北京師范大學(xué)大同附中 田芷瑞
數(shù)學(xué)是關(guān)于思維的科學(xué),在新課改的背景下,數(shù)學(xué)思維能力已經(jīng)成為素質(zhì)教育的重點。近些年的高考數(shù)學(xué)試題重點考查學(xué)生的數(shù)學(xué)思維能力,在我國傳統(tǒng)的數(shù)學(xué)教育影響下,一些人片面地將數(shù)學(xué)思維能力等同于解題能力,部分學(xué)生認(rèn)為通過題海戰(zhàn)術(shù)就能培養(yǎng)數(shù)學(xué)思維能力。然而大量的研究和實踐表明,題海戰(zhàn)術(shù)對于學(xué)生數(shù)學(xué)思維能力的培養(yǎng)并沒有那么重要,作為高中學(xué)生,一定要積極主動地自主學(xué)習(xí),發(fā)散思維,將學(xué)習(xí)和生活聯(lián)系起來,提高數(shù)學(xué)思維能力。
數(shù)學(xué)思維是思維的一種,有學(xué)者認(rèn)為思維是大腦經(jīng)過一系列的程序進(jìn)行判別、推理的過程,是人腦特有的高級認(rèn)識活動。包括思維的內(nèi)容、思維品質(zhì)和思維形式三個方面,數(shù)學(xué)思維的核心內(nèi)容是數(shù)學(xué)思想方法。特級教師張乃達(dá)認(rèn)為,數(shù)學(xué)思維是以數(shù)學(xué)問題為基礎(chǔ),是一種“主體”對“客體”認(rèn)識的過程。
數(shù)學(xué)思維也分為以下三類:(1)數(shù)學(xué)直覺思維。直覺思維是在大量原有知識的前提下,進(jìn)行整體觀察后,在大腦里作出非邏輯判斷的認(rèn)識,不經(jīng)過邏輯思維判斷,有一定的指向性。(2)數(shù)學(xué)邏輯思維。對數(shù)學(xué)問題的解決,首先通過數(shù)學(xué)直覺思維進(jìn)行猜想,然后再用數(shù)學(xué)邏輯思維進(jìn)行一系列的判斷、推理、證明等思維過程。(3)數(shù)學(xué)形象思維,這是個體根據(jù)客觀事物的表象進(jìn)行的一種思維活動。
對于數(shù)學(xué)思維品質(zhì)的概念,不同的學(xué)者從不同的學(xué)科進(jìn)行了概括,主要包括心理學(xué)和思維科學(xué)角度。數(shù)學(xué)思維品質(zhì)具有靈活性,包括起點靈活性、過程靈活性、概括遷移能力強(qiáng)以及思維的結(jié)論多樣化,同時,數(shù)學(xué)思維也具有批判性、廣闊性、深刻性、創(chuàng)造性等特征。
高中數(shù)學(xué)教學(xué)中的數(shù)學(xué)思維包括以下三個方面:(1)直覺思維。是指當(dāng)遇到一個問題時瞬間產(chǎn)生的判斷以及猜測,在某一時刻突然茅塞頓開。直覺思維的形成不是瞎亂猜想,而是在已有的基礎(chǔ)上形成的,是創(chuàng)造性思維的前提條件。例如人教版高中數(shù)學(xué)三角函數(shù)的知識點多而復(fù)雜,如果建立知識網(wǎng)絡(luò),就相對容易記憶。(2)歸納推理。指通過根據(jù)某類事物的一部分特性,運用邏輯思維推理出其他的特性。(3)類比推理。指兩種事物有類似的特點,例如三角形和四面體,是由特殊到特殊推理,但是正確性有待進(jìn)一步驗證。同時也包括了演繹推理、綜合法和分析法、數(shù)學(xué)歸納法和反證法等。
高中數(shù)學(xué)教學(xué)中的數(shù)學(xué)思想包括:(1)數(shù)形結(jié)合思想。數(shù)形結(jié)合的思想具有直觀性,有些題如果按照常規(guī)的方法,運用高中所學(xué)知識很難進(jìn)行解決,但是利用數(shù)形結(jié)合的思想就會很容易把問題解決。(2)整體思想。通過研究整體分析數(shù)學(xué)問題,但是其中的一部分往往有利于一個整體來解決數(shù)學(xué)問題。(3)分類討論思想。當(dāng)問題中含有參數(shù)或問題是分類給出的,常常使用分類討論。同時,還包括函數(shù)與方程的思想、轉(zhuǎn)化與化歸思想。
