生態(tài)與農(nóng)業(yè)氣象研究進(jìn)展
Progress in Ecological and Agricultural Meteorology Research
Vegetation water content is one of the important biophysical features of vegetation health,and its remote estimation can be utilized to real-timely monitor vegetation water stress.Here,we compared the responses of canopy water content (CWC),leaf equivalent water thickness (EWT),and live fuel moisture content (LFMC) to different water treatments and their estimations using spectral vegetation indices (VIs) based on water stress experiments for summer maize during three consecutive growing seasons in 2013?2015 in the North China Plain.Results showed that CWC was sensitive to different water treatments and exhibited an obvious singlepeak seasonal variation.EWT and LFMC were less sensitive to water variation and EWT stayed relatively stable while LFMC showed a decreasing trend.Among ten hyperspectral VIs,green chlorophyll index (CIgreen),red edge normalized ratio (NRred edge),and red-edge chlorophyll index (CIred edge) were the most sensitive VIs responding to water variation,and they were optimal VIs in the prediction of CWC and EWT.(Zhou Guangsheng)
Multi-model ensemble climate projections in combination with crop models are increasingly used to assess the impact of future climate change on agricultural systems.In this study,we used a biophysical process-oriented CERES-Rice crop model driven by downscaled future climate data from 28 Global Climate Models (GCMs) under two emissions scenarios:representative concentration pathway (RCP) 4.5 and RCP8.5,for phase five of the Coupled Model Intercomparison Project (CMIP5) to project the effects of climate change on rice yields in three future time periods in the Northeast China Plain (NECP).The results showed that without consideration of CO2effects,rice yield would increase by 1.3%,1.3%,and 0.4% in the 2030s,2060s,and 2090s,respectively,under the RCP4.5 scenario.Rice yield would change by +1.1%,?2.3%,and ?10.7% in the 2030s,2060s,and 2090s,respectively,under the RCP8.5 scenario.With consideration of CO2effects,rice yield during the 2030s,2060s,and 2090s would increase by 5.4%,10.0%,and 11.6% under RCP4.5,and by 6.4%,12.9%,and 15.6% under RCP8.5,respectively.The rice-growing season would be shortened by 2 to 5 weeks in the future.Overall,the future climate would have positive effects on rice yields in the NECP.Although uncertainties in our study on the impact of climate change on rice might arise from the choice of crop model and GCMs,the results are important for informing policy makers and developing appropriate strategies to improve rice productivity in China.(Zhou Guangsheng)
Evaluating climatic suitability of crop cultivation lays a foundation for agriculture coping with climate change scientifically.Herein,we analyse changes in the climatically suitable distribution of summer maize cultivation in China at 1.5 (GW1.5) and 2.0 (GW2.0) global warming in the future according to the temperature control targets set by the Paris Agreement.Compared with the reference period (1971–2000),the summer maize cultivation climatically suitable region (CSR) in China mainly shifts eastwards,and its acreage significantly decreases at both GW1.5 and GW2.0.Despite no dramatic changes in the CSR spatial pattern,there are considerable decreases in the acreages of optimum and suitable regions (the core of the main producing region),indicating that half-a-degree more global warming is unfavourable for summer maize production in China’s main producing region.When the global warming threshold increases from GW1.5 to GW2.0,the centres-of-gravity of optimum areas shift northeastward under RCP4.5 and RCP8.5,the centresof-gravity of both suitable and less suitable areas shift northwestward,though the northward trend is more prominent for the less suitable areas,and the centre-of-gravity of unsuitable areas shifts southeastward.Generally,half-a-degree more global warming drives the cultivable areas of summer maize to shift northward in China,while the west region shows a certain potential for expansion of summer maize cultivation.(Zhou Guangsheng)
Plant growth and photosynthesis in response to water status have been extensively investigated.However,elucidating the photosynthetic process and its indicators under a drought episode and rewatering across the entire leaf lifespan is often neglected.In this experiment,three water treatments were set during two growth seasons:a control treatment,moderate persistent drought (T1),and severe persistent drought (T2).Maize leaf chlorophyll fluorescence emission was analyzed to determine the regulative responses of the photosynthetic potentials and photosystem II (PSII) photochemistry process to drought and rewatering in situ.A severe drought episode during the peak vegetative growth stage resulted in decreases in chlorophyll content,the maximal efficiency of PSII photochemistry (Fv/Fm),and photochemical quenching,but increases in non-photochemical quenching and the yield for dissipation by downregulation.Rewatering only restored partial PSII functions in plants that had undergone historical drought episodes.An analysis of non-photochemical pathways of thermal dissipation indicates that regulative photoprotection of the photosystem apparatus may occur through heat dissipation when an effect of severe drought episode appeared on a young leaf; however,rewatering did not enhance photoprotection with leaf aging.Compared to the control treatment,the yield of T1 and T2 decreased by 25.1% and 27.1% in 2015,and 26.4% and 54.3% in 2016,respectively.The chlorophyll content was significantly and closely correlated withFv/Fm(R=0.65,P<0.001) and the maximum versus minimum fluorescence yield in the dark-adapted state (Fm/Fo) (R=0.72,P<0.001).Additionally,the two parameters can be suggested to feasibly track chlorophyll content changes and the degree of leaf senescence in responses to a drought episode and its interaction with leaf aging:Fm/Foand the relative limitation to photosynthesis (RLP).The current results may provide a profound insight into better understanding the underlying mechanism of photosynthetic potentials and photochemistry efficiency and photoprotection in response to drought episodes and rewatering over the entire leaf lifespan.(Zhou Guangsheng)
In this study,we characterize the vertical leaf distribution of chlorophyll (Chl) and nitrogen (N) content and their associations with leaf photosynthetic responses inZea maysL.under field watering regimes.We simulated five precipitation patterns,including a drought-rewatering sequence using an electric-powered,rainproof shelter.The results indicate the vertical leaf Chl and N distribution versus the cumulative leaf-area index (LAIc) fit well into a significant quadratic function.The simulated precipitation patterns significantly influenced the parabolic curve trajectory patterns and their parameters.Chlorophyll and N contents had the same trend,with a close and positive relationship.Drought stress followed by rewatering increased the slopes of the linear equations but narrowed the parabolic opening of the quadratic functions.This finding implies that the relationship between Chl and N content can be used to estimate responses to drought and rewatering.The findings also suggested that the relationship patterns between Chl and N levels could be an assessment tool for N-fertilizer managements under different drought conditions to maintain high yields in maize production.Principal component analysis indicated the correlations between functional traits in maize leaves and the responses to drought and rehydration.These findings help to improve drought management and cultivar selection,which will be important in coping with the severe intensity and high frequency of episodic drought events expected from climate change.(Zhou Guangsheng)
