(yè)務(wù)服務(wù)中發(fā)揮重要作用。研發(fā)了積冰/過冷水潛勢預(yù)報中期產(chǎn)品,并試應(yīng)用。研發(fā)了預(yù)報云場檢驗方案,開展云預(yù)報產(chǎn)品批量檢驗。

5.5 作業(yè)條件監(jiān)測指揮及云水資源評估利用

研發(fā)FY3/FY4衛(wèi)星人工影響天氣云特性參量,升級作業(yè)條件監(jiān)測產(chǎn)品,在地基氣象觀測條件較差,森林草原火災(zāi)的易發(fā)區(qū),風(fēng)云衛(wèi)星人工影響天氣云產(chǎn)品極大地彌補了常規(guī)觀測的空白和不足。優(yōu)化發(fā)展了飛機和衛(wèi)星、雷達(dá)遙感識別過冷水的方法,初步構(gòu)建作業(yè)條件星-空-地綜合監(jiān)測識別技術(shù)體系。發(fā)展了目標(biāo)區(qū)飛機以及火箭高炮充分連片催化的作業(yè)設(shè)計方案,推廣應(yīng)用各地,有效提升全國作業(yè)設(shè)計水平。完善云水資源概念和評估方法,優(yōu)化建立固定目標(biāo)區(qū)云水資源耦合開發(fā)利用技術(shù),并開展示范應(yīng)用。

5.6 效果檢驗和評估

完善針對不同作業(yè)方式催化劑擴散傳輸計算方案,開發(fā)作業(yè)影響區(qū)自動計算系統(tǒng),在國家CPAS平臺上優(yōu)化系統(tǒng)功能。發(fā)展了基于擴散傳輸計算的區(qū)域多參量動態(tài)對比效果檢驗方法,多次在跨區(qū)域聯(lián)合作業(yè)和重大過程人工影響天氣服務(wù)保障中發(fā)揮作用。發(fā)展了基于“TITAN”雷達(dá)回波追蹤算法的人工影響天氣二次開發(fā),實現(xiàn)對流云的作業(yè)效果評估,并在CPAS業(yè)務(wù)平臺實現(xiàn)自動計算。完善人工影響天氣作業(yè)信息全要素采集,提出作業(yè)合理性評估方案,開展人工影響天氣服務(wù)決策材料效果估算研究和應(yīng)用,初步構(gòu)建國家級效果檢驗業(yè)務(wù)。

5.7 國家人工影響天氣飛機運行業(yè)務(wù)

全力做好3架國家增雨飛機的運行及安全管理,國家作業(yè)飛機??康叵剃?、格爾木、和田、巴彥淖爾為國家及地方作業(yè)飛機停場、維護(hù)、通信、增雨作業(yè)提供保障服務(wù)。組織飛機托管公司(三星通航和北大荒通航)按時保質(zhì)地完成新舟60(30M,36M)和空中國王350ER增雨飛機(200H)的定檢維修維護(hù)工作。

在庫爾勒機場、克拉瑪依機場和吐魯番機場開展2019年冬季飛機人工增水探測和播撒作業(yè)。在六盤山區(qū)開展了一次云微物理飛行探測。2020年將在試驗區(qū)內(nèi)正式開展帶電離子外場催化試驗工作。

5.8 人工影響天氣裝備及安全業(yè)務(wù)

在省級前期試點基礎(chǔ)上,利用條碼和射頻識別技術(shù)、聲電光自動感應(yīng)技術(shù)和移動互聯(lián)技術(shù)等,建設(shè)人工影響天氣裝備和彈藥從生產(chǎn)、驗收、轉(zhuǎn)運、倉儲到發(fā)射的全程監(jiān)控系統(tǒng),建設(shè)飛機與地面作業(yè)信息的自動采集系統(tǒng),選擇4個省(市)分別建立不同技術(shù)模式的省級應(yīng)用示范,實現(xiàn)人工影響天氣作業(yè)裝備與彈藥的全程、規(guī)范、自動化的實時監(jiān)控與管理,提出可用于全國各省市推廣的技術(shù)模式與系統(tǒng),提高人工影響天氣作業(yè)安全管理的科技水平和業(yè)務(wù)現(xiàn)代化程度。