數(shù)學(xué)是高中階段重要的學(xué)科之一,也是其他理科學(xué)科的基礎(chǔ),很難想象一個數(shù)學(xué)學(xué)不好的同學(xué),如何提高物理、化學(xué)成績。學(xué)生首先要養(yǎng)成良好的預(yù)習(xí)習(xí)慣,高中數(shù)學(xué)一環(huán)套一環(huán),知識層次更高,如果學(xué)生基礎(chǔ)不好,課前不預(yù)習(xí),在課堂上就很難聽懂教師的授課思路,出現(xiàn)一知半解的現(xiàn)象,影響到下一堂課的聽課效果。學(xué)生要養(yǎng)成課前預(yù)習(xí)習(xí)慣,在預(yù)習(xí)的過程中,發(fā)現(xiàn)自己不懂的地方,做個標(biāo)示,有針對性地聽講。其次,學(xué)生要養(yǎng)成認(rèn)真聽課的習(xí)慣,課堂是學(xué)習(xí)最重要的場所,教師在課堂講的知識大多數(shù)都具有典型性和代表性,如果在課堂都不能認(rèn)真聽講,就很難舉一反三,因此,高中生一定要把握課堂,學(xué)會思考。最后,學(xué)生要養(yǎng)成復(fù)習(xí)的習(xí)慣。俗話說得好,“溫故而知新”,高中數(shù)學(xué)的授課進(jìn)度相對較快,因此要有計劃地復(fù)習(xí)所學(xué)內(nèi)容,讓知識內(nèi)化。
高中數(shù)學(xué)學(xué)習(xí)不是單純的知識接受,在課堂中,學(xué)生是主體。學(xué)生要通過教師的引導(dǎo)舉一反三,合作交流,學(xué)生只有認(rèn)識到自身是數(shù)學(xué)學(xué)習(xí)的主體,才能深化對問題的理解,在課堂中積極主動探索,促進(jìn)知識的有效遷移,產(chǎn)生新的發(fā)現(xiàn),優(yōu)化思維過程,揭示問題本質(zhì)。另外,還要反思計算的正誤,課后通過數(shù)學(xué)練習(xí)題進(jìn)行知識鞏固,在練習(xí)的過程中不斷糾錯,不斷反省,進(jìn)而減少失誤,才能查漏補(bǔ)缺,長此以往,有利于培養(yǎng)學(xué)生的思維能力。
數(shù)學(xué)思想方法是數(shù)學(xué)知識的精華,學(xué)生首先要在概念的形成過程中學(xué)習(xí)數(shù)學(xué)思想方法,從本質(zhì)上明白相關(guān)的概念,進(jìn)而分析、抽象、概括出數(shù)學(xué)概念,促進(jìn)知識結(jié)構(gòu)的逐步完善和認(rèn)知結(jié)構(gòu)的發(fā)展。其次,要在定理、公式、法則過程中學(xué)習(xí)數(shù)學(xué)思想方法,學(xué)生要去深刻感受,不能不懂裝懂,而要弄清知識的來龍去脈。另外,在問題解決的過程中也要訓(xùn)練自身的數(shù)學(xué)思想,盡管題海戰(zhàn)術(shù)有一定的弊端,但是我們也要適當(dāng)?shù)剡M(jìn)行習(xí)題的訓(xùn)練,在訓(xùn)練過程中領(lǐng)悟隱含于數(shù)學(xué)問題中的數(shù)學(xué)思想,找到解題思路。在解題中,首先要善于選擇典型例題,找到思維的突破口,從反思中體會思想方法,總結(jié)解題規(guī)律。
隨著素質(zhì)教育的持續(xù)深入,培養(yǎng)學(xué)生的數(shù)學(xué)思維能力已經(jīng)迫在眉睫,不僅是教學(xué)的重要任務(wù),也是開發(fā)學(xué)生思維潛能的需要。高中學(xué)生要反思知識點及其內(nèi)在聯(lián)系,克服思維缺陷,尋找問題的突破口,總結(jié)思維規(guī)律,提高自身的數(shù)學(xué)思維能力。