Elevated atmospheric CO2concentration and simultaneous precipitation change affect plant physiology and growth either directly or indirectly.The main objective of this study was to investigate the effects of elevated CO2and precipitation change,alone or in combination,on photosynthesis and growth inStipa baicalensisunder differential growth phases.Elevated CO2showed a consistently significant increase in net photosynthesis rate (Anet),water-use efficiency (WUE),leaf area and biomass.However,elevated CO2did not mitigate the negative effects of severe drought stress.Increase ofAnetunder elevated CO2attributed toCiin the early growth phase,but WUE and Rubisco carboxylation (Vcmax) was the main inductor in the later growth phase.Effects of elevated CO2onS.baicalensiswere closely associated with precipitation conditions,and the influence on photosynthetic capacity was also related to the growth phase.Drought significantly reducedAnetin June and August,increased WUE in June but did not show effect in August.Precipitation enhancement was beneficial to leaf area and biomass accumulation.Elevated CO2and enhanced precipitation in combination promotedAnetby 158% and 93.4% in June and August,respectively; moreover,their interaction increased the total biomass by 44.4%.Our results suggested that the elevated CO2concentration in the future might be beneficial to the growth ofS.baicalensis,but elevated CO2influence onS.baicalensismight strongly depend on precipitation conditions and the growth phase.(Zhou Guangsheng)
It is difficult to estimate green biomass ratio (GBR),the ratio of green aboveground biomass to total aboveground biomass,using common broad-band vegetation indices in arid grasslands due to similar spectral features between bare soil and non-photosynthetic vegetation in near-infrared (NIR) and visible bands.We evaluated the performance of the broad-band RVI (ratio vegetation index),NDVI (normalized difference vegetation index),SAVI (soil-adjusted vegetation index),MSAVI (modified soil-adjusted vegetation index),OSAVI (optimized soiladjusted vegetation index),NDVIgreen(green normalized difference vegetation index),CI (canopy index),and NCI (normalized canopy index) for GBR estimation in the desert steppe of Inner Mongolia,China.We also explored best narrow-band hyperspectral vegetation indices for GBR estimation using hyperspectral remotely sensed data and GBR measurements during 2009 and 2010 growing seasons in the desert steppe.Broad-band vegetation indices were not suitable for GBR estimation.The best narrow-band vegetation indices used reflectance at 2069 and 2042 nm,particular 1.5× (R2069?R2042) / (R2069+R2042+0.5).The index could partially overcome the influence of bare soil cover.It explained 68% of the variance of GBR and dramatically improved GBR estimation accuracy over common broad-band indices.More importantly,the accuracy was not affected by varying bare soil cover.Nevertheless,caution is required for the index application within varying growing seasons.The development of this index is an important resource for future spectral sensors that will permit GBR monitoring at regional scales in arid grasslands.Our results show that remote imagery can monitor GBR in the desert steppe and potentially in many arid grasslands.(Zhou Guangsheng)
Understanding crop potential yields,yield gaps,and optimal agronomic management practices helps in identifying the limiting factors,scope,and ways to achieve sustainable intensified agricultural production.Here,using detailed field trial data collected from 1981 to 2009 at 11 agro-meteorological experimental stations and the crop model CERES-Rice,we investigated changes in potential yields,water- and nitrogen-stressed yields,and yield gaps of rice in the major rice cultivation regions of China during the collection period.We further identified the optimal nitrogen application rate,transplanting date,and cultivar traits for the sustainable intensification of rice production systems in different regions.Owing to climate change,the potential rice yields declined or changed little in the middle and lower reaches of the Yangtze River (MLRYR),while they increased or changed little in the Northeastern China Plain (NECP) during 1981–2009.Rice yield gaps shrank in the major rice production regions because the actual yields increased and approached the potential yields.The average yield gap was 16.0% in the 2000s,with water and nitrogen stresses being the limiting factors in the NECP and water stress being the major limiting factor in the MLRYR.The nitrogen application rate was suggested to be increased by 47.5% and 21.7% for single rice (i.e.,rice cultivated in a single season per year) in the NECP and MLRYR,respectively,and increased by 5.2% for early rice (i.e.,rice cultivated in the early season in a rice-rice rotation system per year).However,it was suggested to be reduced by 13.1% for late rice (i.e.,rice cultivated in the late season in a rice-rice rotation system per year).Early transplanting could increase the yield,while late transplanting could decrease the yield.The impacts were greater for single rice in the NECP and late rice in the MLRYR than for single rice and early rice in the MLRYR.Cultivars with longer growth durations,and greater spikelet numbers and grain weights,could significantly increase the rice yield by 14.8%–45.6%.The optimal cultivars,combined with advancing transplanting by 10 d,could increase rice yields by 29.2%–68.9%.Our findings provide new approaches,important insights,and effective options for the sustainable intensification of rice production systems in different regions of China.(Zhou Guangsheng)
Climate change,characterized by warming and precipitation variability,restricted the growth of plants in arid and semiarid areas,and various functional traits are impacted differently.Comparing responses of functional traits to warming and precipitation variability and determining the critical water threshold of dominate steppe grasses from Inner Mongolia facilitates the identification and monitoring of water stress effects.A combination of warming (ambient temperature,+1.5 and +2.0 ) and varying precipitation (?30%,?15%,ambient,+15%,and +30%) manipulation experiments were performed on fourStipaspecies (S.baicalensis,S.bungeana,S.grandis,andS.breviflora) from Inner Mongolia steppe.The results showed that the functional traits of the four grasses differed in their responses to precipitation,but they shared common sensitive traits (root/shoot ratio,R/S,and specific leaf area,SLA) under ambient temperature condition.Warming increased the response of the four grasses to changing precipitation,and these differences in functional traits resulted in changes to their total biomass,with leaf area,SLA,and R/S making the largest contributions.Critical water thresholds of the four grasses were identified,and warming led to their higher optimum precipitation requirements.The four steppe grasses were able to adapt better to mild drought (summer precipitation decreased by 12%–28%) when warming 1.5 rather than 2.0 .These results indicated that if the Paris Agreement to limit global warming to 1.5 is accomplished,this will increase the probability for sustained viability of theStipasteppes in the next 50–100 years.(Lyu Xiaomin)