建設(shè)完成兩套系統(tǒng):作業(yè)裝備彈藥全程監(jiān)控系統(tǒng)和作業(yè)信息實時采集監(jiān)控系統(tǒng);制定了3套技術(shù)標(biāo)準(zhǔn)與規(guī)范:人工影響天氣作業(yè)裝備和彈藥產(chǎn)品統(tǒng)一標(biāo)識規(guī)范,飛機作業(yè)信息采集傳輸規(guī)范,地面作業(yè)信息采集傳輸規(guī)范;研發(fā)一套國家級人工影響天氣作業(yè)裝備彈藥信息管理與作業(yè)信息實時采集監(jiān)控系統(tǒng)軟件。機載端作業(yè)監(jiān)視管理系統(tǒng)已經(jīng)在全國推廣建設(shè),至2019年底,與全國30個省級人工影響天氣裝備物聯(lián)網(wǎng)管理系統(tǒng)實現(xiàn)聯(lián)網(wǎng)和數(shù)據(jù)上傳。

完成2019年全國業(yè)務(wù)用催化劑成核率檢測任務(wù),為各廠商催化劑催化效率提供了客觀依據(jù),有利于全國云霧催化工作的開展。

5.9 生態(tài)修復(fù)型人工影響天氣作業(yè)技術(shù)指南

編制了生態(tài)修復(fù)型人工影響天氣作業(yè)技術(shù)指南,從生態(tài)修復(fù)型人工影響天氣業(yè)務(wù)特點、總體技術(shù)思路及關(guān)鍵技術(shù)、業(yè)務(wù)流程、試點示范區(qū)的應(yīng)用等方面全面指導(dǎo)生態(tài)修復(fù)型人工增雨雪作業(yè)。結(jié)合國家重點研發(fā)項目“云水資源評估研究和利用示范”,針對南水北調(diào)中線丹江口水源地蓄水、生態(tài)環(huán)境改善及南方抗旱,在湖北示范區(qū)開展了固定目標(biāo)區(qū)的人工增雨試驗。

5.10 改善空氣質(zhì)量科學(xué)試驗技術(shù)指南

牽頭編制改善空氣質(zhì)量人工影響天氣科學(xué)試驗指南,從人工增雨改善空氣質(zhì)量的理論基礎(chǔ)、試驗?zāi)繕?biāo)和主要內(nèi)容、增雨減污試驗方案設(shè)計及關(guān)鍵技術(shù)、試驗流程、人工增雨減污試驗典型個例、試驗總結(jié)等方面全面指導(dǎo)改善空氣質(zhì)量人工影響天氣科學(xué)試驗的開展。完成2018年上海中國國際進(jìn)口博覽會人工增雨改善空氣質(zhì)量保障試驗技術(shù)總結(jié)報告,并提交減災(zāi)司。聯(lián)合北京市氣象局、國家氣象中心、生態(tài)環(huán)境部環(huán)境監(jiān)測總站,牽頭編制“2019年近期華北人工增雨改善空氣質(zhì)量試驗方案”,并由減災(zāi)司發(fā)文下發(fā)相關(guān)省份。4月指導(dǎo)河南等省開展人工增雨改善空氣質(zhì)量試驗。9月中下旬,開展了華北人工增雨改善空氣質(zhì)量試驗。

猜你喜歡
降水人工觀測
人工3D脊髓能幫助癱瘓者重新行走?
四川盆地極端降水演變特征及擬合
黑龍江省玉米生長季自然降水與有效降水對比分析
人工,天然,合成
人工“美顏”
從人工到大數(shù)據(jù)+AI:“一張網(wǎng)”稽核加速中
天文動手做——觀測活動(21) 軟件模擬觀測星空
Cloud seeding
2018年18個值得觀測的營銷趨勢
可觀測宇宙
达日县| 师宗县| 宾阳县| 怀柔区| 和田市| 深圳市| 丰县| 斗六市| 丰城市| 云龙县| 乌苏市| 辽阳市| 永嘉县| 冕宁县| 桃园县| 沽源县| 阳原县| 汪清县| 荆门市| 永寿县| 云梦县| 桃源县| 青州市| 嫩江县| 鄯善县| 织金县| 绥棱县| 钟山县| 兴和县| 兴义市| 二手房| 龙里县| 古交市| 广元市| 阳高县| 大丰市| 铜梁县| 叶城县| 金平| 治多县| 宣汉县|