Based on simulation results from the 16 CMIP5 model runs under three Representative Concentration Pathways (RCP2.6,RCP4.5,and RCP8.5) in combination with the recent five years of growth-stage data from agrometeorological observation stations in the middle and lower reaches of the Yangtze River,changes in heat injury and spatial distribution patterns of single-cropping rice in China during the early (2016–2035),middle (2046–2065),and late (2080–2099) 21st century were projected by using quantitative estimations.Relative to the reference period (1986–2005),the occurrence probabilities of heat injury to single-cropping rice under different RCP scenarios increased significantly,showing a trend of mild > moderate > severe.The occurrence probabilities increased with time and predicted emissions,especially the average and maximum occurrence probabilities,which were 48% and 80%,respectively,in the late 21st century under the RCP8.5 scenario.The spatial patterns of the occurrence probabilities at each level of heat injury to single-cropping rice did not change,remaining high in the middle planting region and low in the east.The high-value areas were mainly in central Anhui and southeastern Hubei provinces,and the areas extended to the northwest and northeast of the cultivation area over time.Under the RCP2.6,RCP4.5,and RCP8.5 scenarios,the total area of heat injury to single-cropping rice showed a significant linear increasing trend of 7.4 × 103,19.9 × 103,and 35.3 × 103ha year–1,respectively,from 2016 to 2099,and the areas of heat injury were greatest in the late 21st century,accounting for~25%,~40%,and~59% of the cultivation area.(Lyu Xiaomin)
As a central process in the hydrological system and the climate system,terrestrial evapotranspiration is a key factor furthering our understanding of the climate change processes.Knowledge of factors controlling the variability in evapotranspiration is crucial for the prediction of the fate of terrestrial ecosystems under environmental changes.Based on long-term (2005–2014) eddy covariance flux data observed at a rainfed maize site in Northeast China,the purpose of this study was to clarify the environmental regulation of actual evapotranspiration (ET) and the extent to which the regulatory effects on ET are directly or indirectly mediated by changes in biotic factors,using the structural equation modeling (SEM) method.The results showed that annual total ET was 397 ± 35 mm for the rainfed maize site in comparison with 575 ± 169 mm of precipitation (Prec),with an ET/Prec ratio ranging from 0.43 (2012) to 1.14 (2014).It was revealed that net radiation (Rn) was the primary controlling factor of the maize ET,followed by leaf area index (LAI),vapor pressure deficit (VPD),air temperature (Ta),and soil water content (SWC).The adjusted SEM models explained 71%,67%,and 67% of the variation in daily ET of the maize growing season (ETgs) for dry,normal,and moist years,respectively.Rn and VPD dominated ETgs in an increasing order of dry,normal,and moist years.Conversely,the effects of LAI and Ta on ETgs followed the opposite trend.This indicated that drought may increase the sensitivity of maize ET to temperature changes,and decrease the sensitivity of maize ET to radiation changes.In SEM analysis,LAI played an important mediating role in the relationship among climate,soil variables,and ETgs.Rn,VPD,Ta,and SWC all had significant indirect effects on ETgs mediated through LAI.At the annual scale,it was identified that most active days could be a robust predictor of annual ET.(Zhou Li)
The carbon budget of agricultural ecosystems is of great importance to the global carbon balance.In this study,the structural equation modeling (SEM) method was employed to quantify the direct and indirect effects of environmental factors on daily net ecosystem CO2exchange (NEE) in a rainfed maize cropland,Northeast China.The results showed that net radiation (Rn) was the most important factor controlling daily NEE,followed by the leaf area index (LAI),air temperature (Ta),vapor pressure deficit (VPD),and clearness index (Kt).The strong effect of Rn was mainly attributed to its direct effect,while Ta and VPD showed comparable or even higher indirect effects than direct effects,indicating that Ta and VPD influenced NEE mainly through regulating canopy development on a daily scale.Moreover,the responses of NEE to individual environmental factors differed greatly among multiyear climatic conditions.Ta and VPD were shown to be more important in warm (WM) years and warm and dry (WD) years than in normal (NM) years and cold and wet (CW) years.LAI was the primary controlling factor of daily NEE in WD years,resulting in large indirect effects of Ta and VPD on NEE.Kt had a large effect on daily NEE only in CW years.SWC had significant effects on daily NEE in WM and WD years but in the opposite direction,i.e.,daily NEE increased with SWC in WD years but decreased with SWC in CW years.The partitioning of direct and indirect effects of environmental factors with SEM can greatly enhance the understanding of the controlling mechanism of NEE and remind researchers to consider the distinct effects of environmental factors on NEE among multiyear climatic conditions in future models.(Zhou Li)
A long time series in crop yield is usually expressed as a long-term trend and a short-term fluctuation due to agricultural technological advance and climatic anomaly.The real climate risk is related to the short-term fluctuation in crop yield.In the paper,the climate risk of maize yield response to long-term climate variables is tested with the long time series (1961–2015) by a trend baseline method.The long time series of maize yield is divided into short-term fluctuating meteorological yield and long-term trend yield.The long time series of climate variables are also divided into fluctuating variables and trend variables.After that,Pearson correlation analysis between fluctuating maize yield and fluctuating climate variables is used to identify risk factor causing maize yield fluctuation.Our results reveal that the main risk factors are night-time precipitation and extreme high temperature in growing season.Comparing climate risks in maize-producing provinces,much more climate risks are identified in some regions such as Liaoning Province.The results provide useful information for reducing maize yield loss under climatic change.(Ji Yuhe)
The impact of global warming on extreme precipitation over China is projected based on CMIP5 simulations under three representative concentration pathway scenarios.When global warming is 1.5 above the pre-industrial (1861?1890),precipitation intensity and frequency increase,which leads to an increase relative to the period 1986?2005 in total wet daytime precipitation in Northeast China,North China,and the Qinghai-Tibet Plateau.However,South China and Southwest China experience fewer precipitation days and less total precipitation despite increasing simple daily intensity (SDII).Under 2.0 of warming,the number of wet days (R1mm) increases to north of 30 °N and decreases to the south,whereas the number of consecutive dry days (CDD) displays the opposite pattern.The other eight extreme precipitation events increase during the simulation period nationwide,with varying intensity.An increase in global warming from 1.5 to 2.0 is projected to lead to an increase in precipitation intensity over China,except for some scattered regions in the northwest and southwest of the country.More frequent extreme precipitation days are also expected,although decreases in R1mm are projected in North China and extend to Northwest China.An overall small decrease in CDD is predicted for China.All annual regional-mean precipitation events have an apparent linear relationship with global mean temperature,except for CDD.The rate of increase of extreme precipitation with temperature in the future on an annual scale is much faster than for a reference period (1986?2005),whereas no noticeable difference exists on a daily scale.The relationships between daily precipitation extremes and temperature for the present days and for the future show a quadratic polynomial structure,increasing up to 19 but decreasing at higher temperatures.There is a significant positive influence on extreme precipitation when warming is limited to 1.5 ,compared with a limit of 2.0 .(Zhou Mengzi)
冠層吸收光合有效輻射比(FAPAR)是植被生產(chǎn)力遙感模型的重要參數(shù)。但關(guān)于不同干旱條件下作物全生育期的FAPAR遙感反演研究仍未見報(bào)道。本研究利用2015年夏玉米5個(gè)灌水處理模擬試驗(yàn)的高光譜反射率和FAPAR觀測(cè)資料,分析了不同干旱條件下夏玉米關(guān)鍵生育期FAPAR和高光譜反射率變化特征,探討了FAPAR與反射率、一階導(dǎo)數(shù)光譜反射率和植被指數(shù)的關(guān)系。結(jié)果表明: 輕度水分脅迫和充分供水條件下,F(xiàn)APAR較高;重度水分脅迫和重度持續(xù)干旱條件下,F(xiàn)APAR較低。冠層可見光、近紅外光和短波紅外光區(qū)的反射率與FAPAR分別呈負(fù)相關(guān)、正相關(guān)和負(fù)相關(guān)關(guān)系。FAPAR與可見光和短波紅外光區(qū)的383、680和1980 nm附近的反射率的相關(guān)性最強(qiáng),相關(guān)系數(shù)均達(dá)?0.87。一階導(dǎo)數(shù)光譜反射率與FAPAR相關(guān)性強(qiáng)且穩(wěn)定的波段為580、720和1546 nm,相關(guān)系數(shù)分別為?0.91、0.89和0.88。9個(gè)常用植被指數(shù)與FAPAR呈線性或?qū)?shù)關(guān)系,其中,增強(qiáng)型植被指數(shù)、復(fù)歸一化植被指數(shù)、土壤調(diào)節(jié)植被指數(shù)和修正的土壤調(diào)節(jié)植被指數(shù)與FAPAR的關(guān)系模型最好,決定系數(shù)(R2)均在0.88以上,平均相對(duì)誤差分別為16.6%、16.6%、16.7%和16.2%;基于一階導(dǎo)數(shù)光譜反射率與FAPAR的對(duì)數(shù)關(guān)系在(720±5)nm波段處的模擬效果較好,R2達(dá)0.86;直接選擇反射率數(shù)據(jù)估算FAPAR的效果較差,R2最高為0.81。研究結(jié)果可為FAPAR的準(zhǔn)確反演及評(píng)估作物干旱狀況提供支撐。(周廣勝)
地—?dú)鉁夭钪笜?biāo)表征作物水分虧缺狀況已經(jīng)被廣泛研究,但地—?dú)鉁夭铍S作物生育進(jìn)程的變化特征及其影響因子的觀測(cè)研究仍較少,制約著地—?dú)鉁夭畹臏?zhǔn)確模擬。基于夏玉米2014年三葉期和2015年拔節(jié)期的5個(gè)灌溉水分控制試驗(yàn)資料的研究表明:隨著夏玉米生育進(jìn)程的推進(jìn),土壤水分的變化顯著影響了夏玉米農(nóng)田的地—?dú)鉁夭睿寥浪痔澣痹絿?yán)重,地—?dú)鉁夭钤礁摺T谡麄€(gè)水分處理期間,歸一化植被指數(shù)是地—?dú)鉁夭畹闹饕绊懸蜃忧覂烧叱曙@著的線性關(guān)系,但不同生育期地—?dú)鉁夭钸€受其他因子的影響:三葉期后受冠層吸收光合有效輻射比影響且呈顯著的線性關(guān)系,三葉期至拔節(jié)期則受土壤相對(duì)濕度和空氣相對(duì)濕度的影響且呈顯著的線性關(guān)系。在此基礎(chǔ)上,基于2014年試驗(yàn)資料建立了夏玉米全生育期地—?dú)鉁夭钅M模型、營養(yǎng)生長期地—?dú)鉁夭钅M模型和生殖生長期地—?dú)鉁夭钅M模型,并利用2015年夏玉米拔節(jié)期5個(gè)灌溉水分控制試驗(yàn)資料進(jìn)行了模型驗(yàn)證,結(jié)果表明,夏玉米全生育期地—?dú)鉁夭钅P涂梢越忉?015年地—?dú)鉁夭钭儺惖?3%,但地—?dú)鉁夭罘稚谀M模型,即營養(yǎng)生長期地—?dú)鉁夭钅M模型和生殖生長期地—?dú)鉁夭钅M模型綜合的模擬結(jié)果則可解釋2015年地—?dú)鉁夭钭儺惖?9%。研究結(jié)果為基于地—?dú)鉁夭畹淖魑锔珊抵笜?biāo)定量評(píng)估作物干旱提供了依據(jù)。(周廣勝)
植物干物質(zhì)的累積依賴于群體光合速率,而群體光合速率又與單葉的光合能力密切有關(guān)。葉片光合作用與其含水量密切相關(guān),目前關(guān)于不同葉位葉片含水量對(duì)持續(xù)干旱的響應(yīng)及其與光合作用的關(guān)系還未見報(bào)道。以華北夏玉米鄭單958為材料,設(shè)置6個(gè)不同灌水處理,模擬不同灌溉量下持續(xù)干旱對(duì)夏玉米不同葉位葉片生理特性的影響,分析夏玉米頂部開始的第1、3、5葉位葉片的水分變化及其與凈光合速率的關(guān)系。結(jié)果表明:夏玉米不同葉位的葉片最大含水量不同,且隨干旱進(jìn)程的推進(jìn)葉片含水量的變化速率也不同,第1葉的葉片含水量下降速率高于第3、5葉,第1葉的最大含水量高于第3、5葉,且可進(jìn)行光合產(chǎn)物積累的葉片含水量下限隨葉位的增加而增大。同時(shí),第1葉的葉片含水量與土壤水分呈顯著相關(guān),且與凈光合速率的相關(guān)性也非常強(qiáng)。第1葉可進(jìn)行光合產(chǎn)物積累的葉片水分下限(凈光合速率為零時(shí)的葉片含水量)最小,表明其耐旱性最強(qiáng),對(duì)干旱具有指導(dǎo)意義。研究結(jié)果可為提高冠層光合作用模擬的準(zhǔn)確性及夏玉米干旱發(fā)生發(fā)展的監(jiān)測(cè)預(yù)警提供參考。(周廣勝)
水分利用效率是植物個(gè)體或生態(tài)系統(tǒng)水分利用過程的重要特征參數(shù),可表征不同時(shí)空尺度的植物碳—水耦合關(guān)系,對(duì)植物適應(yīng)氣候變化研究具有重要意義。本研究以玉米為例,利用中國氣象局固城農(nóng)業(yè)氣象野外科學(xué)試驗(yàn)基地2013—2014年玉米不同灌溉方案模擬試驗(yàn)資料,對(duì)不同葉位葉片的水分利用效率特征及其影響因素進(jìn)行分析。結(jié)果表明:植株頂部第1片葉片水分利用效率在拔節(jié)期和乳熟期呈現(xiàn)明顯的峰值,反映出明顯的周期變化規(guī)律及其與葉片生理生態(tài)特征的緊密相關(guān)。在相同環(huán)境條件下,不同葉位葉片的水分利用效率不存在顯著性差異,即玉米葉片水分利用效率具有空間穩(wěn)定性與葉齡保守性。同時(shí),研究指出葉片光合速率和蒸騰速率在葉位之間的協(xié)調(diào)變化是導(dǎo)致空間穩(wěn)定性和葉齡保守性的主要原因。研究結(jié)果可為植物水分關(guān)系研究提供參考,也可為水分利用效率的尺度化研究提供依據(jù)。(周廣勝)
基于CMIP5 耦合氣候模式模擬結(jié)果對(duì)1.5 和2 ℃升溫閾值時(shí)中國溫度和降水變化的分析表明,1.5 升溫閾值時(shí),中國年平均升溫由南向北加強(qiáng)且在青藏高原地區(qū)有所放大,季節(jié)尺度上升溫的空間分布與其類似,就區(qū)域平均而言,RCP2.6、RCP4.5和RCP8.5情景下中國年平均氣溫分別升高1.83、1.75和1.88 ℃,氣溫的季節(jié)變幅以冬季升高最為顯著;除華南和西南地區(qū)外中國大部分地區(qū)年平均降水量增多,降水的季節(jié)差異明顯,以夏季降水的分布模態(tài)與年平均降水量的分布最為相似,區(qū)域平均的年降水量分別增加5.03%、2.82%和3.27%,季節(jié)尺度上以冬季降水增幅最大。2 ℃升溫閾值時(shí),RCP4.5和RCP 8.5情景下中國年平均溫度的空間分布與1.5 ℃升溫閾值基本一致,中國年平均氣溫分別升高2.49和2.54 ℃,季節(jié)尺度上氣溫的變化以秋、冬季增幅最大;中國范圍內(nèi)年平均降水量基本表現(xiàn)為增多趨勢(shì),其中,西北和長江中下游部分地區(qū)表現(xiàn)為明顯的季節(jié)差異,區(qū)域平均的年降水量分別增加6.26%和5.86%。與1.5 ℃升溫閾值相比較,2 ℃升溫閾值時(shí)中國年平均溫度在RCP4.5和RCP8.5情景下分別升高0.74和0.76 ℃,降水則分別增加3.44%和2.59%,空間上溫度升高以東北、西北和青藏高原最為顯著,降水則在東北、華北、青藏高原和華南地區(qū)增加最為明顯。(周夢(mèng)子)
Apples (Malus pumilaMill.) are widely cultivated in 95 countries and regions around the globe.China is the world’s largest producer of apples.Prediction of apple yield in the context of climate change has become an important topic of research.The study sites in this investigation include 28 apple-producing base counties located in Shaanxi Province of the northwest Loess Plateau.In this study,grey relational analysis was used to examine 88 climatic factors and to extract those factors that significantly influence the meteorological yield (MY) of apples.A support vector machine (SVM) was used to make a quantitative prediction of changes in MY in the apple-producing areas of Shaanxi Province from the years 2000–2099 under 2 climate change scenarios,RCP 4.5 and RCP 8.5.In addition,fuzzy information granulation was used to analyze the variation trends and variation spaces of MY from 2020 to 2049 and 2050 to 2099,compared with the 1990–2019 reference period.The results showed that for the 10-day and monthly climatic factors affecting the MY of apples,climate resource factors are more influential than meteorological disaster factors and spring factors are significantly more influential than other seasonal factors.Overall,there are more and broader climate resource factors affecting MY,and spring climatic conditions are more important for it.In the RCP 4.5 scenario,9 base counties showed slight decreases,2 counties showed significant decreases,15 counties maintained or had slightly increased,and 2 counties showed significant increases.The variation of unit yield was ?1.44–1.85 t ha?1.In the RCP 8.5 scenario,10 base counties showed slight decreases,2 counties showed significant decreases,12 counties maintained or had slightly increased,and 4 counties showed significant increases.The variation of unit yield was ?2.43–2.78 t ha?1.For both future climate change scenarios,the uncertainty of MY increased with time.(Guo Jianping)
The irrigation water requirement (IR) is crucial for optimizing agricultural water management and reallocation and for adjusting the planting structure.Based on the datasets derived from 277 meteorological stations and 42 agro-meteorological stations from 1980 to 2012,the simplified water balance equation was employed to estimate the IR in the winter wheat-summer maize rotation system.The results indicated that,for the two crops,the crop coefficients varied with time and space at different growth stages,with low or moderate variability levels.The average values ofKcini,KcmidandKcendwere 0.69,1.17,0.34 and 0.76,1.13,0.43 for winter wheat and summer maize,respectively.The region located to the most of northern parts of the Yellow River had reduced precipitation and increased reference evapotranspiration (ETo) during the rotation cycle; moreover,in the southern part of this region,the precipitation increased significantly with distinctly decreased ETo.In the North China Plain (NCP),the IR for the winter wheat,summer maize and rotation cycle all had no significant trend change,for which the multi-year average values were 341.1,250.5 and 592.5 mm,respectively.The region with higher IR was primarily located in the northern Shandong and the most of northern parts of the Yellow River,where the IR level was remarkably aggravated in dry seasons.Additionally,the IR increased in the northern NCP region and in the junction area between Hebei and Shandong,and IR decreased with a trend of 10 mm decade?1in other areas.In addition,the magnitude of the station and time intervals for abrupt change of IR varied with different growing seasons.(Fang Shibo)
There are currently only two methods (the within-growing season method and the inter-growing season method) used to analyze the normalized difference vegetation index (NDVI) –climate relationship at the monthly time scale.What are the differences between the two methods,and why do they exist? Which method is more suitable for the analysis of the relationship between them? In this study,after obtaining NDVI values (GIMMS NDVI3g) near meteorological stations and meteorological data of Inner Mongolian grasslands from 1982 to 2015,we analyzed temporal changes in NDVI and climate factors,and explored the difference in Pearson correlation coefficients (R) between them via the above two analysis methods and analyzed the change inRbetween them at multiple time scales.The research results indicated that:(1) NDVI was affected by temperature and precipitation in the area,showing periodic changes; (2) NDVI had a high value ofRwith climate factors in the within-growing season,while the significant correlation between them was different in different months in the inter-growing season; (3) with the increase in time series,the value ofRbetween NDVI and climate factors showed a trend of increase in the within-growing season,while the value ofRbetween NDVI and precipitation decreased,but then tended toward stability in the inter-growing season; and (4) when exploring the NDVI–climate relationship,we should first analyze the types of climate in the region to avoid the impacts of rain and heat occurring during the same period,and the inter-growing season method is more suitable for the analysis of the relationship between them.(Fang Shibo)
Soil moisture (SM) products derived from passive satellite missions are playing an increasingly important role in agricultural applications,especially crop monitoring and disaster warning.Evaluating the dependability of satellite-derived soil moisture products on a large scale is crucial.In this study,we assessed the level 2 (L2) SM product from the Chinese Fengyun-3C (FY-3C) radiometer against in-situ measurements collected from the Chinese Automatic Soil Moisture Observation Stations (CASMOS) during a one-year period from 1 January 2016 to 31 December 2016 across Henan in China.In contrast,we also investigated the skill of the Advanced Microwave Scanning Radiometer 2 (AMSR2) and Soil Moisture Active/Passive (SMAP) SM products simultaneously.Four statistical parameters were used to evaluate these products’ reliability:mean difference,root-mean-square error (RMSE),unbiased RMSE (ubRMSE),and the correlation coefficient.Our assessment results revealed that the FY-3C L2 SM products generally showed a poor correlation with the insitu SM data from CASMOS on both temporal and spatial scales.The AMSR2 L3 SM products of JAXA (Japan Aerospace Exploration Agency) algorithm had a similar level of skill as FY-3C in the study area.The SMAP L3 SM products outperformed the FY-3C temporally but showed lower performance in capturing the SM spatial variation.A time-series analysis indicated that the correlations and estimated error varied systematically through the growing periods of the key crops in our study area.FY-3C L2 SM data tended to overestimate soil moisture during May,August,and September when the crops reached maximum vegetation density and tended to underestimate the soil moisture content during the rest of the year.The comparison between the statistical parameters and the ground vegetation water content (VWC) further showed that the FY-3C SM products performed much better under a low VWC condition (<0.3 kg m?2) than under a high VWC condition (>0.3 kg m?2),and the performance generally decreased with increased VWC.To improve the accuracy of the FY-3C SM products,an improved algorithm that can better characterize the variations of the ground VWC should be applied in the future.(Fang Shibo)
Measuring the impacts of uncertainties identified from different global climate models (GCMs),representative concentration pathways (RCPs),and parameters of statistical crop models on the projected effects of climate change on crop yields can help to improve the availability of simulation results.The quantification and separation of different sources of uncertainty also help to improve understanding of impacts of uncertainties and provide a theoretical basis for their reduction.In this study,uncertainties of maize yield predictions are evaluated by using 30 sets of parameters from statistical crop models together with eight GCMs with reference to three emission scenarios for Jilin Province of Northeast China.Regression models using replicates based on bootstrap resampling reveal that yields are maximized when the optimum average growing season temperature is 20.1 for 1990–2009.The results of multi-model ensemble simulations show a maize yield reduction of 11%,with 75% probability for 2040–69 relative to the baseline period of 1976–2005.We decompose the variance so as to understand the relative importance of different sources of uncertainty,such as GCMs,RCPs,and statistical model parameters.The greatest proportion of uncertainty (>50%) is derived from GCMs,followed by RCPs with a proportion of 28% and statistical crop model parameters with a proportion of 20% of total ensemble uncertainty.(Zhang Yi)
Forests play an important role in sequestrating atmospheric carbon dioxide (CO2).Therefore,in order to understand the spatial-temporal variations and controlling mechanisms of global forest carbon (C) storage under future climate change,an improved individual-based forest ecosystem carbon budget model and remote sensing outputs in this study were applied to investigate the spatial-temporal dynamics of global forest (vegetation+soil) C storage in the future climate change scenario.The results showed that in the future RCP4.5 (representative concentration pathways) climate scenario,the total C storage per unit area per year in vegetation and soil of the global forest ecosystem showed a trend of first decreasing and then increasing from 2006 to 2100,with an average of 22.77 kg m?2year?1.However,the evolution trends of C storage changes in vegetation and soil were different.Moreover,the average soil C storage per unit area per year was 2.87 times higher than the average vegetation C storage.The impact of climate change on total C storage in vegetation and soil of the global forest ecosystems was positive,showing an obvious increase during 2006–2100.The total C storage varied significantly in spatial distribution.Spatially,the vegetation C storage and the soil organic C storage were projected to decrease significantly in most parts of South America and the southern Africa in the Southern Hemisphere and increase in the eastern North America,western Asia,and most areas of Europe in the Northern Hemisphere.Especially in the middle and high latitude regions of the Northern Hemisphere,the total forest C stock was projected to increase by 30%–90% from 2046 to 2100.In the future,in these areas where forest C reserves were predicted to be reduced,it was suggested to increase afforestation,prohibit deforestation,and develop projects to increase forest C.Sustainable forest managements also offered opportunities for immediate mitigation and adaptation to climate change.Our findings provided not only a projection of C storage of global forest ecosystem responses to future climate change but also a useful methodology for estimating forest C storage at global levels.(Zhao Junfang)
This study investigates agricultural adaptation to drought for different cropping systems in the southern China.The study area was divided into three regions:South China (SC),South of the Yangtze River (SYR),and Southwest China (SWC).An index of agricultural adaptation to drought (D) was established.Our findings indicated that the average total crop water demand varied greatly among the regions from 1961 to 2010 in the southern China.The maximum value was found in the SC region,followed by the SYR and SWC regions.The effects of droughts on different crops were noticeable.Frequent droughts were recorded in late rice than in early rice in the SC and SYR regions.Droughts in the SWC region mainly affected winter wheat.Moreover,the effects of droughts on crops varied during different growth stages.More frequent and serious droughts occurred during the crop critical flowering stage.Particularly,the frequency of moderate and severe droughts for late rice in the SYR region was 62% during the critical flowering stage.For the SC and SYR regions,theDvalues of early rice (0.29 and 0.29) were lower than that of late rice (0.31 and 0.33),respectively.For the SWC region,theDvalues of winter wheat and rice were both low,with averages of 0.16 and 0.29,respectively.Our study provides interesting insights for improving the drought defense abilities for different cropping systems by changing crop planting proportion on a regional scale in China.(Zhao Junfang)
Accurately assessing the NEP of global forest ecosystem is indispensable to adjusting the global carbon balance for climate change.In this study,an improved individual-based forest ecosystem carbon budget model (FORCCHN) and remote sensing outputs were applied to investigate the impacts of climate change on the NEP of global different forest types from 1982 to 2011.The contributions of carbon sinks in different forest types to carbon sinks in global forest ecosystems were explored.The global forests were categorized into five ecological types according to their habitats and generic characteristics:deciduous coniferous forest (DCF),evergreen coniferous forest (ECF),evergreen coniferous deciduous broad-leaved mixed forest (ECDBMF),deciduous broadleaved forest (DBF) and evergreen broad-leaved forest (EBF).The results showed that globally,the forest ecosystems represented a huge carbon sink and that the total carbon uptakes per unit area per year for EBF,ECF,DBF,DCF and ECDBMF forests from 1982 to 2011 were 0.388,0.116,0.082,0.048 and 0.044 kg m?2year?1,respectively.Inter-annual variability in global NEP per unit area per year among different forest types clearly existed.From 1982 to 2011,especially,the NEP increased in the EBF and ECF forests globally,but decreased in DBF forests.Moreover,there were no significant changes in the NEP of DCF and ECDBMF forests.The carbon sink areas varied among the 5 global forest types.For the DCF forest,central Asia,northern Europe and central North America were the main carbon sink regions.Central Asia,northern Europe and central North America were the main carbon sink regions for the ECF forest.For the ECDBMF forest,the carbon sink regions were mainly concentrated in the northern and central Asia.The carbon sink regions for the DBF forest were mainly concentrated in the southern Asia,southern Europe and mid-eastern North America.The carbon sink regions for the EBF forest were mainly concentrated in the northern and central South America,southern Africa and southern Asia.Finally,the individual contributions of the NEP of each of forest type to global forest’s NEP were calculated.The contributions of NEP for the EBF,ECF,DBF,DCF and ECDBMF forests to the total NEP of global forests were 57.19%,17.07%,12.17%,7.10% and 6.47%,respectively.Our findings highlight that,over the past three decades,the EBF,ECF and DBF forests have been the main contributors to the increases in net ecosystem productivity of global forests.(Zhao Junfang)
Rice (Oryza sativa) growth is always threatened by heat as well as cold stress,when it is exposed to natural environment.Heat growing degree hours (HGDH) and cold growing degree hours (CGDH1 and CGDH2) were firstly proposed to quantify heat and cold stress occurred during different growing stages.The information diffusion method was effectively used to fit the distribution and estimate probability of single stress at each station,with an advantage of no limitation in data series.In terms of single stress,highest probability was seen in HGDH,followed by CGDH1 and CGDH2.Seven copula functions,i.e.,normal and t,Gumbel-Hougaard,Clayton,Frank,Joe,and Ali-Mikhail-Haq,were applied to fit the distribution of multistress with significant dependence,and simple calculation based on single stress was used to quantify the probability for multi-stress with independence.In these copulas,t was the most chosen one in the fitting of HGDH-CGDH1,HGDH-CGDH2,CGDH1-CGDH2,and HGDH-CGDH1-CGDH2,selected by the statistic of Akaike information criterion.Regarding bi-stress,higher joint probability was in HGDH-CGDH1,relative to HGDH-CGDH2 and CGDH1-CGDH2.As expected,the co-occurrence probability of tri-stress was lower than that of bi-stress in the magnitude and spatial extent,while joint probability of tri-stress was larger.Given the condition of occurrence of HGDH or CGDH1,the joint probability of HGDH-CGDH1 was higher than other pairs of bi-stress and tri-stress.It was special that higher joint probability of CGDH1-CGDH2 was detected under the condition of CGDH2 relative to CGDH1.Joint probability of tri-stress was lower under the condition of HGDH-CGDH1,in comparison with HGDH-CGDH2 and CGDH1-CGDH2.Hazards of single stress and multi-stress were expressed by the integration of intensity of stress index and corresponding probability.Most consistent conclusions agreed that the central Fujian,Zhejiang,and northeastern Jiangxi were exposed to higher hazard,derived from not only single stress but also multi-stress.These results can be helpful in provision of information regarding prevention and adaptation strategies for rice cultivation as a response to extreme temperature stress.(Huo Zhiguo)
修正已有積溫模型,提高積溫穩(wěn)定性,對(duì)積溫指標(biāo)更好地應(yīng)用于農(nóng)業(yè)生產(chǎn)實(shí)踐有重要意義?;跂|北地區(qū)春玉米的生長發(fā)育情況,綜合分析影響積溫穩(wěn)定性的氣象因素,訂正常用的活動(dòng)積溫模型。在進(jìn)行積溫穩(wěn)定性評(píng)價(jià)基礎(chǔ)上,將訂正模型應(yīng)用于春玉米的發(fā)育期預(yù)報(bào)中。結(jié)果表明:溫度條件是影響積溫穩(wěn)定性的最主要因素,基于溫度因子得到的訂正模型,在出苗—抽雄階段和抽雄—成熟階段較原模型年際間變異系數(shù)分別平均減小了0.42%和1.42%,訂正模型計(jì)算的積溫穩(wěn)定性更好。分別利用1981—2010年及2011—2017年資料進(jìn)行回代及預(yù)報(bào)檢驗(yàn),發(fā)現(xiàn)訂正模型對(duì)抽雄期的預(yù)報(bào)結(jié)果改進(jìn)不明顯,對(duì)成熟期的預(yù)報(bào)結(jié)果誤差較原活動(dòng)積溫模型在回代及預(yù)報(bào)檢驗(yàn)中分別降低了3.78 d 和1.1 d。(郭建平)
選用南北方冬麥區(qū)主要推廣品種作試驗(yàn)材料,通過田間分期播種試驗(yàn)方法,采用方差分析、主成分分析對(duì)冬小麥籽粒性狀和內(nèi)在品質(zhì)進(jìn)行分析評(píng)價(jià),利用線性相關(guān)、二次曲線相關(guān)和逐步回歸等方法,選擇影響顯著的氣象因子繪制品質(zhì)響應(yīng)曲線,構(gòu)建冬小麥品質(zhì)預(yù)測(cè)模型。結(jié)果表明:各供試小麥品種均屬中蛋白品種,其主要品質(zhì)性狀中,淀粉含量最高且變異程度最小,蛋白質(zhì)含量次高變異程度居中,脂肪含量最低但變異程度最大;蛋白質(zhì)、脂肪和產(chǎn)量區(qū)域差異顯著,各品質(zhì)含量地域分布總體呈北方較南方高而穩(wěn)定的特點(diǎn);蛋白質(zhì)組分氨基酸品質(zhì)可由3個(gè)主成分解釋,一般非必需氨基酸谷氨酸含量最高,必需氨基酸蛋氨酸含量最低,北方麥區(qū)氨基酸品質(zhì)優(yōu)于南方麥區(qū),表明北方氣溫日較差大更利于提高氨基酸含量; 脂肪組分脂肪酸品質(zhì)可由4個(gè)主成分解釋,一般不飽和脂肪酸亞油酸含量最高,飽和脂肪酸十五碳一烯酸含量最低。溫濕條件是影響冬小麥籽粒品質(zhì)的主要?dú)庀笠蜃樱赏ㄟ^調(diào)整開花—成熟期氣溫日較差和降低土壤濕度的方式提高蛋白質(zhì)或氨基酸品質(zhì),通過調(diào)節(jié)開花—成熟期最低氣溫和土壤濕度的方式提高脂肪或脂肪酸品質(zhì)。(郭建平)
選取晉北農(nóng)牧交錯(cuò)帶1961—2016年19個(gè)氣象站點(diǎn)逐日氣象資料以及1981—2016年5種糧食作物發(fā)育期觀測(cè)資料,采用作物生產(chǎn)潛力逐級(jí)訂正法,分析不同作物各級(jí)生產(chǎn)潛力分布特征,并基于各級(jí)生產(chǎn)潛力變化傾向率建立統(tǒng)計(jì)模型,分析輻射、氣溫、降水等氣候要素變化對(duì)氣候生產(chǎn)潛力的影響。結(jié)果表明:1961—2016年,晉北各作物光溫生產(chǎn)潛力空間分布特征為玉米、谷子、高粱和大豆東高西低,馬鈴薯空間分布差異較??;各作物氣候生產(chǎn)潛力空間分布特征為玉米、谷子和高粱東南高西北低,馬鈴薯東西高中部低,大豆空間分布差異較小;氣候要素變化對(duì)不同作物氣候生產(chǎn)潛力的影響不同,輻射變化對(duì)5種作物氣候生產(chǎn)潛力的影響為負(fù)效應(yīng);氣溫變化對(duì)大部分地區(qū)喜溫作物( 玉米、大豆、谷子和高粱)氣候生產(chǎn)潛力的影響為正效應(yīng),對(duì)喜涼作物馬鈴薯的影響是負(fù)效應(yīng),氣候變暖對(duì)改善晉北地區(qū)熱量不足有利;降水變化是影響晉北作物氣候生產(chǎn)潛力變化出現(xiàn)明顯空間差異的主要因素,降水減少對(duì)于東北部降水偏少地區(qū)的影響為負(fù)效應(yīng),而對(duì)于南部降水較多地區(qū)未表現(xiàn)負(fù)效應(yīng),降水基本滿足作物生長需要。為適應(yīng)當(dāng)前氣候變化,需加強(qiáng)高光合效率和抗旱作物品種的選育,合理密植,調(diào)整播期,優(yōu)化農(nóng)業(yè)布局,因地制宜地推廣農(nóng)業(yè)集雨灌溉和農(nóng)業(yè)節(jié)水灌溉技術(shù),以提高農(nóng)業(yè)氣候資源利用率,促進(jìn)糧食作物穩(wěn)產(chǎn)高產(chǎn)。(郭建平)
選用黃淮海冬麥區(qū)4個(gè)半冬性小麥品種郯麥98、山農(nóng)18、徐麥33、皖麥52為試驗(yàn)材料,通過分期播種試驗(yàn),利用方差分析、相關(guān)分析、逐步回歸和通徑分析等方法,對(duì)半冬性小麥籽粒灌漿速度變化趨勢(shì)和氣象因子對(duì)灌漿速度的影響進(jìn)行了分析。結(jié)果表明,正常播期冬小麥灌漿速度波動(dòng)性最小、千粒重最大,遲播10 d冬小麥灌漿速度波動(dòng)性最大、千粒重最小;華北區(qū)品種郯麥98灌漿速度表現(xiàn)最穩(wěn)定、千粒重最高,而黃淮區(qū)品種皖麥52灌漿速度最大;半冬性小麥灌漿持續(xù)期為35~39 d;南北氣候差異是影響各品種冬小麥灌漿速度不同的原因之一。半冬性小麥各播期灌漿速度的變化趨勢(shì)一致,灌漿速度變化與相關(guān)顯著氣象因子的變化規(guī)律相符合;灌漿峰值期一般出現(xiàn)在開花后15~25d,遲播冬小麥最大灌漿速度出現(xiàn)時(shí)間較對(duì)照處理提前,不利于提高粒重;氣溫條件對(duì)冬小麥灌漿速度影響顯著,其中最高氣溫要素是影響不同播期品種灌漿速度的共有關(guān)鍵因子。通徑分析表明,最高氣溫對(duì)灌漿速度的作用由自身的直接效應(yīng)決定,而日照時(shí)數(shù)與最低氣溫對(duì)灌漿速度的作用與間接效應(yīng)一致;最高氣溫平均值對(duì)灌漿速度的影響最重要,日照時(shí)數(shù)和最低氣溫平均值對(duì)灌漿速度的影響較弱;最高和最低氣溫平均值、日照時(shí)數(shù)均為灌漿速度的限制因子,其中最高氣溫平均值對(duì)灌漿速度變化的決策作用最大。(郭建平)
為揭示冬小麥干物質(zhì)積累過程的動(dòng)態(tài)變化,利用不同品種冬小麥分期播種的灌漿速率資料,建立了Logistic模型,定量分析了不同播期條件下不同品性冬小麥的灌漿特性,并探討了冬小麥灌漿特性對(duì)氣象因子的響應(yīng)情況。結(jié)果表明,籽粒灌漿質(zhì)量與開花后天數(shù)的關(guān)系符合Logistic生長曲線方程?;贚ogistic模型求算的各次級(jí)參數(shù)能夠較好地表征冬小麥籽粒灌漿特性,半冬性品種較春性品種灌漿高峰期出現(xiàn)時(shí)間早;春性品種的粒重漸增期和粒重快增期持續(xù)時(shí)間一般長于半冬性品種;半冬性品種的平均活躍灌漿期較春性品種短;早播和正常播種條件下,春性品種最大和平均灌漿速率均高于半冬性品種,而遲播條件下春性品種最大和平均灌漿速率均低于半冬性品種;適期晚播更利于春性品種灌漿和千粒重增加。灌漿特性的變異系數(shù)分布總體呈春性品種大于半冬性品種,表明播期對(duì)春性品種的影響更大。不同籽粒灌漿特性對(duì)氣象因子的響應(yīng)不同,其中孕穗—成熟期內(nèi)的平均氣溫、孕穗—乳熟期內(nèi)的降水量、播種—乳熟期內(nèi)的日照時(shí)數(shù)與冬小麥灌漿特性相關(guān)密切,基于灌漿特性與氣象因子建立的逐步回歸方程決定系數(shù)為0.507~0.875,均通過了0.01水平的顯著性檢驗(yàn)。(郭建平)
構(gòu)建春玉米冷害指標(biāo)是冷害研究的基礎(chǔ),對(duì)我國春玉米安全生產(chǎn)和品種布局具有重要參考意義。以我國東北三省春玉米為研究對(duì)象,以具有明確生物學(xué)意義的熱量指數(shù)為春玉米冷害指示因子,利用氣象資料、春玉米生育期資料和冷害災(zāi)情資料,計(jì)算春玉米不同生育階段平均熱量指數(shù),建立春玉米冷害樣本序列,基于K-S分布擬合檢驗(yàn)和95%置信區(qū)間上限閾值的方法,厘定春玉米冷害指標(biāo)閾值,構(gòu)建我國東北春玉米不同生育階段冷害指標(biāo),并采用獨(dú)立的春玉米冷害災(zāi)情樣本驗(yàn)證指標(biāo)的合理性。研究結(jié)果表明:東北三省春玉米冷害指標(biāo)在生殖生長和營養(yǎng)生長與生殖生長并進(jìn)期熱量指數(shù)的閾值較高,營養(yǎng)生長期略低;指標(biāo)驗(yàn)證結(jié)果與歷史災(zāi)情記錄完全吻合的比率為80.0%,完全吻合和相差1級(jí)的比率為100%,且各災(zāi)害程度驗(yàn)證得到的準(zhǔn)確率均高于75%。(王培娟)
利用黃淮海平原內(nèi)氣象數(shù)據(jù)、農(nóng)業(yè)氣象數(shù)據(jù)、夏玉米實(shí)際災(zāi)情資料,參考標(biāo)準(zhǔn)化降水指數(shù)SPI的計(jì)算公式,結(jié)合實(shí)際干旱災(zāi)情數(shù)據(jù)構(gòu)建夏玉米干旱指數(shù)SPI10和SPI30,并分析黃淮海平原夏玉米生長季干旱的時(shí)空分布特征。結(jié)果表明:播種—抽雄期、抽雄—成熟期的旬尺度SPI10干旱閾值分別為?0.10和?0.35、月尺度SPI30干旱閾值分別為?0.60和?0.65,災(zāi)情驗(yàn)證結(jié)果顯示時(shí)間尺度更小的SPI10在反映黃淮海平原夏玉米干旱特征方面效果更好。基于SPI10分析了黃淮海平原夏玉米干旱的時(shí)空分布特征,發(fā)現(xiàn)播種—抽雄期的平均干旱頻率和干旱強(qiáng)度均明顯高于抽雄—成熟期,并且干旱強(qiáng)度的時(shí)空分布特征均與干旱頻率較為一致,一般表現(xiàn)為干旱頻率越高的地區(qū),累計(jì)干旱強(qiáng)度也越強(qiáng);同時(shí),75%的年份中播種—抽雄期的干旱范圍大于抽雄—成熟期。綜合以上結(jié)果,黃淮海平原夏玉米在營養(yǎng)生長階段更容易受到水分缺失的影響,更易發(fā)生干旱脅迫。(王培娟)
基于江西省贛州市11個(gè)臍橙主產(chǎn)縣2008—2011年臍橙品質(zhì)和氣象數(shù)據(jù),采用相關(guān)普查、逐步回歸和主成分回歸分析等方法篩選影響臍橙品質(zhì)的關(guān)鍵氣象因子,建立臍橙氣候品質(zhì)指標(biāo)評(píng)價(jià)模型。結(jié)果表明:6—11月的溫度、日照、降水是影響臍橙品質(zhì)形成的關(guān)鍵氣象因子;可溶性固形物與9—10月平均氣溫、10月氣溫日較差和日照呈極顯著正相關(guān),與10月降水量呈極顯著負(fù)相關(guān);VC含量與10月最高氣溫、日照、氣溫日較差呈顯著正相關(guān);可食率與10月氣溫日較差、7—10月最高氣溫和8—10月日照呈顯著負(fù)相關(guān);總酸含量與10—11月平均氣溫、10月最低氣溫、7—10月降水量呈顯著負(fù)相關(guān);單果重與6—11月平均氣溫、6—7月最高氣溫和10月降水量呈顯著正相關(guān);分別建立了基于氣象因子的可溶性固形物、總酸、固酸比、VC、可食率、單果重等6個(gè)臍橙品質(zhì)指標(biāo)的評(píng)價(jià)模型,模型驗(yàn)證結(jié)果表明,各品質(zhì)指標(biāo)模擬的平均相對(duì)誤差均小于12%,其中可溶性固形物和可食率的平均相對(duì)誤差小于5%。(王培娟)
土壤水分是影響農(nóng)業(yè)生產(chǎn)的重要因子之一,掌握農(nóng)田地表土壤水分對(duì)農(nóng)業(yè)生產(chǎn)實(shí)踐有著重要的意義和作用。目前監(jiān)測(cè)土壤水分的方法有傳統(tǒng)的點(diǎn)尺度物理監(jiān)測(cè)、基于物理模型和數(shù)學(xué)計(jì)算方法的模擬技術(shù)以及遙感監(jiān)測(cè)方法。而隨著遙感技術(shù)的發(fā)展,逐漸克服了前兩種方法由于采樣點(diǎn)限制以及所需參數(shù)復(fù)雜等制約因素。從不同的遙感波段和遙感方法劃分,介紹了可見光—近紅外遙感、熱紅外遙感、微波遙感的發(fā)展現(xiàn)狀及不同波段所對(duì)應(yīng)的研究方法,并對(duì)各種方法的優(yōu)勢(shì)和局限性進(jìn)行了總結(jié),加強(qiáng)改進(jìn)模型方法研究,增強(qiáng)主被動(dòng)微波結(jié)合反演方法的利用對(duì)于減少植被對(duì)土壤水分的影響有很大的益處,這也是今后遙感技術(shù)反演農(nóng)田地表土壤水分的趨勢(shì)。(房世波)
干旱是影響西北地區(qū)春玉米生產(chǎn)的主要?dú)庀鬄?zāi)害。應(yīng)用甘肅省1980—2011年71個(gè)縣(市)的春玉米播種面積和總產(chǎn)量資料,以風(fēng)險(xiǎn)理論為基礎(chǔ),采用風(fēng)險(xiǎn)評(píng)估技術(shù)方法,探討了甘肅省縣、市春玉米產(chǎn)量在干旱氣候條件下的波動(dòng)和減產(chǎn)的風(fēng)險(xiǎn)水平,通過正態(tài)分布判別和偏態(tài)分布正態(tài)化,研究了西北地區(qū)春玉米不同年型減產(chǎn)率變化特征,分析了甘肅省玉米產(chǎn)量災(zāi)害風(fēng)險(xiǎn)的空間分布規(guī)律,以期為防災(zāi)減災(zāi)提供理論依據(jù)。結(jié)果顯示:不同等級(jí)風(fēng)險(xiǎn)區(qū)域呈整體上分散、小面積連片的特點(diǎn),河西地區(qū)減產(chǎn)率最高,其次為隴中地區(qū)。高風(fēng)險(xiǎn)區(qū)主要集中在隴東地區(qū)的東部,較高風(fēng)險(xiǎn)區(qū)分布在隴中、隴東大部分地區(qū),河西地區(qū)通過灌溉可有效緩解旱災(zāi),風(fēng)險(xiǎn)較低。不同減產(chǎn)率等級(jí)下風(fēng)險(xiǎn)分析可為春玉米產(chǎn)量風(fēng)險(xiǎn)預(yù)測(cè)及抗災(zāi)減損、農(nóng)業(yè)保險(xiǎn)指數(shù)制定和農(nóng)業(yè)保險(xiǎn)賠付等提供參考。(房世波)
為發(fā)展適宜中國區(qū)域農(nóng)業(yè)種植特點(diǎn)的農(nóng)業(yè)氣象模式,基于國外作物生長模擬方法,通過模式機(jī)理過程改進(jìn)或重構(gòu)以及應(yīng)用方式革新,建立了中國農(nóng)業(yè)氣象模式(Chinese AgroMeteorological Model CAMM1.0)。CAMM1.0利用平均溫度和土壤水分改進(jìn)了作物發(fā)育進(jìn)程模式,利用土壤水分改進(jìn)了作物葉片光合作用、干物質(zhì)分配和葉面積擴(kuò)展過程模式,通過蒸發(fā)比法擴(kuò)展了作物蒸散過程模式;自主建立了基于發(fā)育進(jìn)程的冬小麥株高、基于遙感信息的作物灌溉、遙感數(shù)據(jù)同化、作物長勢(shì)與災(zāi)害評(píng)價(jià)等模式?;诨ヂ?lián)網(wǎng)技術(shù)構(gòu)造了實(shí)時(shí)運(yùn)轉(zhuǎn)平臺(tái),主要功能包括作物生長過程實(shí)時(shí)常規(guī)模擬與用戶個(gè)性化定制模擬。CAMM1.0的部分子模式采用多種方法構(gòu)造,便于多模式集成。CAMM1.0對(duì)作物發(fā)育進(jìn)程、光合過程、株高的模擬效果較好,但對(duì)土壤水分變化過程的擬合略差,模擬產(chǎn)量略偏低。CAMM1.0評(píng)價(jià)淮河流域夏玉米年際干旱減弱而澇漬增加的趨勢(shì)與實(shí)際基本相符。(馬玉平)
本文以陜西蘋果花期為研究對(duì)象,基于4個(gè)機(jī)理性物候模型(順序模型SM、平行模型PM、深度休息模型DRM和熱時(shí)模型TTM),基于各果區(qū)代表站的花期數(shù)據(jù)及同期氣象數(shù)據(jù)訂正模型參數(shù),利用內(nèi)部檢驗(yàn)和交叉驗(yàn)證(留一驗(yàn)證)的方法,評(píng)價(jià)模型在模擬花期上的適用性。結(jié)果表明:內(nèi)部檢驗(yàn)時(shí)各站點(diǎn)的最適模型各不相同,總體上SM和TTM均方根誤差略低(3.30 d);交叉驗(yàn)證時(shí)沒有表現(xiàn)特別突出的模型,各模型平均的均方根誤差為4.52 d,略高于內(nèi)部檢驗(yàn)。隨后將TTM的參數(shù),以兩種方法(單站外推和求平均后外推)應(yīng)用至果區(qū)內(nèi)其他站。兩種方法的均方根誤差都高于國外同類研究(10.0 d),其中單站外推的均方根誤差(5.90 d)又高于求平均后外推(7.21 d)。綜合考慮模型的復(fù)雜性與模擬精度,推薦使用TTM并分果區(qū)模擬陜西蘋果花期。(鄔定榮)
以江蘇省為例,利用1980—2015年氣象資料和水稻觀測(cè)數(shù)據(jù),基于Logistic曲線方程構(gòu)建高溫?zé)岷ΡkU(xiǎn)氣象指數(shù),并分別采用正態(tài)分布、正態(tài)對(duì)數(shù)分布和Weibull分布3種參數(shù)模型,以及基于信息擴(kuò)散方法的非參數(shù)模型對(duì)水稻高溫?zé)岷Πl(fā)生概率進(jìn)行擬合。通過擬合優(yōu)度檢驗(yàn)發(fā)現(xiàn),非參數(shù)模型可以較好地估算江蘇各縣水稻孕穗—抽穗揚(yáng)花階段高溫?zé)岷Πl(fā)生概率,進(jìn)而結(jié)合最優(yōu)擬合模型,考慮農(nóng)業(yè)保險(xiǎn)的經(jīng)營需求,從致災(zāi)因子危險(xiǎn)性、孕災(zāi)環(huán)境敏感性、承災(zāi)體易損性、防災(zāi)減災(zāi)能力4個(gè)方面出發(fā),確定相應(yīng)評(píng)估指數(shù)并構(gòu)建綜合指數(shù),采用聚類分析的方法進(jìn)行縣級(jí)水平的水稻高溫?zé)岷ΡkU(xiǎn)風(fēng)險(xiǎn)綜合區(qū)劃。評(píng)估分析表明,江蘇水稻高溫?zé)岷ΡkU(xiǎn)風(fēng)險(xiǎn)呈現(xiàn)“西南高東北低”的特征,中高風(fēng)險(xiǎn)區(qū)是需要依靠農(nóng)業(yè)保險(xiǎn)轉(zhuǎn)移風(fēng)險(xiǎn)的重點(diǎn)關(guān)注區(qū)域。(趙艷霞)
氣候變化背景下,對(duì)全球主要農(nóng)區(qū)氣候生產(chǎn)潛力進(jìn)行定量評(píng)估不僅可以反映出該地氣候生產(chǎn)潛力水平與光、溫、水資源配合協(xié)調(diào)的程度及地區(qū)差異,而且對(duì)提高土地生產(chǎn)力水平,指導(dǎo)農(nóng)牧業(yè)生產(chǎn)具有重要意義。以全球主要農(nóng)業(yè)區(qū)為研究對(duì)象,應(yīng)用全球高時(shí)空分辨率氣象格點(diǎn)資料和氣候生產(chǎn)潛力模型,評(píng)估了1981—2015年氣候變化對(duì)全球主要農(nóng)區(qū)氣候生產(chǎn)潛力的影響。結(jié)果表明,(1)1981—2015年全球主要農(nóng)區(qū)氣候生產(chǎn)潛力呈波動(dòng)上升趨勢(shì),在7.68~8.28 t/hm2之間變化,平均為7.97 t/hm2,最大值出現(xiàn)在2010年,最小值出現(xiàn)在1987年。(2)同年際變化相似,氣候生產(chǎn)潛力年代際增長也十分明顯,其中20世紀(jì)80年代和20世紀(jì)90年代之間的增長最顯著。(3)35年間,全球主要農(nóng)業(yè)區(qū)平均農(nóng)業(yè)氣候生產(chǎn)潛力空間分布的基本特點(diǎn)是南高北低,區(qū)域差異顯著。全球農(nóng)業(yè)區(qū)主要集中在東亞、南亞、中亞、西亞、南歐、大洋洲南部、南美洲東部和北美洲南部等地,最高值出現(xiàn)在亞洲東南部,為28.9 t/hm2,北美洲南部、大洋洲南部、亞洲中部、非洲中部等地氣候生產(chǎn)潛力較低,大部分地區(qū)在5.1 t/hm2以下。(4)35年間,亞洲西南部、中部和北部以及北美洲中部和東南部等地的農(nóng)業(yè)區(qū)氣候生產(chǎn)潛力顯著提高,大部分地區(qū)提高了0.00~6.00 t/hm2;而在歐洲大部分地區(qū)、南美洲北部和東部、非洲中部和南部以及大洋洲大部分地區(qū)氣候生產(chǎn)潛力明顯減少,變化幅度在?7.99~0.00 t/hm2之間??傮w而言,氣候變化對(duì)亞洲和北美洲農(nóng)業(yè)區(qū)農(nóng)業(yè)生產(chǎn)有利,而對(duì)歐洲、南美洲、非洲和大洋洲農(nóng)業(yè)生產(chǎn)不利。(趙俊芳)
在大氣氣溶膠污染日益嚴(yán)重的時(shí)代背景下,氣溶膠對(duì)農(nóng)作物生長發(fā)育的影響越來越不可忽視。本文以全球氣溶膠監(jiān)測(cè)網(wǎng)(AErosol RObotic NETwork,AERONET)中具有常年觀測(cè)數(shù)據(jù)的我國北京、香河和太湖為研究站點(diǎn),利用AERONET 多年觀測(cè)資料以及MODIS 地表反照率數(shù)據(jù),借助6S(Second Simulation of a Satellite Signal in the Solar Spectrum)輻射傳輸模式,計(jì)算出2001—2014年研究站點(diǎn)的氣溶膠直接輻射效應(yīng),評(píng)估了APSIM(Agricultural Production Systems Simulator)作物模型的適用性,運(yùn)用驗(yàn)證適用的APSIM模型分析了氣溶膠直接輻射效應(yīng)對(duì)我國玉米產(chǎn)量的影響。結(jié)果表明:(1)驗(yàn)證后的APSIM 玉米模型在我國北京、香河和太湖玉米產(chǎn)區(qū)具有較好的適用性。APSIM 模型在模擬玉米的發(fā)育期以及產(chǎn)量中的模擬結(jié)果較好,其中各站點(diǎn)產(chǎn)量的相對(duì)均方根誤差(NRMSE)為1.55%~6.24%,一致性指標(biāo)(D)為0.80~0.99,決定系數(shù)(R2)為0.75~1.00。(2)氣溶膠使得太陽直接輻射降低; 降低的趨勢(shì)主要受氣溶膠的凈輻射通量的影響。2001—2014年期間北京、香河和太湖總輻射量分別降低31.95%、14.74%和28.30%。(3)氣溶膠直接輻射效應(yīng)造成玉米減產(chǎn)。2001—2014年期間氣溶膠直接輻射效應(yīng)使得北京、香河和太湖玉米產(chǎn)量分別減少28.44%、14.89%和13.43%??傮w來說,2001—2014年期間大氣氣溶膠直接輻射效應(yīng)使得我國北京、香河和太湖3 個(gè)高污染區(qū)的玉米產(chǎn)量減少13.43%~28.44%。(趙俊芳)
小麥干熱風(fēng)災(zāi)害是危害我國北方麥區(qū)的主要農(nóng)業(yè)氣象災(zāi)害之一?;谝延醒芯砍晒蛯?shí)際災(zāi)情,從干熱風(fēng)的概念、分類及研究方法出發(fā),對(duì)小麥干熱風(fēng)災(zāi)害的危害機(jī)理、氣象環(huán)境成因、致災(zāi)指標(biāo)、時(shí)空分布、監(jiān)測(cè)預(yù)報(bào)及防御措施等方面進(jìn)行了系統(tǒng)歸納闡述,并對(duì)未來小麥干熱風(fēng)災(zāi)害研究方向進(jìn)行展望。我國小麥干熱風(fēng)災(zāi)害主要分為高溫低濕型、雨后青枯型及旱風(fēng)型3種,形成的氣象環(huán)境成因主要受干熱風(fēng)天氣系統(tǒng)、氣候變暖、土壤墑情的影響,致災(zāi)指標(biāo)主要分為形態(tài)學(xué)、氣象學(xué)、綜合指數(shù)指標(biāo)。小麥干熱風(fēng)災(zāi)害的危害總體呈東西兩邊重、中間輕的分布格局,主要發(fā)生在黃淮海平原、河西走廊和新疆3個(gè)地區(qū)。氣候變暖背景下,大部分地區(qū)的干熱風(fēng)年日數(shù)在20世紀(jì)80—90年代出現(xiàn)突變,近30年呈明顯加重?cái)U(kuò)大趨勢(shì)?;谕寥缐勄橛绊懙男←湼蔁犸L(fēng)災(zāi)害等級(jí)指標(biāo)構(gòu)建、小麥干熱風(fēng)過程的災(zāi)害監(jiān)測(cè)預(yù)警方法、氣候變化背景下小麥干熱風(fēng)災(zāi)害時(shí)空分布新變化及其氣象環(huán)境成因等是今后研究的重點(diǎn)方向。(霍治國)
江淮地區(qū)玉米澇漬災(zāi)害嚴(yán)重,研究揭示區(qū)域玉米澇漬災(zāi)害時(shí)空發(fā)生規(guī)律對(duì)科學(xué)開展區(qū)域防洪減災(zāi)具有重要意義。利用1981—2010年江淮地區(qū)18個(gè)站點(diǎn)地面氣象觀測(cè)數(shù)據(jù)和農(nóng)業(yè)氣象資料,基于作物水分盈余指數(shù)(CWSI),引入播種前底墑,根據(jù)玉米各生育階段澇漬敏感性差異,采用層次分析法確定階段澇漬災(zāi)害影響權(quán)重,構(gòu)建適用于江淮地區(qū)玉米澇漬等級(jí)評(píng)估的玉米綜合水分盈余指數(shù)(CWSIM),并根據(jù)典型澇漬年綜合指數(shù)同對(duì)應(yīng)減產(chǎn)率的線性回歸方程,劃分春、夏玉米不同等級(jí)澇漬的指標(biāo)閾值。結(jié)果表明:(1)春玉米的輕、中、重澇指標(biāo)閾值依次為:0.80≤CWSIM<1.01,1.01≤CWSIM<1.23,CWSIM≥1.23;夏玉米為:1.09≤CWSIM<1.44,1.44≤CWSIM<1.79,CWSIM≥1.79。(2)各階段水分盈余指數(shù)(WSIM)分布規(guī)律,春玉米為:出苗—拔節(jié)期、拔節(jié)—吐絲期呈由北向南的緯向增加分布;吐絲—成熟期高值區(qū)位于安徽省西南臨江一帶、江蘇省淮安市東部、揚(yáng)州市及其周邊區(qū)域,低值區(qū)位于安徽省北部及中部的中心區(qū)域、江蘇省東南邊緣,其余為中值區(qū)。夏玉米為:出苗—拔節(jié)期呈由北向南的緯向增加分布;拔節(jié)—吐絲期高值區(qū)位于江蘇省東北部,低值區(qū)位于安徽省中部及臨江一帶,其余為中值區(qū);吐絲—成熟期指數(shù)呈由西向東的經(jīng)向增加分布。(3)江淮地區(qū)近30年,春玉米CWSIM值由北向南呈緯向增加分布。整體指數(shù)在不同時(shí)期的排序?yàn)?991—2000年>1981—1990年>2001—2010年;夏玉米CWSIM值由北向南呈近輻射狀條帶增加分布,不同時(shí)期指數(shù)排序?yàn)?991—2000年>2001—2010年>1981—1990年。安徽省沿江一帶是玉米澇漬害發(fā)生的重災(zāi)區(qū),且1991—2000年較其前后10年澇情最重。(霍治國)
以湖南省油菜春季澇漬災(zāi)害為例,創(chuàng)建基于澇漬過程的逐日災(zāi)變等級(jí)指標(biāo)、災(zāi)害影響量化評(píng)價(jià)與災(zāi)損量化評(píng)估模型,探索區(qū)域農(nóng)作物澇漬災(zāi)變動(dòng)態(tài)監(jiān)測(cè)評(píng)估的天氣學(xué)方法?;诤鲜∮筒舜杭緷碀n災(zāi)變過程解析,以過程災(zāi)變判別指標(biāo)為基礎(chǔ),采用基于假設(shè)的滾動(dòng)模擬尋優(yōu)、實(shí)際災(zāi)情驗(yàn)證與個(gè)例分析等方法,厘定輕度澇漬與重度澇漬災(zāi)變的最佳閾值,構(gòu)建油菜春季澇漬過程逐日災(zāi)變等級(jí)指標(biāo);利用多元回歸等方法,構(gòu)建對(duì)應(yīng)的災(zāi)害影響量化評(píng)價(jià)模型和減產(chǎn)率量化評(píng)估模型;基于個(gè)例分析,驗(yàn)證指標(biāo)及模型結(jié)果與歷史災(zāi)情記錄的吻合情況。結(jié)果表明:湖南省輕度與重度澇漬災(zāi)變的最佳閾值為1.44;不同縣澇漬災(zāi)變等級(jí)閾值存在一定差異,平均受災(zāi)頻率越低,洪澇脆弱性越低,防災(zāi)減災(zāi)能力越強(qiáng),閾值越高;基于受災(zāi)天數(shù)和重災(zāi)天數(shù)的災(zāi)害影響指數(shù)都表現(xiàn)為結(jié)莢期澇漬對(duì)油菜減產(chǎn)率影響更大,且兩者的空間分布形勢(shì)都與各縣年平均減產(chǎn)率的空間分布形勢(shì)基本一致;個(gè)例中,基于指標(biāo)的全省重災(zāi)站數(shù)百分比的時(shí)間演變與實(shí)際災(zāi)情記錄一致,減產(chǎn)率量化評(píng)估模型的結(jié)果也與實(shí)際災(zāi)損相匹配。油菜澇漬災(zāi)變等級(jí)指標(biāo)、災(zāi)害影響指數(shù)及減產(chǎn)率量化評(píng)估模型,實(shí)現(xiàn)了對(duì)澇漬災(zāi)變過程等級(jí)的動(dòng)態(tài)監(jiān)測(cè)、影響與災(zāi)損的量化評(píng)估,為基于天氣學(xué)方法開展區(qū)域油菜澇漬災(zāi)變等級(jí)的動(dòng)態(tài)監(jiān)測(cè)提供了理論支持和方法支撐,同時(shí)為歷史災(zāi)情資料的補(bǔ)充和量化及災(zāi)情記錄的再分析提供了可行的思路。(霍治國)
果樹產(chǎn)業(yè)是我國廣大農(nóng)村農(nóng)業(yè)經(jīng)濟(jì)收入的一項(xiàng)重要來源,對(duì)提高當(dāng)?shù)厝嗣裆钏?,促進(jìn)當(dāng)?shù)剞r(nóng)業(yè)經(jīng)濟(jì)發(fā)展具有重要意義。本研究采用分類歸納法,對(duì)我國現(xiàn)有主要果樹氣象災(zāi)害指標(biāo)進(jìn)行分類總結(jié)和系統(tǒng)闡述。從果樹氣象災(zāi)害指標(biāo)基本概念出發(fā),對(duì)果樹氣象災(zāi)害指標(biāo)進(jìn)行分類;分北方和南方兩大區(qū)域,按照各自主要果樹的氣象災(zāi)害種類,綜述了我國目前已有果樹氣象災(zāi)害指標(biāo),評(píng)述了各類指標(biāo)的優(yōu)缺點(diǎn)及適用性;從指標(biāo)構(gòu)成、指標(biāo)構(gòu)建方法、涉及果樹種類、產(chǎn)業(yè)發(fā)展需求、創(chuàng)新的技術(shù)方法等方面,討論了果樹氣象災(zāi)害指標(biāo)研究存在的問題和未來發(fā)展方向,以期為我國主要果樹的品種布局、產(chǎn)業(yè)優(yōu)化、防災(zāi)減災(zāi)等提供信息參考,為我國果樹產(chǎn)業(yè)健康、穩(wěn)定、可持續(xù)發(fā)展提供科學(xué)保障。(霍治國)
以華北黃淮地區(qū)高溫低濕型冬小麥干熱風(fēng)災(zāi)害為研究對(duì)象,基于逐日逐時(shí)氣象資料、分層土壤水分資料、災(zāi)情資料等,采用歷史災(zāi)情反演、獨(dú)立t檢驗(yàn)等方法,將災(zāi)情記錄中無明確記載和有明確記載土壤相對(duì)濕度影響干熱風(fēng)災(zāi)害的樣本分為A類和B類,基于兩類樣本相互獨(dú)立,厘定各土層對(duì)干熱風(fēng)災(zāi)害有影響的土壤相對(duì)濕度閾值,利用隨機(jī)預(yù)留樣本驗(yàn)證閾值的合理性。結(jié)果表明:分層和整層土壤相對(duì)濕度閾值均隨土層深度增加而增大,其中整層閾值平均值近似60%,獨(dú)立樣本檢驗(yàn)符合率在80%左右。為便于業(yè)務(wù)應(yīng)用,選取10~20 cm土層相對(duì)濕度60%為土壤相對(duì)濕度對(duì)冬小麥干熱風(fēng)災(zāi)害影響的臨界閾值。當(dāng)土壤相對(duì)濕度大于等于60%時(shí),土壤相對(duì)濕度對(duì)冬小麥干熱風(fēng)災(zāi)害影響顯著;當(dāng)土壤相對(duì)濕度小于60%時(shí),土壤相對(duì)濕度對(duì)冬小麥干熱風(fēng)災(zāi)害影響較小,獨(dú)立樣本檢驗(yàn)符合率達(dá)82.5%。該文為量化評(píng)估土壤相對(duì)濕度對(duì)冬小麥干熱風(fēng)災(zāi)害的影響提供了科學(xué)依據(jù)。(霍治國)
雨洗花災(zāi)害是江西省早稻的主要農(nóng)業(yè)氣象災(zāi)害之一?;?981—2017年江西省早稻種植區(qū)81個(gè)氣象站逐日降水量資料和14個(gè)水稻觀測(cè)站發(fā)育期和產(chǎn)量資料,利用旋轉(zhuǎn)經(jīng)驗(yàn)正交函數(shù)分解(REOF)等方法,探討江西省早稻雨洗花災(zāi)害的時(shí)空變化和分區(qū)特征并得到典型場(chǎng)。結(jié)果表明:江西省早稻雨洗花災(zāi)害發(fā)生頻率總體呈東北高、西南低,贛北南部高、兩側(cè)低的分布特征,高值區(qū)位于萍鄉(xiāng)北部、宜春南部、新余、南昌、撫州北部至贛東北地區(qū),發(fā)生頻率在60%以上,低值區(qū)位于贛州和吉安西南部,發(fā)生頻率低于40%。輕度雨洗花災(zāi)害持續(xù)影響江西省大部分地區(qū),且自1992年以來呈現(xiàn)發(fā)生頻率增加、影響范圍擴(kuò)大的趨勢(shì);重度災(zāi)害主要發(fā)生在贛東北,經(jīng)歷了兩個(gè)活躍期和兩個(gè)低發(fā)期。根據(jù)REOF分析結(jié)果,可將江西省早稻雨洗花災(zāi)害劃分為贛北南部、贛中、贛東北、贛南和贛北北部5個(gè)區(qū)域。贛東北為重度雨洗花災(zāi)害高風(fēng)險(xiǎn)區(qū),贛北南部為輕度雨洗花災(zāi)害高風(fēng)險(xiǎn)區(qū),贛中、贛北北部為輕度雨洗花災(zāi)害次高風(fēng)險(xiǎn)區(qū),贛南為雨洗花災(zāi)害低風(fēng)險(xiǎn)區(qū)。(霍治國)
基于山西省境內(nèi)較為均勻分布的70個(gè)地面氣象觀測(cè)站57年(1960—2016年)的逐日降水量、氣溫、日照時(shí)數(shù)、相對(duì)濕度、風(fēng)速、水汽壓等氣象資料,選用國家標(biāo)準(zhǔn)中相對(duì)濕潤度指數(shù)(M),在其基礎(chǔ)上構(gòu)建了改進(jìn)的相對(duì)濕潤度指數(shù)(M10i)作為干旱指標(biāo),以年、季為時(shí)間尺度,研究山西省干旱頻率和強(qiáng)度的空間分布特征,并分析干旱頻率和強(qiáng)度的年際變化規(guī)律。結(jié)果表明:改進(jìn)的相對(duì)濕潤度指數(shù)可很好地表征出典型干旱年;從57年的資料來看,山西干旱程度總體呈現(xiàn)加重的趨勢(shì);對(duì)比各年代干旱程度,以20世紀(jì)60年代干旱最輕,80年代和90年代干旱最為嚴(yán)重,90年代之后又呈現(xiàn)逐年代減輕的趨勢(shì);山西省干旱強(qiáng)度呈北高南低的分布,北部大部、太原中部干旱強(qiáng)度最強(qiáng);冬季、春季干旱強(qiáng)度明顯高于夏季和秋季;山西省歷年特旱的頻率明顯高于其他等級(jí)的干旱,重旱頻率略高于輕旱和中旱的頻率;大多數(shù)年份,山西省冬季總干旱頻率最高,春季次高,秋季較低,夏季最低。(霍治國)
針對(duì)現(xiàn)有寒害分析在因子選取上普遍缺少表述陰雨?duì)顩r的問題,提出陰冷指數(shù)模型?;谵r(nóng)業(yè)和氣象行業(yè)專家對(duì)海南各市縣陰冷程度的排序,以及海南各市縣1971—2010年逐日氣象數(shù)據(jù),采用均勻試驗(yàn)設(shè)計(jì)方法構(gòu)建能反映低溫強(qiáng)度和陰雨寡照綜合作用的陰冷指數(shù)模型。依據(jù)陰冷指數(shù)模型,計(jì)算海南各市縣1971—2010年歷次陰冷過程的陰冷指數(shù),按陰冷指數(shù)從大到小序列中的10%、30%和60%劃分出重度、中度和輕度3級(jí)寒害及其指標(biāo),據(jù)此分析海南寒害的分布及變化。結(jié)果表明:寒害的地域分布特征與實(shí)際業(yè)務(wù)所監(jiān)測(cè)的寒害情況相吻合,寒害的年際變化在《中國氣象災(zāi)害大典》寒害記載中也得到了較好的印證,說明陰冷指數(shù)模型具有一定的實(shí)際應(yīng)用性,可為寒害的監(jiān)測(cè)、預(yù)警和評(píng)估提供新的技術(shù)方法。(霍治國)
以湖南晚稻為研究對(duì)象,基于1961—2010年雙季晚稻種植區(qū)68個(gè)氣象站的降水資料、17個(gè)農(nóng)業(yè)氣象觀測(cè)站的生育期觀測(cè)資料,采用歷史災(zāi)情反演方法,構(gòu)建晚稻大田生長期3個(gè)生育時(shí)段、3個(gè)洪澇等級(jí)的洪澇災(zāi)害樣本125個(gè),應(yīng)用Q-Q圖擬合、W檢驗(yàn)和r分布區(qū)間估計(jì)方法,計(jì)算晚稻分生育期(移栽—分蘗期、拔節(jié)—孕穗期、抽穗—成熟期)不同洪澇致災(zāi)等級(jí)(輕、中、重)的過程降水量臨界值,構(gòu)建晚稻洪澇過程等級(jí)指標(biāo),并進(jìn)行獨(dú)立樣本驗(yàn)證檢驗(yàn);應(yīng)用M-K檢驗(yàn)等方法分析1961—2010年湖南晚稻洪澇的時(shí)空演變特征。結(jié)果表明:指標(biāo)驗(yàn)證與歷史記錄有較高一致性;同一洪澇等級(jí)的指標(biāo)閾值從大到小依次為抽穗—成熟期、拔節(jié)—孕穗期、移栽—分蘗期;20世紀(jì)60年代和90年代是湖南晚稻洪澇發(fā)生最嚴(yán)重的年代,總洪澇次數(shù)在1994年發(fā)生突變;晚稻輕澇在抽穗—成熟期發(fā)生率最高,中澇和重澇在拔節(jié)—孕穗期發(fā)生率最高;總洪澇的高發(fā)地區(qū)位于郴州、岳陽地區(qū);隨年代推移,晚稻各等級(jí)洪澇和總洪澇高發(fā)區(qū)均呈現(xiàn)由北向南的變化。(霍治國)
基于冬小麥分期播種試驗(yàn),結(jié)合自然大田冬小麥越冬凍害調(diào)查實(shí)況資料,分析研究2017/2018年偏冷冬年份華北北部冬小麥越冬凍害的成因及對(duì)產(chǎn)量的影響。結(jié)果表明:適應(yīng)氣候變暖,冬小麥播期推遲,但華北北部播種期不應(yīng)晚于10月21日,播種期推遲或秸稈還田,應(yīng)加大播種量,確保出苗率和基本苗。品種推廣和生產(chǎn)選種時(shí)宜冬性和半冬性品種搭配種植,防御出現(xiàn)“冷冬”導(dǎo)致冬小麥越冬凍害的潛在風(fēng)險(xiǎn)。越冬凍害死苗率每增加1%,其產(chǎn)量減少約1 kg/hm2。冬小麥播種期受降雨且降水多的影響,晚播、播種質(zhì)量差以及品種冬性與春性特性差異、除草農(nóng)藥使用不當(dāng)?shù)仁窃蕉瑑龊λ烂缏试黾拥闹饕?。(趙花榮)
災(zāi)前灌水是防御災(zāi)害發(fā)生的有效措施,為掌握灌水的關(guān)鍵發(fā)育期及適宜灌水量,在防雨棚和自然大田進(jìn)行冬小麥抽穗期、開花期、灌漿初期灌水試驗(yàn)。結(jié)果表明:在開花期,灌水100、150 mm自然大田干熱風(fēng)穗的發(fā)生率比遮雨棚降低31.77%、32.85%,而穗粒重自然大田比防雨棚提高12.25%、5.45%;無論開花期還是抽穗—灌漿初期,灌水處理的千粒重均比對(duì)照大,防雨棚中隨灌水時(shí)間推后千粒重逐漸增大,而自然大田以開花期灌水千粒重最大,為47.664 g。灌水100、150 mm處理,灌水效率自然大田均比防雨棚高,且均以開花期灌水效率最高,為4.110 g/(m2·mm),防雨棚灌水150 mm比灌水100 mm高約0.2 g/(m2·mm),而自然大田受自然降水補(bǔ)給調(diào)節(jié)土壤水分,灌水150 mm比灌水100 mm低0.565~1.301 g/(m2·mm)。灌水對(duì)干熱風(fēng)防御效應(yīng)效果自然大田較防雨棚更為顯著,且以開花期灌水效應(yīng)最為顯著。(趙花榮)